Properties

Label 529.4.a.m.1.17
Level $529$
Weight $4$
Character 529.1
Self dual yes
Analytic conductor $31.212$
Analytic rank $1$
Dimension $25$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [529,4,Mod(1,529)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(529, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0])) N = Newforms(chi, 4, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("529.1"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Level: \( N \) \(=\) \( 529 = 23^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 529.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [25,0,-1,80,-51] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(31.2120103930\)
Analytic rank: \(1\)
Dimension: \(25\)
Twist minimal: no (minimal twist has level 23)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.17
Character \(\chi\) \(=\) 529.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.27917 q^{2} -5.45949 q^{3} -2.80539 q^{4} -0.946196 q^{5} -12.4431 q^{6} +13.4796 q^{7} -24.6273 q^{8} +2.80604 q^{9} -2.15654 q^{10} +53.3829 q^{11} +15.3160 q^{12} +33.5635 q^{13} +30.7222 q^{14} +5.16575 q^{15} -33.6866 q^{16} +34.3481 q^{17} +6.39543 q^{18} -86.9253 q^{19} +2.65445 q^{20} -73.5916 q^{21} +121.669 q^{22} +134.453 q^{24} -124.105 q^{25} +76.4969 q^{26} +132.087 q^{27} -37.8155 q^{28} +46.3077 q^{29} +11.7736 q^{30} -210.105 q^{31} +120.241 q^{32} -291.443 q^{33} +78.2852 q^{34} -12.7543 q^{35} -7.87204 q^{36} -279.323 q^{37} -198.117 q^{38} -183.240 q^{39} +23.3023 q^{40} -329.177 q^{41} -167.728 q^{42} -341.867 q^{43} -149.760 q^{44} -2.65506 q^{45} +460.208 q^{47} +183.912 q^{48} -161.301 q^{49} -282.855 q^{50} -187.523 q^{51} -94.1590 q^{52} -243.377 q^{53} +301.048 q^{54} -50.5107 q^{55} -331.966 q^{56} +474.568 q^{57} +105.543 q^{58} +119.813 q^{59} -14.4920 q^{60} +406.566 q^{61} -478.865 q^{62} +37.8242 q^{63} +543.542 q^{64} -31.7577 q^{65} -664.248 q^{66} -870.845 q^{67} -96.3601 q^{68} -29.0692 q^{70} +287.257 q^{71} -69.1051 q^{72} -913.737 q^{73} -636.625 q^{74} +677.549 q^{75} +243.860 q^{76} +719.579 q^{77} -417.634 q^{78} +788.578 q^{79} +31.8741 q^{80} -796.889 q^{81} -750.250 q^{82} -1353.17 q^{83} +206.454 q^{84} -32.5001 q^{85} -779.173 q^{86} -252.817 q^{87} -1314.68 q^{88} -744.528 q^{89} -6.05133 q^{90} +452.422 q^{91} +1147.07 q^{93} +1048.89 q^{94} +82.2484 q^{95} -656.455 q^{96} +499.625 q^{97} -367.632 q^{98} +149.794 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 25 q - q^{3} + 80 q^{4} - 51 q^{5} + 86 q^{6} - 73 q^{7} + 3 q^{8} + 166 q^{9} - 139 q^{10} - 221 q^{11} - 191 q^{12} - 27 q^{13} - 372 q^{14} - 310 q^{15} + 152 q^{16} - 365 q^{17} - 538 q^{18} - 405 q^{19}+ \cdots - 7317 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.27917 0.805808 0.402904 0.915242i \(-0.368001\pi\)
0.402904 + 0.915242i \(0.368001\pi\)
\(3\) −5.45949 −1.05068 −0.525340 0.850893i \(-0.676062\pi\)
−0.525340 + 0.850893i \(0.676062\pi\)
\(4\) −2.80539 −0.350674
\(5\) −0.946196 −0.0846304 −0.0423152 0.999104i \(-0.513473\pi\)
−0.0423152 + 0.999104i \(0.513473\pi\)
\(6\) −12.4431 −0.846645
\(7\) 13.4796 0.727829 0.363914 0.931432i \(-0.381440\pi\)
0.363914 + 0.931432i \(0.381440\pi\)
\(8\) −24.6273 −1.08838
\(9\) 2.80604 0.103927
\(10\) −2.15654 −0.0681958
\(11\) 53.3829 1.46323 0.731615 0.681718i \(-0.238767\pi\)
0.731615 + 0.681718i \(0.238767\pi\)
\(12\) 15.3160 0.368446
\(13\) 33.5635 0.716066 0.358033 0.933709i \(-0.383448\pi\)
0.358033 + 0.933709i \(0.383448\pi\)
\(14\) 30.7222 0.586490
\(15\) 5.16575 0.0889194
\(16\) −33.6866 −0.526353
\(17\) 34.3481 0.490038 0.245019 0.969518i \(-0.421206\pi\)
0.245019 + 0.969518i \(0.421206\pi\)
\(18\) 6.39543 0.0837454
\(19\) −86.9253 −1.04958 −0.524790 0.851232i \(-0.675856\pi\)
−0.524790 + 0.851232i \(0.675856\pi\)
\(20\) 2.65445 0.0296777
\(21\) −73.5916 −0.764715
\(22\) 121.669 1.17908
\(23\) 0 0
\(24\) 134.453 1.14354
\(25\) −124.105 −0.992838
\(26\) 76.4969 0.577011
\(27\) 132.087 0.941485
\(28\) −37.8155 −0.255231
\(29\) 46.3077 0.296522 0.148261 0.988948i \(-0.452632\pi\)
0.148261 + 0.988948i \(0.452632\pi\)
\(30\) 11.7736 0.0716519
\(31\) −210.105 −1.21729 −0.608646 0.793442i \(-0.708287\pi\)
−0.608646 + 0.793442i \(0.708287\pi\)
\(32\) 120.241 0.664244
\(33\) −291.443 −1.53739
\(34\) 78.2852 0.394876
\(35\) −12.7543 −0.0615964
\(36\) −7.87204 −0.0364446
\(37\) −279.323 −1.24109 −0.620547 0.784169i \(-0.713089\pi\)
−0.620547 + 0.784169i \(0.713089\pi\)
\(38\) −198.117 −0.845760
\(39\) −183.240 −0.752355
\(40\) 23.3023 0.0921103
\(41\) −329.177 −1.25387 −0.626937 0.779070i \(-0.715692\pi\)
−0.626937 + 0.779070i \(0.715692\pi\)
\(42\) −167.728 −0.616213
\(43\) −341.867 −1.21242 −0.606212 0.795303i \(-0.707312\pi\)
−0.606212 + 0.795303i \(0.707312\pi\)
\(44\) −149.760 −0.513117
\(45\) −2.65506 −0.00879540
\(46\) 0 0
\(47\) 460.208 1.42826 0.714130 0.700013i \(-0.246823\pi\)
0.714130 + 0.700013i \(0.246823\pi\)
\(48\) 183.912 0.553029
\(49\) −161.301 −0.470265
\(50\) −282.855 −0.800036
\(51\) −187.523 −0.514873
\(52\) −94.1590 −0.251106
\(53\) −243.377 −0.630763 −0.315382 0.948965i \(-0.602132\pi\)
−0.315382 + 0.948965i \(0.602132\pi\)
