Properties

Label 529.4.a.m.1.15
Level $529$
Weight $4$
Character 529.1
Self dual yes
Analytic conductor $31.212$
Analytic rank $1$
Dimension $25$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [529,4,Mod(1,529)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(529, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("529.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 529 = 23^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 529.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(31.2120103930\)
Analytic rank: \(1\)
Dimension: \(25\)
Twist minimal: no (minimal twist has level 23)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.15
Character \(\chi\) \(=\) 529.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+0.976043 q^{2} -6.99573 q^{3} -7.04734 q^{4} -1.89650 q^{5} -6.82813 q^{6} +11.4459 q^{7} -14.6869 q^{8} +21.9402 q^{9} -1.85107 q^{10} +24.2529 q^{11} +49.3013 q^{12} -51.2775 q^{13} +11.1717 q^{14} +13.2674 q^{15} +42.0437 q^{16} +83.4618 q^{17} +21.4146 q^{18} +150.925 q^{19} +13.3653 q^{20} -80.0727 q^{21} +23.6719 q^{22} +102.745 q^{24} -121.403 q^{25} -50.0490 q^{26} +35.3970 q^{27} -80.6634 q^{28} -252.052 q^{29} +12.9495 q^{30} +43.7775 q^{31} +158.531 q^{32} -169.667 q^{33} +81.4623 q^{34} -21.7072 q^{35} -154.620 q^{36} -35.7950 q^{37} +147.309 q^{38} +358.723 q^{39} +27.8536 q^{40} +333.709 q^{41} -78.1544 q^{42} -293.864 q^{43} -170.918 q^{44} -41.6096 q^{45} -103.530 q^{47} -294.126 q^{48} -211.990 q^{49} -118.495 q^{50} -583.876 q^{51} +361.370 q^{52} -211.734 q^{53} +34.5490 q^{54} -45.9956 q^{55} -168.105 q^{56} -1055.83 q^{57} -246.014 q^{58} -115.001 q^{59} -93.4998 q^{60} -184.073 q^{61} +42.7287 q^{62} +251.126 q^{63} -181.616 q^{64} +97.2477 q^{65} -165.602 q^{66} +545.337 q^{67} -588.184 q^{68} -21.1872 q^{70} -582.298 q^{71} -322.232 q^{72} +47.4045 q^{73} -34.9374 q^{74} +849.304 q^{75} -1063.62 q^{76} +277.597 q^{77} +350.129 q^{78} -1250.01 q^{79} -79.7359 q^{80} -840.013 q^{81} +325.714 q^{82} +759.853 q^{83} +564.299 q^{84} -158.285 q^{85} -286.824 q^{86} +1763.29 q^{87} -356.199 q^{88} -785.740 q^{89} -40.6127 q^{90} -586.919 q^{91} -306.256 q^{93} -101.050 q^{94} -286.229 q^{95} -1109.04 q^{96} +560.129 q^{97} -206.912 q^{98} +532.113 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 25 q - q^{3} + 80 q^{4} - 51 q^{5} + 86 q^{6} - 73 q^{7} + 3 q^{8} + 166 q^{9} - 139 q^{10} - 221 q^{11} - 191 q^{12} - 27 q^{13} - 372 q^{14} - 310 q^{15} + 152 q^{16} - 365 q^{17} - 538 q^{18} - 405 q^{19}+ \cdots - 7317 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.976043 0.345083 0.172542 0.985002i \(-0.444802\pi\)
0.172542 + 0.985002i \(0.444802\pi\)
\(3\) −6.99573 −1.34633 −0.673164 0.739493i \(-0.735065\pi\)
−0.673164 + 0.739493i \(0.735065\pi\)
\(4\) −7.04734 −0.880918
\(5\) −1.89650 −0.169628 −0.0848140 0.996397i \(-0.527030\pi\)
−0.0848140 + 0.996397i \(0.527030\pi\)
\(6\) −6.82813 −0.464595
\(7\) 11.4459 0.618023 0.309011 0.951058i \(-0.400002\pi\)
0.309011 + 0.951058i \(0.400002\pi\)
\(8\) −14.6869 −0.649073