\(54\) 301.048 0.758656
\(55\) −50.5107 −0.123834
\(56\) −331.966 −0.792157
\(57\) 474.568 1.10277
\(58\) 105.543 0.238939
\(59\) 119.813 0.264379 0.132190 0.991224i \(-0.457799\pi\)
0.132190 + 0.991224i \(0.457799\pi\)
\(60\) −14.4920 −0.0311817
\(61\) 406.566 0.853369 0.426684 0.904401i \(-0.359682\pi\)
0.426684 + 0.904401i \(0.359682\pi\)
\(62\) −478.865 −0.980902
\(63\) 37.8242 0.0756413
\(64\) 543.542 1.06161
\(65\) −31.7577 −0.0606009
\(66\) −664.248 −1.23884
\(67\) −870.845 −1.58792 −0.793960 0.607970i \(-0.791984\pi\)
−0.793960 + 0.607970i \(0.791984\pi\)
\(68\) −96.3601 −0.171844
\(69\) 0 0
\(70\) −29.0692 −0.0496349
\(71\) 287.257 0.480156 0.240078 0.970754i \(-0.422827\pi\)
0.240078 + 0.970754i \(0.422827\pi\)
\(72\) −69.1051 −0.113113
\(73\) −913.737 −1.46500 −0.732498 0.680769i \(-0.761646\pi\)
−0.732498 + 0.680769i \(0.761646\pi\)
\(74\) −636.625 −1.00008
\(75\) 677.549 1.04315
\(76\) 243.860 0.368061
\(77\) 719.579 1.06498
\(78\) −417.634 −0.606254
\(79\) 788.578 1.12306 0.561532 0.827455i \(-0.310212\pi\)
0.561532 + 0.827455i \(0.310212\pi\)
\(80\) 31.8741 0.0445455
\(81\) −796.889 −1.09313
\(82\) −750.250 −1.01038
\(83\) −1353.17 −1.78951 −0.894757 0.446552i \(-0.852652\pi\)
−0.894757 + 0.446552i \(0.852652\pi\)
\(84\) 206.454 0.268166
\(85\) −32.5001 −0.0414721
\(86\) −779.173 −0.976981
\(87\) −252.817 −0.311549
\(88\) −1314.68 −1.59256
\(89\) −744.528 −0.886739 −0.443369 0.896339i \(-0.646217\pi\)
−0.443369 + 0.896339i \(0.646217\pi\)
\(90\) −6.05133 −0.00708740
\(91\) 452.422 0.521173
\(92\) 0 0
\(93\) 1147.07 1.27898
\(94\) 1048.89 1.15090
\(95\) 82.2484 0.0888264
\(96\) −656.455 −0.697908
\(97\) 499.625 0.522982 0.261491 0.965206i \(-0.415786\pi\)
0.261491 + 0.965206i \(0.415786\pi\)
\(98\) −367.632 −0.378943
\(99\) 149.794 0.152070
\(100\) 348.163 0.348163
\(101\) 419.522 0.413307 0.206653 0.978414i \(-0.433743\pi\)
0.206653 + 0.978414i \(0.433743\pi\)
\(102\) −427.397 −0.414889
\(103\) −311.123 −0.297630 −0.148815 0.988865i \(-0.547546\pi\)
−0.148815 + 0.988865i \(0.547546\pi\)
\(104\) −826.580 −0.779354
\(105\) 69.6321 0.0647181
\(106\) −554.698 −0.508274
\(107\) −705.495 −0.637409 −0.318704 0.947854i \(-0.603248\pi\)
−0.318704 + 0.947854i \(0.603248\pi\)
\(108\) −370.555 −0.330155
\(109\) −687.862 −0.604452 −0.302226 0.953236i \(-0.597730\pi\)
−0.302226 + 0.953236i \(0.597730\pi\)
\(110\) −115.122 −0.0997862
\(111\) 1524.96 1.30399
\(112\) −454.081 −0.383095
\(113\) 969.886 0.807427 0.403713 0.914885i \(-0.367719\pi\)
0.403713 + 0.914885i \(0.367719\pi\)
\(114\) 1081.62 0.888623
\(115\) 0 0
\(116\) −129.911 −0.103983
\(117\) 94.1805 0.0744188
\(118\) 273.075 0.213039
\(119\) 462.998 0.356664
\(120\) −127.218 −0.0967784
\(121\) 1518.73 1.14104
\(122\) 926.633 0.687651
\(123\) 1797.14 1.31742
\(124\) 589.428 0.426873
\(125\) 235.702 0.168655
\(126\) 86.2077 0.0609523
\(127\) −1422.09 −0.993623 −0.496811 0.867859i \(-0.665496\pi\)
−0.496811 + 0.867859i \(0.665496\pi\)
\(128\) 276.896 0.191206
\(129\) 1866.42 1.27387
\(130\) −72.3811 −0.0488327
\(131\) −2006.39 −1.33816 −0.669079 0.743191i \(-0.733311\pi\)
−0.669079 + 0.743191i \(0.733311\pi\)
\(132\) 817.613 0.539122
\(133\) −1171.72 −0.763915
\(134\) −1984.80 −1.27956
\(135\) −124.980 −0.0796782
\(136\) −845.902 −0.533349
\(137\) 1517.23 0.946170 0.473085 0.881017i \(-0.343140\pi\)
0.473085 + 0.881017i \(0.343140\pi\)
\(138\) 0 0
\(139\) 188.684 0.115136 0.0575681 0.998342i \(-0.481665\pi\)
0.0575681 + 0.998342i \(0.481665\pi\)
\(140\) 35.7809 0.0216003
\(141\) −2512.50 −1.50064
\(142\) 654.706 0.386914
\(143\) 1791.72 1.04777
\(144\) −94.5259 −0.0547025
\(145\) −43.8162 −0.0250947
\(146\) −2082.56 −1.18051
\(147\) 880.621 0.494098
\(148\) 783.612 0.435220
\(149\) −559.526 −0.307639 −0.153819 0.988099i \(-0.549157\pi\)
−0.153819 + 0.988099i \(0.549157\pi\)
\(150\) 1544.25 0.840581
\(151\) 2970.36 1.60082 0.800411 0.599451i \(-0.204614\pi\)
0.800411 + 0.599451i \(0.204614\pi\)
\(152\) 2140.74 1.14235
\(153\) 96.3822 0.0509283
\(154\) 1640.04 0.858170
\(155\) 198.801 0.103020
\(156\) 514.060 0.263832
\(157\) 926.873 0.471162 0.235581 0.971855i \(-0.424301\pi\)
0.235581 + 0.971855i \(0.424301\pi\)
\(158\) 1797.30 0.904973
\(159\) 1328.72 0.662730
\(160\) −113.772 −0.0562152
\(161\) 0 0
\(162\) −1816.24 −0.880849
\(163\) −2243.11 −1.07788 −0.538939 0.842345i \(-0.681175\pi\)
−0.538939 + 0.842345i \(0.681175\pi\)
\(164\) 923.472 0.439701
\(165\) 275.763 0.130110
\(166\) −3084.10 −1.44200
\(167\) −1285.77 −0.595786 −0.297893 0.954599i \(-0.596284\pi\)
−0.297893 + 0.954599i \(0.596284\pi\)
\(168\) 1812.36 0.832303
\(169\) −1070.49 −0.487250
\(170\) −74.0731 −0.0334185
\(171\) −243.916 −0.109080
\(172\) 959.072 0.425166
\(173\) 203.210 0.0893051 0.0446525 0.999003i \(-0.485782\pi\)
0.0446525 + 0.999003i \(0.485782\pi\)
\(174\) −576.211 −0.251049
\(175\) −1672.88 −0.722616
\(176\) −1798.29 −0.770176
\(177\) −654.120 −0.277778
\(178\) −1696.90 −0.714541
\(179\) 445.875 0.186180 0.0930902 0.995658i \(-0.470326\pi\)
0.0930902 + 0.995658i \(0.470326\pi\)
\(180\) 7.44849 0.00308432
\(181\) 3542.58 1.45479 0.727397 0.686217i \(-0.240730\pi\)