\(9\) 21.9402 0.812600
\(10\) −1.85107 −0.0585358
\(11\) 24.2529 0.664775 0.332387 0.943143i \(-0.392146\pi\)
0.332387 + 0.943143i \(0.392146\pi\)
\(12\) 49.3013 1.18600
\(13\) −51.2775 −1.09399 −0.546993 0.837137i \(-0.684227\pi\)
−0.546993 + 0.837137i \(0.684227\pi\)
\(14\) 11.1717 0.213269
\(15\) 13.2674 0.228375
\(16\) 42.0437 0.656933
\(17\) 83.4618 1.19073 0.595366 0.803454i \(-0.297007\pi\)
0.595366 + 0.803454i \(0.297007\pi\)
\(18\) 21.4146 0.280415
\(19\) 150.925 1.82234 0.911171 0.412029i \(-0.135180\pi\)
0.911171 + 0.412029i \(0.135180\pi\)
\(20\) 13.3653 0.149428
\(21\) −80.0727 −0.832061
\(22\) 23.6719 0.229403
\(23\) 0 0
\(24\) 102.745 0.873866
\(25\) −121.403 −0.971226
\(26\) −50.0490 −0.377516
\(27\) 35.3970 0.252302
\(28\) −80.6634 −0.544427
\(29\) −252.052 −1.61396 −0.806982 0.590576i \(-0.798901\pi\)
−0.806982 + 0.590576i \(0.798901\pi\)
\(30\) 12.9495 0.0788084
\(31\) 43.7775 0.253635 0.126817 0.991926i \(-0.459524\pi\)
0.126817 + 0.991926i \(0.459524\pi\)
\(32\) 158.531 0.875770
\(33\) −169.667 −0.895005
\(34\) 81.4623 0.410902
\(35\) −21.7072 −0.104834
\(36\) −154.620 −0.715833
\(37\) −35.7950 −0.159045 −0.0795224 0.996833i \(-0.525340\pi\)
−0.0795224 + 0.996833i \(0.525340\pi\)
\(38\) 147.309 0.628860
\(39\) 358.723 1.47286
\(40\) 27.8536 0.110101
\(41\) 333.709 1.27113 0.635567 0.772045i \(-0.280766\pi\)
0.635567 + 0.772045i \(0.280766\pi\)
\(42\) −78.1544 −0.287131
\(43\) −293.864 −1.04218 −0.521092 0.853501i \(-0.674475\pi\)
−0.521092 + 0.853501i \(0.674475\pi\)
\(44\) −170.918 −0.585612
\(45\) −41.6096 −0.137840
\(46\) 0 0
\(47\) −103.530 −0.321307 −0.160653 0.987011i \(-0.551360\pi\)
−0.160653 + 0.987011i \(0.551360\pi\)
\(48\) −294.126 −0.884448
\(49\) −211.990 −0.618048
\(50\) −118.495 −0.335154
\(51\) −583.876 −1.60312
\(52\) 361.370 0.963711
\(53\) −211.734 −0.548754 −0.274377 0.961622i \(-0.588472\pi\)
−0.274377 + 0.961622i \(0.588472\pi\)
\(54\) 34.5490 0.0870653
\(55\) −45.9956 −0.112765
\(56\) −168.105 −0.401142
\(57\) −1055.83 −2.45347
\(58\) −246.014 −0.556952
\(59\) −115.001 −0.253760 −0.126880 0.991918i \(-0.540496\pi\)
−0.126880 + 0.991918i \(0.540496\pi\)
\(60\) −93.4998 −0.201180
\(61\) −184.073 −0.386363 −0.193181 0.981163i \(-0.561881\pi\)
−0.193181 + 0.981163i \(0.561881\pi\)
\(62\) 42.7287 0.0875251
\(63\) 251.126 0.502205
\(64\) −181.616 −0.354720
\(65\) 97.2477 0.185571
\(66\) −165.602 −0.308851
\(67\) 545.337 0.994381 0.497190 0.867641i \(-0.334365\pi\)
0.497190 + 0.867641i \(0.334365\pi\)
\(68\) −588.184 −1.04894
\(69\) 0 0
\(70\) −21.1872 −0.0361765
\(71\) −582.298 −0.973324 −0.486662 0.873590i \(-0.661786\pi\)
−0.486662 + 0.873590i \(0.661786\pi\)
\(72\) −322.232 −0.527437
\(73\) 47.4045 0.0760038 0.0380019 0.999278i \(-0.487901\pi\)
0.0380019 + 0.999278i \(0.487901\pi\)
\(74\) −34.9374 −0.0548837
\(75\) 849.304 1.30759
\(76\) −1063.62 −1.60533
\(77\) 277.597 0.410846
\(78\) 350.129 0.508261
\(79\) −1250.01 −1.78022 −0.890108 0.455750i \(-0.849371\pi\)
−0.890108 + 0.455750i \(0.849371\pi\)
\(80\) −79.7359 −0.111434