0.727397 + 0.686217i \(0.240730\pi\)
\(182\) 1031.15 0.419965
\(183\) −2219.65 −0.896617
\(184\) 0 0
\(185\) 264.295 0.105034
\(186\) 2614.36 1.03061
\(187\) 1833.60 0.717039
\(188\) −1291.06 −0.500854
\(189\) 1780.47 0.685240
\(190\) 187.458 0.0715770
\(191\) −1969.94 −0.746283 −0.373142 0.927774i \(-0.621719\pi\)
−0.373142 + 0.927774i \(0.621719\pi\)
\(192\) −2967.46 −1.11541
\(193\) −914.565 −0.341098 −0.170549 0.985349i \(-0.554554\pi\)
−0.170549 + 0.985349i \(0.554554\pi\)
\(194\) 1138.73 0.421423
\(195\) 173.381 0.0636721
\(196\) 452.513 0.164910
\(197\) −3140.74 −1.13588 −0.567940 0.823070i \(-0.692259\pi\)
−0.567940 + 0.823070i \(0.692259\pi\)
\(198\) 341.406 0.122539
\(199\) 380.763 0.135636 0.0678181 0.997698i \(-0.478396\pi\)
0.0678181 + 0.997698i \(0.478396\pi\)
\(200\) 3056.36 1.08059
\(201\) 4754.37 1.66839
\(202\) 956.161 0.333046
\(203\) 624.209 0.215817
\(204\) 526.077 0.180553
\(205\) 311.466 0.106116
\(206\) −709.103 −0.239833
\(207\) 0 0
\(208\) −1130.64 −0.376903
\(209\) −4640.32 −1.53578
\(210\) 158.703 0.0521503
\(211\) 4385.35 1.43081 0.715403 0.698712i \(-0.246243\pi\)
0.715403 + 0.698712i \(0.246243\pi\)
\(212\) 682.769 0.221192
\(213\) −1568.28 −0.504490
\(214\) −1607.94 −0.513629
\(215\) 323.474 0.102608
\(216\) −3252.94 −1.02470
\(217\) −2832.13 −0.885980
\(218\) −1567.75 −0.487072
\(219\) 4988.54 1.53924
\(220\) 141.702 0.0434253
\(221\) 1152.85 0.350899
\(222\) 3475.65 1.05077
\(223\) 3849.73 1.15604 0.578020 0.816023i \(-0.303826\pi\)
0.578020 + 0.816023i \(0.303826\pi\)
\(224\) 1620.80 0.483456
\(225\) −348.242 −0.103183
\(226\) 2210.53 0.650631
\(227\) −726.650 −0.212464 −0.106232 0.994341i \(-0.533879\pi\)
−0.106232 + 0.994341i \(0.533879\pi\)
\(228\) −1331.35 −0.386714
\(229\) −5991.20 −1.72886 −0.864432 0.502750i \(-0.832322\pi\)
−0.864432 + 0.502750i \(0.832322\pi\)
\(230\) 0 0
\(231\) −3928.53 −1.11895
\(232\) −1140.43 −0.322729
\(233\) 3871.65 1.08858 0.544292 0.838896i \(-0.316798\pi\)
0.544292 + 0.838896i \(0.316798\pi\)
\(234\) 214.653 0.0599672
\(235\) −435.447 −0.120874
\(236\) −336.124 −0.0927109
\(237\) −4305.24 −1.17998
\(238\) 1055.25 0.287402
\(239\) 2952.98 0.799216 0.399608 0.916686i \(-0.369146\pi\)
0.399608 + 0.916686i \(0.369146\pi\)
\(240\) −174.017 −0.0468030
\(241\) −5796.90 −1.54942 −0.774711 0.632315i \(-0.782105\pi\)
−0.774711 + 0.632315i \(0.782105\pi\)
\(242\) 3461.44 0.919462
\(243\) 784.268 0.207040
\(244\) −1140.58 −0.299254
\(245\) 152.622 0.0397987
\(246\) 4095.98 1.06159
\(247\) −2917.52 −0.751569
\(248\) 5174.33 1.32488
\(249\) 7387.62 1.88021
\(250\) 537.204 0.135903
\(251\) −2169.66 −0.545608 −0.272804 0.962070i \(-0.587951\pi\)
−0.272804 + 0.962070i \(0.587951\pi\)
\(252\) −106.112 −0.0265254
\(253\) 0 0
\(254\) −3241.18 −0.800668
\(255\) 177.434 0.0435739
\(256\) −3717.25 −0.907531
\(257\) 4383.32 1.06391 0.531954 0.846773i \(-0.321458\pi\)
0.531954 + 0.846773i \(0.321458\pi\)
\(258\) 4253.89 1.02649
\(259\) −3765.16 −0.903304
\(260\) 89.0929 0.0212512
\(261\) 129.941 0.0308167
\(262\) −4572.89 −1.07830
\(263\) −2446.80 −0.573673 −0.286836 0.957980i \(-0.592604\pi\)
−0.286836 + 0.957980i \(0.592604\pi\)
\(264\) 7177.46 1.67327
\(265\) 230.283 0.0533817
\(266\) −2670.54 −0.615568
\(267\) 4064.74 0.931678
\(268\) 2443.06 0.556843
\(269\) −2496.56 −0.565865 −0.282933 0.959140i \(-0.591307\pi\)
−0.282933 + 0.959140i \(0.591307\pi\)
\(270\) −284.850 −0.0642053
\(271\) −7251.46 −1.62544 −0.812721 0.582653i \(-0.802015\pi\)
−0.812721 + 0.582653i \(0.802015\pi\)
\(272\) −1157.07 −0.257933
\(273\) −2470.00 −0.547586
\(274\) 3458.01 0.762431
\(275\) −6625.07 −1.45275
\(276\) 0 0
\(277\) 4444.85 0.964134 0.482067 0.876134i \(-0.339886\pi\)
0.482067 + 0.876134i \(0.339886\pi\)
\(278\) 430.042 0.0927776
\(279\) −589.563 −0.126510
\(280\) 314.105 0.0670405
\(281\) −4542.77 −0.964409 −0.482205 0.876059i \(-0.660164\pi\)
−0.482205 + 0.876059i \(0.660164\pi\)
\(282\) −5726.41 −1.20923
\(283\) −2695.66 −0.566221 −0.283111 0.959087i \(-0.591366\pi\)
−0.283111 + 0.959087i \(0.591366\pi\)
\(284\) −805.868 −0.168378
\(285\) −449.034 −0.0933281
\(286\) 4083.63 0.844300
\(287\) −4437.17 −0.912606
\(288\) 337.401 0.0690331
\(289\) −3733.21 −0.759863
\(290\) −99.8645 −0.0202215
\(291\) −2727.70 −0.549486
\(292\) 2563.39 0.513737
\(293\) 2392.05 0.476946 0.238473 0.971149i \(-0.423353\pi\)
0.238473 + 0.971149i \(0.423353\pi\)
\(294\) 2007.08 0.398148
\(295\) −113.367 −0.0223745
\(296\) 6878.98 1.35079
\(297\) 7051.17 1.37761
\(298\) −1275.25 −0.247897
\(299\) 0 0
\(300\) −1900.79 −0.365807
\(301\) −4608.23 −0.882438
\(302\) 6769.94 1.28995
\(303\) −2290.38 −0.434253
\(304\) 2928.22 0.552450
\(305\) −384.692 −0.0722209
\(306\) 219.671 0.0410384
\(307\) −4881.47 −0.907493 −0.453747 0.891131i \(-0.649913\pi\)
−0.453747 + 0.891131i \(0.649913\pi\)
\(308\) −2018.70 −0.373462
\(309\) 1698.58 0.312714
\(310\) 453.101 0.0830141
\(311\) −2136.50 −0.389549 −0.194775 0.980848i \(-0.562398\pi\)
−0.194775 + 0.980848i \(0.562398\pi\)
\(312\) 4512.70 0.818851
\(313\) −4233.77 −0.764559 −0.382279 0.924047i \(-0.624861\pi\)
−0.382279 + 0.924047i \(0.624861\pi\)
\(314\) 2112.50 0.379666
\(315\) −35.7891 −0.00640155
\(316\) −2212.27 −0.393829
\(317\) 7182.53 1.27259 0.636295 0.771445i \(-0.280466\pi\)
0.636295 + 0.771445i \(0.280466\pi\)
\(318\) 3028.37 0.534033
\(319\) 2472.04 0.433880
\(320\) −514.298 −0.0898441
\(321\) 3851.64 0.669712
\(322\) 0 0
\(323\) −2985.72 −0.514335
\(324\) 2235.59 0.383331
\(325\) −4165.39 −0.710937
\(326\) −5112.43 −0.868562
\(327\) 3755.38 0.635085
\(328\) 8106.75 1.36470
\(329\) 6203.41 1.03953
\(330\) 628.509 0.104843
\(331\) 7950.08 1.32017 0.660084 0.751192i \(-0.270521\pi\)
0.660084 + 0.751192i \(0.270521\pi\)
\(332\) 3796.18 0.627537
\(333\) −783.791 −0.128984
\(334\) −2930.49 −0.480088
\(335\) 823.990 0.134386
\(336\) 2479.05 0.402510
\(337\) −3358.70 −0.542909 −0.271454 0.962451i \(-0.587505\pi\)
−0.271454 + 0.962451i \(0.587505\pi\)
\(338\) −2439.82 −0.392630
\(339\) −5295.09 −0.848347
\(340\) 91.1755 0.0145432
\(341\) −11216.0 −1.78118
\(342\) −555.925 −0.0878975
\(343\) −6797.76 −1.07010
\(344\) 8419.27 1.31958
\(345\) 0 0
\(346\) 463.150 0.0719627
\(347\) 1155.82 0.178811 0.0894057 0.995995i \(-0.471503\pi\)
0.0894057 + 0.995995i \(0.471503\pi\)
\(348\) 709.250 0.109252
\(349\) 6932.87 1.06335 0.531673 0.846949i \(-0.321563\pi\)
0.531673 + 0.846949i \(0.321563\pi\)
\(350\) −3812.77 −0.582289
\(351\) 4433.30 0.674165
\(352\) 6418.81 0.971942
\(353\) 10113.2 1.52484 0.762421 0.647081i \(-0.224011\pi\)
0.762421 + 0.647081i \(0.224011\pi\)
\(354\) −1490.85 −0.223835
\(355\) −271.801 −0.0406358
\(356\) 2088.69 0.310956
\(357\) −2527.74 −0.374739
\(358\) 1016.22 0.150026
\(359\) 8786.85 1.29179 0.645894 0.763427i \(-0.276485\pi\)
0.645894 + 0.763427i \(0.276485\pi\)
\(360\) 65.3870 0.00957277
\(361\) 697.007 0.101619
\(362\) 8074.13 1.17228
\(363\) −8291.50 −1.19887
\(364\) −1269.22 −0.182762
\(365\) 864.574 0.123983
\(366\) −5058.94 −0.722501
\(367\) 10727.8 1.52585 0.762924 0.646488i \(-0.223763\pi\)
0.762924 + 0.646488i \(0.223763\pi\)
\(368\) 0 0
\(369\) −923.684 −0.130312
\(370\) 602.372 0.0846374
\(371\) −3280.62 −0.459088
\(372\) −3217.98 −0.448506
\(373\) −2186.47 −0.303515 −0.151758 0.988418i \(-0.548493\pi\)
−0.151758 + 0.988418i \(0.548493\pi\)
\(374\) 4179.09 0.577795
\(375\) −1286.81 −0.177202
\(376\) −11333.7 −1.55449
\(377\) 1554.25 0.212329
\(378\) 4058.00 0.552172
\(379\) −7058.75 −0.956686 −0.478343 0.878173i \(-0.658762\pi\)
−0.478343 + 0.878173i \(0.658762\pi\)
\(380\) −230.739 −0.0311491
\(381\) 7763.89 1.04398
\(382\) −4489.83 −0.601361
\(383\) −4792.91 −0.639442 −0.319721 0.947512i \(-0.603589\pi\)
−0.319721 + 0.947512i \(0.603589\pi\)
\(384\) −1511.71 −0.200896
\(385\) −680.863 −0.0901298
\(386\) −2084.45 −0.274859
\(387\) −959.292 −0.126004
\(388\) −1401.65 −0.183396
\(389\) 12950.6 1.68797 0.843986 0.536365i \(-0.180203\pi\)
0.843986 + 0.536365i \(0.180203\pi\)
\(390\) 395.164 0.0513075
\(391\) 0 0
\(392\) 3972.41 0.511829
\(393\) 10953.8 1.40598
\(394\) −7158.27 −0.915300
\(395\) −746.150 −0.0950452
\(396\) −420.232 −0.0533269
\(397\) 4307.97 0.544611 0.272306 0.962211i \(-0.412214\pi\)
0.272306 + 0.962211i \(0.412214\pi\)
\(398\) 867.824 0.109297
\(399\) 6396.97 0.802630
\(400\) 4180.67 0.522583
\(401\) −14819.4 −1.84550 −0.922752 0.385394i \(-0.874066\pi\)
−0.922752 + 0.385394i \(0.874066\pi\)
\(402\) 10836.0 1.34440
\(403\) −7051.88 −0.871660
\(404\) −1176.92 −0.144936
\(405\) 754.014 0.0925117
\(406\) 1422.68 0.173907
\(407\) −14911.1 −1.81601
\(408\) 4618.20 0.560379
\(409\) −2400.40 −0.290201 −0.145101 0.989417i \(-0.546351\pi\)
−0.145101 + 0.989417i \(0.546351\pi\)
\(410\) 709.884 0.0855090
\(411\) −8283.28 −0.994122
\(412\) 872.824 0.104371
\(413\) 1615.03 0.192423
\(414\) 0 0
\(415\) 1280.36 0.151447
\(416\) 4035.71 0.475642
\(417\) −1030.12 −0.120971
\(418\) −10576.1 −1.23754
\(419\) −553.002 −0.0644771 −0.0322385 0.999480i \(-0.510264\pi\)
−0.0322385 + 0.999480i \(0.510264\pi\)
\(420\) −195.346 −0.0226950
\(421\) 12151.1 1.40667 0.703336 0.710857i \(-0.251693\pi\)
0.703336 + 0.710857i \(0.251693\pi\)
\(422\) 9994.95 1.15295
\(423\) 1291.36 0.148435
\(424\) 5993.73 0.686512
\(425\) −4262.77 −0.486528
\(426\) −3574.36 −0.406522
\(427\) 5480.34 0.621106
\(428\) 1979.19 0.223523
\(429\) −9781.87 −1.10087
\(430\) 737.250 0.0826823
\(431\) −14792.8 −1.65324 −0.826618 0.562764i \(-0.809738\pi\)
−0.826618 + 0.562764i \(0.809738\pi\)
\(432\) −4449.55 −0.495554
\(433\) 6914.74 0.767439 0.383720 0.923450i \(-0.374643\pi\)
0.383720 + 0.923450i \(0.374643\pi\)
\(434\) −6454.90 −0.713929
\(435\) 239.214 0.0263665
\(436\) 1929.72 0.211966
\(437\) 0 0
\(438\) 11369.7 1.24033
\(439\) 709.848 0.0771735 0.0385868 0.999255i \(-0.487714\pi\)
0.0385868 + 0.999255i \(0.487714\pi\)
\(440\) 1243.94 0.134779
\(441\) −452.617 −0.0488734
\(442\) 2627.53 0.282757
\(443\) −12087.3 −1.29636 −0.648179 0.761488i \(-0.724469\pi\)
−0.648179 + 0.761488i \(0.724469\pi\)
\(444\) −4278.12 −0.457276
\(445\) 704.469 0.0750450
\(446\) 8774.18 0.931546
\(447\) 3054.73 0.323229
\(448\) 7326.72 0.772667
\(449\) −1382.65 −0.145326 −0.0726631 0.997357i \(-0.523150\pi\)
−0.0726631 + 0.997357i \(0.523150\pi\)
\(450\) −793.703 −0.0831456
\(451\) −17572.4 −1.83471
\(452\) −2720.91 −0.283144
\(453\) −16216.6 −1.68195
\(454\) −1656.16 −0.171205
\(455\) −428.080 −0.0441071
\(456\) −11687.3 −1.20024
\(457\) −4048.95 −0.414446 −0.207223 0.978294i \(-0.566443\pi\)
−0.207223 + 0.978294i \(0.566443\pi\)
\(458\) −13655.0 −1.39313
\(459\) 4536.93 0.461364
\(460\) 0 0
\(461\) 10896.5 1.10087 0.550436 0.834877i \(-0.314461\pi\)
0.550436 + 0.834877i \(0.314461\pi\)
\(462\) −8953.78 −0.901662
\(463\) −4913.75 −0.493221 −0.246611 0.969115i \(-0.579317\pi\)
−0.246611 + 0.969115i \(0.579317\pi\)
\(464\) −1559.95 −0.156075
\(465\) −1085.35 −0.108241
\(466\) 8824.14 0.877189
\(467\) −12835.4 −1.27184 −0.635922 0.771753i \(-0.719380\pi\)
−0.635922 + 0.771753i \(0.719380\pi\)
\(468\) −264.214 −0.0260967
\(469\) −11738.6 −1.15573
\(470\) −992.457 −0.0974013
\(471\) −5060.25 −0.495041
\(472\) −2950.68 −0.287746
\(473\) −18249.9 −1.77406
\(474\) −9812.35 −0.950836
\(475\) 10787.8 1.04206
\(476\) −1298.89 −0.125073
\(477\) −682.926 −0.0655535
\(478\) 6730.35 0.644014
\(479\) −10683.6 −1.01909 −0.509546 0.860444i \(-0.670186\pi\)
−0.509546 + 0.860444i \(0.670186\pi\)
\(480\) 621.135 0.0590642
\(481\) −9375.08 −0.888704
\(482\) −13212.1 −1.24854
\(483\) 0 0
\(484\) −4260.64 −0.400135
\(485\) −472.743 −0.0442602
\(486\) 1787.48 0.166835
\(487\) −2263.70 −0.210632 −0.105316 0.994439i \(-0.533585\pi\)
−0.105316 + 0.994439i \(0.533585\pi\)
\(488\) −10012.6 −0.928792
\(489\) 12246.3 1.13250
\(490\) 347.852 0.0320701
\(491\) 681.640 0.0626517 0.0313259 0.999509i \(-0.490027\pi\)
0.0313259 + 0.999509i \(0.490027\pi\)
\(492\) −5041.69 −0.461985
\(493\) 1590.58 0.145307
\(494\) −6649.52 −0.605620
\(495\) −141.735 −0.0128697
\(496\) 7077.74 0.640725
\(497\) 3872.10 0.349472
\(498\) 16837.6 1.51508
\(499\) 15605.8 1.40002 0.700012 0.714131i \(-0.253178\pi\)
0.700012 + 0.714131i \(0.253178\pi\)
\(500\) −661.237 −0.0591428
\(501\) 7019.67 0.625980
\(502\) −4945.01 −0.439655
\(503\) −19205.3 −1.70243 −0.851217 0.524814i \(-0.824135\pi\)
−0.851217 + 0.524814i \(0.824135\pi\)
\(504\) −931.508 −0.0823267
\(505\) −396.950 −0.0349783
\(506\) 0 0
\(507\) 5844.32 0.511944
\(508\) 3989.52 0.348438
\(509\) 16690.0 1.45338 0.726692 0.686964i \(-0.241057\pi\)
0.726692 + 0.686964i \(0.241057\pi\)
\(510\) 404.402 0.0351122
\(511\) −12316.8 −1.06627
\(512\) −10687.4 −0.922501
\(513\) −11481.7 −0.988165
\(514\) 9990.33 0.857305
\(515\) 294.384 0.0251886
\(516\) −5236.05 −0.446713
\(517\) 24567.2 2.08987
\(518\) −8581.43 −0.727889
\(519\) −1109.42 −0.0938310
\(520\) 782.107 0.0659570
\(521\) −2159.94 −0.181629 −0.0908144 0.995868i \(-0.528947\pi\)
−0.0908144 + 0.995868i \(0.528947\pi\)
\(522\) 296.158 0.0248323
\(523\) −3348.60 −0.279969 −0.139985 0.990154i \(-0.544705\pi\)
−0.139985 + 0.990154i \(0.544705\pi\)
\(524\) 5628.70 0.469258
\(525\) 9133.07 0.759238
\(526\) −5576.66 −0.462270
\(527\) −7216.73 −0.596519
\(528\) 9817.74 0.809209
\(529\) 0 0
\(530\) 524.853 0.0430154
\(531\) 336.201 0.0274762
\(532\) 3287.13 0.267885
\(533\) −11048.4 −0.897856
\(534\) 9264.23 0.750753
\(535\) 667.537 0.0539442
\(536\) 21446.6 1.72827
\(537\) −2434.25 −0.195616
\(538\) −5690.07 −0.455979
\(539\) −8610.71 −0.688107
\(540\) 350.618 0.0279411
\(541\) 10603.8 0.842686 0.421343 0.906901i \(-0.361559\pi\)
0.421343 + 0.906901i \(0.361559\pi\)
\(542\) −16527.3 −1.30979
\(543\) −19340.7 −1.52852
\(544\) 4130.06 0.325505
\(545\) 650.852 0.0511550
\(546\) −5629.53 −0.441249
\(547\) −6892.60 −0.538769 −0.269384 0.963033i \(-0.586820\pi\)
−0.269384 + 0.963033i \(0.586820\pi\)
\(548\) −4256.42 −0.331798
\(549\) 1140.84 0.0886883
\(550\) −15099.6 −1.17064
\(551\) −4025.31 −0.311223
\(552\) 0 0
\(553\) 10629.7 0.817398
\(554\) 10130.6 0.776907
\(555\) −1442.91 −0.110357
\(556\) −529.332 −0.0403753
\(557\) 8574.47 0.652266 0.326133 0.945324i \(-0.394254\pi\)
0.326133 + 0.945324i \(0.394254\pi\)
\(558\) −1343.71 −0.101943
\(559\) −11474.3 −0.868176
\(560\) 429.650 0.0324215
\(561\) −10010.5 −0.753378
\(562\) −10353.7 −0.777128
\(563\) 6599.26 0.494007 0.247003 0.969015i \(-0.420554\pi\)
0.247003 + 0.969015i \(0.420554\pi\)
\(564\) 7048.55 0.526237
\(565\) −917.703 −0.0683328
\(566\) −6143.87 −0.456265
\(567\) −10741.7 −0.795609
\(568\) −7074.36 −0.522594
\(569\) 19331.8 1.42431 0.712155 0.702022i \(-0.247719\pi\)
0.712155 + 0.702022i \(0.247719\pi\)
\(570\) −1023.42 −0.0752045
\(571\) −3480.72 −0.255102 −0.127551 0.991832i \(-0.540712\pi\)
−0.127551 + 0.991832i \(0.540712\pi\)
\(572\) −5026.48 −0.367426
\(573\) 10754.9 0.784104
\(574\) −10113.1 −0.735385
\(575\) 0 0
\(576\) 1525.20 0.110330
\(577\) 12662.2 0.913578 0.456789 0.889575i \(-0.348999\pi\)
0.456789 + 0.889575i \(0.348999\pi\)
\(578\) −8508.60 −0.612303
\(579\) 4993.06 0.358384
\(580\) 122.922 0.00880008
\(581\) −18240.2 −1.30246
\(582\) −6216.88 −0.442780
\(583\) −12992.2 −0.922952
\(584\) 22502.9 1.59448
\(585\) −89.1133 −0.00629809
\(586\) 5451.89 0.384327
\(587\) 20535.9 1.44396 0.721982 0.691912i \(-0.243231\pi\)
0.721982 + 0.691912i \(0.243231\pi\)
\(588\) −2470.49 −0.173267
\(589\) 18263.5 1.27765
\(590\) −258.382 −0.0180295
\(591\) 17146.8 1.19345
\(592\) 9409.46 0.653254
\(593\) −276.015 −0.0191139 −0.00955697 0.999954i \(-0.503042\pi\)
−0.00955697 + 0.999954i \(0.503042\pi\)
\(594\) 16070.8 1.11009
\(595\) −438.087 −0.0301846
\(596\) 1569.69 0.107881
\(597\) −2078.77 −0.142510
\(598\) 0 0
\(599\) −11890.1 −0.811047 −0.405523 0.914085i \(-0.632911\pi\)
−0.405523 + 0.914085i \(0.632911\pi\)
\(600\) −16686.2 −1.13535
\(601\) −6361.30 −0.431752 −0.215876 0.976421i \(-0.569261\pi\)
−0.215876 + 0.976421i \(0.569261\pi\)
\(602\) −10502.9 −0.711075
\(603\) −2443.62 −0.165028
\(604\) −8333.02 −0.561367
\(605\) −1437.02 −0.0965670
\(606\) −5220.15 −0.349924
\(607\) −8657.05 −0.578878 −0.289439 0.957196i \(-0.593469\pi\)
−0.289439 + 0.957196i \(0.593469\pi\)
\(608\) −10452.0 −0.697178
\(609\) −3407.86 −0.226755
\(610\) −876.777 −0.0581962
\(611\) 15446.2 1.02273
\(612\) −270.390 −0.0178593
\(613\) 7651.41 0.504139 0.252070 0.967709i \(-0.418889\pi\)
0.252070 + 0.967709i \(0.418889\pi\)
\(614\) −11125.7 −0.731265
\(615\) −1700.45 −0.111494
\(616\) −17721.3 −1.15911
\(617\) 2520.90 0.164486 0.0822428 0.996612i \(-0.473792\pi\)
0.0822428 + 0.996612i \(0.473792\pi\)
\(618\) 3871.34 0.251987
\(619\) 502.377 0.0326207 0.0163104 0.999867i \(-0.494808\pi\)
0.0163104 + 0.999867i \(0.494808\pi\)
\(620\) −557.715 −0.0361264
\(621\) 0 0
\(622\) −4869.44 −0.313902
\(623\) −10035.9 −0.645394
\(624\) 6172.73 0.396005
\(625\) 15290.1 0.978564
\(626\) −9649.47 −0.616087
\(627\) 25333.8 1.61361
\(628\) −2600.24 −0.165225
\(629\) −9594.24 −0.608183
\(630\) −81.5694 −0.00515842
\(631\) 11177.6 0.705189 0.352594 0.935776i \(-0.385300\pi\)
0.352594 + 0.935776i \(0.385300\pi\)
\(632\) −19420.6 −1.22232
\(633\) −23941.8 −1.50332
\(634\) 16370.2 1.02546
\(635\) 1345.58 0.0840906
\(636\) −3727.57 −0.232402
\(637\) −5413.83 −0.336741
\(638\) 5634.19 0.349624
\(639\) 806.053 0.0499013
\(640\) −261.998 −0.0161818
\(641\) 3933.27 0.242363 0.121182 0.992630i \(-0.461332\pi\)
0.121182 + 0.992630i \(0.461332\pi\)
\(642\) 8778.54 0.539659
\(643\) 5309.83 0.325660 0.162830 0.986654i \(-0.447938\pi\)
0.162830 + 0.986654i \(0.447938\pi\)
\(644\) 0 0
\(645\) −1766.00 −0.107808
\(646\) −6804.96 −0.414455
\(647\) −1951.74 −0.118595 −0.0592975 0.998240i \(-0.518886\pi\)
−0.0592975 + 0.998240i \(0.518886\pi\)
\(648\) 19625.2 1.18974
\(649\) 6395.98 0.386848
\(650\) −9493.63 −0.572878
\(651\) 15462.0 0.930881
\(652\) 6292.81 0.377984
\(653\) 16242.6 0.973387 0.486694 0.873573i \(-0.338203\pi\)
0.486694 + 0.873573i \(0.338203\pi\)
\(654\) 8559.13 0.511756
\(655\) 1898.43 0.113249
\(656\) 11088.9 0.659981
\(657\) −2563.98 −0.152253
\(658\) 14138.6 0.837660
\(659\) −5031.06 −0.297393 −0.148697 0.988883i \(-0.547508\pi\)
−0.148697 + 0.988883i \(0.547508\pi\)
\(660\) −773.623 −0.0456261
\(661\) −16858.0 −0.991985 −0.495992 0.868327i \(-0.665196\pi\)
−0.495992 + 0.868327i \(0.665196\pi\)
\(662\) 18119.6 1.06380
\(663\) −6293.95 −0.368683
\(664\) 33324.9 1.94768
\(665\) 1108.67 0.0646504
\(666\) −1786.39 −0.103936
\(667\) 0 0
\(668\) 3607.10 0.208927
\(669\) −21017.6 −1.21463
\(670\) 1878.01 0.108289
\(671\) 21703.7 1.24868
\(672\) −8848.73 −0.507957
\(673\) 18229.4 1.04412 0.522059 0.852910i \(-0.325164\pi\)
0.522059 + 0.852910i \(0.325164\pi\)
\(674\) −7655.05 −0.437480
\(675\) −16392.6 −0.934742
\(676\) 3003.14 0.170866
\(677\) −6813.79 −0.386817 −0.193408 0.981118i \(-0.561954\pi\)
−0.193408 + 0.981118i \(0.561954\pi\)
\(678\) −12068.4 −0.683604
\(679\) 6734.74 0.380641
\(680\) 800.390 0.0451376
\(681\) 3967.14 0.223232
\(682\) −25563.2 −1.43529
\(683\) −7491.79 −0.419715 −0.209858 0.977732i \(-0.567300\pi\)
−0.209858 + 0.977732i \(0.567300\pi\)
\(684\) 684.279 0.0382516
\(685\) −1435.59 −0.0800747
\(686\) −15493.2 −0.862296
\(687\) 32708.9 1.81648
\(688\) 11516.3 0.638164
\(689\) −8168.60 −0.451668
\(690\) 0 0
\(691\) −6514.80 −0.358661 −0.179330 0.983789i \(-0.557393\pi\)
−0.179330 + 0.983789i \(0.557393\pi\)
\(692\) −570.084 −0.0313170
\(693\) 2019.16 0.110681
\(694\) 2634.30 0.144088
\(695\) −178.532 −0.00974402
\(696\) 6226.19 0.339085
\(697\) −11306.6 −0.614446
\(698\) 15801.2 0.856853
\(699\) −21137.2 −1.14375
\(700\) 4693.09 0.253403
\(701\) −4791.69 −0.258174 −0.129087 0.991633i \(-0.541205\pi\)
−0.129087 + 0.991633i \(0.541205\pi\)
\(702\) 10104.2 0.543247
\(703\) 24280.3 1.30263
\(704\) 29015.8 1.55337
\(705\) 2377.32 0.127000
\(706\) 23049.6 1.22873
\(707\) 5654.98 0.300817
\(708\) 1835.06 0.0974095
\(709\) 25244.9 1.33723 0.668613 0.743611i \(-0.266888\pi\)
0.668613 + 0.743611i \(0.266888\pi\)
\(710\) −619.481 −0.0327446
\(711\) 2212.78 0.116717
\(712\) 18335.7 0.965112
\(713\) 0 0
\(714\) −5761.13 −0.301968
\(715\) −1695.32 −0.0886731
\(716\) −1250.86 −0.0652887
\(717\) −16121.8 −0.839720
\(718\) 20026.7 1.04093
\(719\) −26650.4 −1.38233 −0.691164 0.722698i \(-0.742902\pi\)
−0.691164 + 0.722698i \(0.742902\pi\)
\(720\) 89.4400 0.00462949
\(721\) −4193.81 −0.216624
\(722\) 1588.60 0.0818857
\(723\) 31648.1 1.62795
\(724\) −9938.32 −0.510159
\(725\) −5747.01 −0.294398
\(726\) −18897.7 −0.966060
\(727\) −1753.01 −0.0894297 −0.0447148 0.999000i \(-0.514238\pi\)
−0.0447148 + 0.999000i \(0.514238\pi\)
\(728\) −11141.9 −0.567236
\(729\) 17234.3 0.875593
\(730\) 1970.51 0.0999066
\(731\) −11742.5 −0.594134
\(732\) 6226.98 0.314421
\(733\) 1459.90 0.0735641 0.0367821 0.999323i \(-0.488289\pi\)
0.0367821 + 0.999323i \(0.488289\pi\)
\(734\) 24450.4 1.22954
\(735\) −833.241 −0.0418157
\(736\) 0 0
\(737\) −46488.2 −2.32349
\(738\) −2105.23 −0.105006
\(739\) −8682.92 −0.432214 −0.216107 0.976370i \(-0.569336\pi\)
−0.216107 + 0.976370i \(0.569336\pi\)
\(740\) −741.451 −0.0368328
\(741\) 15928.2 0.789658
\(742\) −7477.09 −0.369936
\(743\) 39629.4 1.95674 0.978372 0.206852i \(-0.0663220\pi\)
0.978372 + 0.206852i \(0.0663220\pi\)
\(744\) −28249.2 −1.39202
\(745\) 529.421 0.0260356
\(746\) −4983.33 −0.244575
\(747\) −3797.05 −0.185979
\(748\) −5143.98 −0.251447
\(749\) −9509.77 −0.463925
\(750\) −2932.86 −0.142791
\(751\) 28623.2 1.39078 0.695390 0.718633i \(-0.255232\pi\)
0.695390 + 0.718633i \(0.255232\pi\)
\(752\) −15502.8 −0.751769
\(753\) 11845.2 0.573259
\(754\) 3542.40 0.171096
\(755\) −2810.54 −0.135478
\(756\) −4994.93 −0.240296
\(757\) 40054.8 1.92314 0.961569 0.274564i \(-0.0885337\pi\)
0.961569 + 0.274564i \(0.0885337\pi\)
\(758\) −16088.1 −0.770904
\(759\) 0 0
\(760\) −2025.56 −0.0966772
\(761\) 29007.4 1.38176 0.690879 0.722970i \(-0.257224\pi\)
0.690879 + 0.722970i \(0.257224\pi\)
\(762\) 17695.2 0.841246
\(763\) −9272.09 −0.439937
\(764\) 5526.47 0.261702
\(765\) −91.1964 −0.00431008
\(766\) −10923.8 −0.515267
\(767\) 4021.36 0.189313
\(768\) 20294.3 0.953524
\(769\) 17151.4 0.804286 0.402143 0.915577i \(-0.368265\pi\)
0.402143 + 0.915577i \(0.368265\pi\)
\(770\) −1551.80 −0.0726273
\(771\) −23930.7 −1.11783
\(772\) 2565.72 0.119614
\(773\) 14526.9 0.675933 0.337967 0.941158i \(-0.390261\pi\)
0.337967 + 0.941158i \(0.390261\pi\)
\(774\) −2186.39 −0.101535
\(775\) 26075.1 1.20857
\(776\) −12304.4 −0.569205
\(777\) 20555.9 0.949083
\(778\) 29516.6 1.36018
\(779\) 28613.8 1.31604
\(780\) −486.402 −0.0223282
\(781\) 15334.6 0.702580
\(782\) 0 0
\(783\) 6116.64 0.279171
\(784\) 5433.68 0.247526
\(785\) −877.003 −0.0398746
\(786\) 24965.6 1.13295
\(787\) 8984.60 0.406946 0.203473 0.979081i \(-0.434777\pi\)
0.203473 + 0.979081i \(0.434777\pi\)
\(788\) 8811.01 0.398324
\(789\) 13358.3 0.602746
\(790\) −1700.60 −0.0765882
\(791\) 13073.7 0.587668
\(792\) −3689.03 −0.165510
\(793\) 13645.8 0.611068
\(794\) 9818.58 0.438852
\(795\) −1257.23 −0.0560871
\(796\) −1068.19 −0.0475641
\(797\) 8740.23 0.388450 0.194225 0.980957i \(-0.437781\pi\)
0.194225 + 0.980957i \(0.437781\pi\)
\(798\) 14579.8 0.646765
\(799\) 15807.3 0.699902
\(800\) −14922.5 −0.659486
\(801\) −2089.17 −0.0921564
\(802\) −33776.0 −1.48712
\(803\) −48777.9 −2.14363
\(804\) −13337.9 −0.585063
\(805\) 0 0
\(806\) −16072.4 −0.702390
\(807\) 13629.9 0.594543
\(808\) −10331.7 −0.449836
\(809\) −24466.4 −1.06328 −0.531639 0.846971i \(-0.678424\pi\)
−0.531639 + 0.846971i \(0.678424\pi\)
\(810\) 1718.52 0.0745466
\(811\) −4276.92 −0.185183 −0.0925913 0.995704i \(-0.529515\pi\)
−0.0925913 + 0.995704i \(0.529515\pi\)
\(812\) −1751.15 −0.0756815
\(813\) 39589.3 1.70782
\(814\) −33984.8 −1.46335
\(815\) 2122.42 0.0912212
\(816\) 6317.03 0.271005
\(817\) 29716.9 1.27254
\(818\) −5470.92 −0.233846
\(819\) 1269.51 0.0541641
\(820\) −873.786 −0.0372121
\(821\) 28599.1 1.21573 0.607865 0.794040i \(-0.292026\pi\)
0.607865 + 0.794040i \(0.292026\pi\)
\(822\) −18879.0 −0.801071
\(823\) −125.189 −0.00530231 −0.00265115 0.999996i \(-0.500844\pi\)
−0.00265115 + 0.999996i \(0.500844\pi\)
\(824\) 7662.13 0.323936
\(825\) 36169.5 1.52638
\(826\) 3680.93 0.155056
\(827\) −13120.7 −0.551695 −0.275847 0.961201i \(-0.588958\pi\)
−0.275847 + 0.961201i \(0.588958\pi\)
\(828\) 0 0
\(829\) −22359.8 −0.936776 −0.468388 0.883523i \(-0.655165\pi\)
−0.468388 + 0.883523i \(0.655165\pi\)
\(830\) 2918.17 0.122037
\(831\) −24266.6 −1.01300
\(832\) 18243.2 0.760180
\(833\) −5540.39 −0.230448
\(834\) −2347.81 −0.0974796
\(835\) 1216.59 0.0504215
\(836\) 13017.9 0.538558
\(837\) −27752.1 −1.14606
\(838\) −1260.38 −0.0519561
\(839\) −25200.5 −1.03697 −0.518485 0.855087i \(-0.673504\pi\)
−0.518485 + 0.855087i \(0.673504\pi\)
\(840\) −1714.85 −0.0704381
\(841\) −22244.6 −0.912075
\(842\) 27694.4 1.13351
\(843\) 24801.2 1.01328
\(844\) −12302.6 −0.501747
\(845\) 1012.89 0.0412362
\(846\) 2943.23 0.119610
\(847\) 20471.8 0.830485
\(848\) 8198.56 0.332004
\(849\) 14717.0 0.594917
\(850\) −9715.56 −0.392048
\(851\) 0 0
\(852\) 4399.63 0.176912
\(853\) −29547.2 −1.18602 −0.593010 0.805195i \(-0.702061\pi\)
−0.593010 + 0.805195i \(0.702061\pi\)
\(854\) 12490.6 0.500492
\(855\) 230.792 0.00923149
\(856\) 17374.4 0.693745
\(857\) −11597.2 −0.462257 −0.231128 0.972923i \(-0.574242\pi\)
−0.231128 + 0.972923i \(0.574242\pi\)
\(858\) −22294.5 −0.887089
\(859\) 6773.87 0.269059 0.134529 0.990910i \(-0.457048\pi\)
0.134529 + 0.990910i \(0.457048\pi\)
\(860\) −907.471 −0.0359820
\(861\) 24224.7 0.958856
\(862\) −33715.3 −1.33219
\(863\) 11040.7 0.435491 0.217746 0.976006i \(-0.430130\pi\)
0.217746 + 0.976006i \(0.430130\pi\)
\(864\) 15882.2 0.625376
\(865\) −192.277 −0.00755792
\(866\) 15759.9 0.618408
\(867\) 20381.4 0.798372
\(868\) 7945.24 0.310690
\(869\) 42096.6 1.64330
\(870\) 545.209 0.0212463
\(871\) −29228.6 −1.13705
\(872\) 16940.2 0.657875
\(873\) 1401.97 0.0543521
\(874\) 0 0
\(875\) 3177.16 0.122752
\(876\) −13994.8 −0.539773
\(877\) 40294.3 1.55147 0.775737 0.631057i \(-0.217378\pi\)
0.775737 + 0.631057i \(0.217378\pi\)
\(878\) 1617.86 0.0621870
\(879\) −13059.4 −0.501118
\(880\) 1701.53 0.0651803
\(881\) −27020.3 −1.03330 −0.516650 0.856197i \(-0.672821\pi\)
−0.516650 + 0.856197i \(0.672821\pi\)
\(882\) −1031.59 −0.0393825
\(883\) 35464.5 1.35161 0.675806 0.737079i \(-0.263796\pi\)
0.675806 + 0.737079i \(0.263796\pi\)
\(884\) −3234.19 −0.123051
\(885\) 618.926 0.0235084
\(886\) −27549.1 −1.04461
\(887\) −10726.1 −0.406030 −0.203015 0.979176i \(-0.565074\pi\)
−0.203015 + 0.979176i \(0.565074\pi\)
\(888\) −37555.7 −1.41924
\(889\) −19169.2 −0.723187
\(890\) 1605.60 0.0604719
\(891\) −42540.2 −1.59950
\(892\) −10800.0 −0.405393
\(893\) −40003.7 −1.49907
\(894\) 6962.23 0.260461
\(895\) −421.886 −0.0157565
\(896\) 3732.44 0.139165
\(897\) 0 0
\(898\) −3151.30 −0.117105
\(899\) −9729.50 −0.360953
\(900\) 976.957 0.0361836
\(901\) −8359.56 −0.309098
\(902\) −40050.5 −1.47842
\(903\) 25158.6 0.927159
\(904\) −23885.7 −0.878790
\(905\) −3351.97 −0.123120
\(906\) −36960.4 −1.35533
\(907\) −5959.29 −0.218164 −0.109082 0.994033i \(-0.534791\pi\)
−0.109082 + 0.994033i \(0.534791\pi\)
\(908\) 2038.54 0.0745058
\(909\) 1177.19 0.0429539
\(910\) −975.667 −0.0355418
\(911\) −1040.63 −0.0378458 −0.0189229 0.999821i \(-0.506024\pi\)
−0.0189229 + 0.999821i \(0.506024\pi\)
\(912\) −15986.6 −0.580448
\(913\) −72236.1 −2.61847
\(914\) −9228.24 −0.333964
\(915\) 2100.22 0.0758810
\(916\) 16807.7 0.606268
\(917\) −27045.2 −0.973950
\(918\) 10340.4 0.371770
\(919\) −44662.5 −1.60313 −0.801567 0.597904i \(-0.796000\pi\)
−0.801567 + 0.597904i \(0.796000\pi\)
\(920\) 0 0
\(921\) 26650.4 0.953485
\(922\) 24835.0 0.887092
\(923\) 9641.35 0.343823
\(924\) 11021.1 0.392388
\(925\) 34665.3 1.23220
\(926\) −11199.3 −0.397441
\(927\) −873.024 −0.0309319
\(928\) 5568.09 0.196963
\(929\) 5755.09 0.203249 0.101625 0.994823i \(-0.467596\pi\)
0.101625 + 0.994823i \(0.467596\pi\)
\(930\) −2473.70 −0.0872212
\(931\) 14021.1 0.493581
\(932\) −10861.5 −0.381738
\(933\) 11664.2 0.409291
\(934\) −29254.0 −1.02486
\(935\) −1734.95 −0.0606833
\(936\) −2319.41 −0.0809961
\(937\) 37600.9 1.31096 0.655478 0.755214i \(-0.272467\pi\)
0.655478 + 0.755214i \(0.272467\pi\)
\(938\) −26754.3 −0.931299
\(939\) 23114.2 0.803306
\(940\) 1221.60 0.0423875
\(941\) −40737.4 −1.41127 −0.705633 0.708577i \(-0.749337\pi\)
−0.705633 + 0.708577i \(0.749337\pi\)
\(942\) −11533.2 −0.398907
\(943\) 0 0
\(944\) −4036.11 −0.139157
\(945\) −1684.68 −0.0579921
\(946\) −41594.5 −1.42955
\(947\) −3278.54 −0.112501 −0.0562504 0.998417i \(-0.517915\pi\)
−0.0562504 + 0.998417i \(0.517915\pi\)
\(948\) 12077.9 0.413788
\(949\) −30668.2 −1.04903
\(950\) 24587.3 0.839702
\(951\) −39213.0 −1.33709
\(952\) −11402.4 −0.388187
\(953\) −12081.4 −0.410656 −0.205328 0.978693i \(-0.565826\pi\)
−0.205328 + 0.978693i \(0.565826\pi\)
\(954\) −1556.50 −0.0528235
\(955\) 1863.95 0.0631582
\(956\) −8284.28 −0.280265
\(957\) −13496.1 −0.455868
\(958\) −24349.6 −0.821191
\(959\) 20451.6 0.688650
\(960\) 2807.80 0.0943974
\(961\) 14353.2 0.481798
\(962\) −21367.4 −0.716125
\(963\) −1979.64 −0.0662442
\(964\) 16262.6 0.543343
\(965\) 865.358 0.0288672
\(966\) 0 0
\(967\) 25588.6 0.850957 0.425478 0.904969i \(-0.360106\pi\)
0.425478 + 0.904969i \(0.360106\pi\)
\(968\) −37402.2 −1.24189
\(969\) 16300.5 0.540401
\(970\) −1077.46 −0.0356652
\(971\) −59606.8 −1.97000 −0.985001 0.172546i \(-0.944801\pi\)
−0.985001 + 0.172546i \(0.944801\pi\)
\(972\) −2200.18 −0.0726037
\(973\) 2543.38 0.0837995
\(974\) −5159.34 −0.169729
\(975\) 22740.9 0.746967
\(976\) −13695.8 −0.449173
\(977\) 22401.2 0.733550 0.366775 0.930310i \(-0.380462\pi\)
0.366775 + 0.930310i \(0.380462\pi\)
\(978\) 27911.3 0.912580
\(979\) −39745.0 −1.29750
\(980\) −428.166 −0.0139564
\(981\) −1930.17 −0.0628190
\(982\) 1553.57 0.0504852
\(983\) 26431.4 0.857610 0.428805 0.903397i \(-0.358935\pi\)
0.428805 + 0.903397i \(0.358935\pi\)
\(984\) −44258.7 −1.43386
\(985\) 2971.75 0.0961299
\(986\) 3625.21 0.117089
\(987\) −33867.4 −1.09221
\(988\) 8184.80 0.263556
\(989\) 0 0
\(990\) −323.037 −0.0103705
\(991\) 21326.6 0.683613 0.341807 0.939770i \(-0.388961\pi\)
0.341807 + 0.939770i \(0.388961\pi\)
\(992\) −25263.3 −0.808578
\(993\) −43403.4 −1.38707
\(994\) 8825.16 0.281607
\(995\) −360.277 −0.0114789
\(996\) −20725.2 −0.659340
\(997\) 6170.19 0.196000 0.0979999 0.995186i \(-0.468756\pi\)
0.0979999 + 0.995186i \(0.468756\pi\)
\(998\) 35568.3 1.12815
\(999\) −36894.9 −1.16847
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 529.4.a.m.1.17 25
23.5 odd 22 23.4.c.a.2.4 50
23.14 odd 22 23.4.c.a.12.4 yes 50
23.22 odd 2 529.4.a.n.1.17 25
69.5 even 22 207.4.i.a.163.2 50
69.14 even 22 207.4.i.a.127.2 50
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
23.4.c.a.2.4 50 23.5 odd 22
23.4.c.a.12.4 yes 50 23.14 odd 22
207.4.i.a.127.2 50 69.14 even 22
207.4.i.a.163.2 50 69.5 even 22
529.4.a.m.1.17 25 1.1 even 1 trivial
529.4.a.n.1.17 25 23.22 odd 2