\(81\) −840.013 −1.15228
\(82\) 325.714 0.438647
\(83\) 759.853 1.00488 0.502438 0.864613i \(-0.332437\pi\)
0.502438 + 0.864613i \(0.332437\pi\)
\(84\) 564.299 0.732978
\(85\) −158.285 −0.201982
\(86\) −286.824 −0.359640
\(87\) 1763.29 2.17293
\(88\) −356.199 −0.431488
\(89\) −785.740 −0.935824 −0.467912 0.883775i \(-0.654994\pi\)
−0.467912 + 0.883775i \(0.654994\pi\)
\(90\) −40.6127 −0.0475662
\(91\) −586.919 −0.676108
\(92\) 0 0
\(93\) −306.256 −0.341476
\(94\) −101.050 −0.110878
\(95\) −286.229 −0.309120
\(96\) −1109.04 −1.17907
\(97\) 560.129 0.586315 0.293157 0.956064i \(-0.405294\pi\)
0.293157 + 0.956064i \(0.405294\pi\)
\(98\) −206.912 −0.213278
\(99\) 532.113 0.540196
\(100\) 855.570 0.855570
\(101\) −388.211 −0.382460 −0.191230 0.981545i \(-0.561248\pi\)
−0.191230 + 0.981545i \(0.561248\pi\)
\(102\) −569.888 −0.553209
\(103\) −1125.58 −1.07676 −0.538380 0.842702i \(-0.680964\pi\)
−0.538380 + 0.842702i \(0.680964\pi\)
\(104\) 753.105 0.710077
\(105\) 151.858 0.141141
\(106\) −206.662 −0.189366
\(107\) −396.595 −0.358320 −0.179160 0.983820i \(-0.557338\pi\)
−0.179160 + 0.983820i \(0.557338\pi\)
\(108\) −249.455 −0.222258
\(109\) 1159.33 1.01875 0.509374 0.860545i \(-0.329877\pi\)
0.509374 + 0.860545i \(0.329877\pi\)
\(110\) −44.8937 −0.0389131
\(111\) 250.412 0.214126
\(112\) 481.230 0.406000
\(113\) −983.536 −0.818790 −0.409395 0.912357i \(-0.634260\pi\)
−0.409395 + 0.912357i \(0.634260\pi\)
\(114\) −1030.53 −0.846651
\(115\) 0 0
\(116\) 1776.30 1.42177
\(117\) −1125.04 −0.888972
\(118\) −112.246 −0.0875684
\(119\) 955.299 0.735900
\(120\) −194.856 −0.148232
\(121\) −742.797 −0.558074
\(122\) −179.663 −0.133327
\(123\) −2334.53 −1.71136
\(124\) −308.515 −0.223431
\(125\) 467.304 0.334375
\(126\) 245.110 0.173303
\(127\) 60.3034 0.0421343 0.0210672 0.999778i \(-0.493294\pi\)
0.0210672 + 0.999778i \(0.493294\pi\)
\(128\) −1445.52 −0.998178
\(129\) 2055.79 1.40312
\(130\) 94.9179 0.0640373
\(131\) 1052.67 0.702077 0.351038 0.936361i \(-0.385829\pi\)
0.351038 + 0.936361i \(0.385829\pi\)
\(132\) 1195.70 0.788426
\(133\) 1727.47 1.12625
\(134\) 532.272 0.343144
\(135\) −67.1305 −0.0427976
\(136\) −1225.79 −0.772873
\(137\) 3098.15 1.93207 0.966033 0.258419i \(-0.0832015\pi\)
0.966033 + 0.258419i \(0.0832015\pi\)
\(138\) 0 0
\(139\) 511.559 0.312157 0.156079 0.987745i \(-0.450115\pi\)
0.156079 + 0.987745i \(0.450115\pi\)
\(140\) 152.978 0.0923501
\(141\) 724.268 0.432584
\(142\) −568.348 −0.335878
\(143\) −1243.63 −0.727254
\(144\) 922.447 0.533824
\(145\) 478.017 0.273774
\(146\) 46.2688 0.0262276
\(147\) 1483.03 0.832095
\(148\) 252.259 0.140105
\(149\) 2445.14 1.34439 0.672195 0.740375i \(-0.265352\pi\)
0.672195 + 0.740375i \(0.265352\pi\)
\(150\) 828.957 0.451227
\(151\) −10.7670 −0.00580268 −0.00290134 0.999996i \(-0.500924\pi\)
−0.00290134 + 0.999996i \(0.500924\pi\)
\(152\) −2216.61 −1.18283
\(153\) 1831.17 0.967589
\(154\) 270.947 0.141776
\(155\) −83.0241 −0.0430236
\(156\) −2528.04 −1.29747
\(157\) 1411.06 0.717293 0.358647 0.933473i \(-0.383238\pi\)
0.358647 + 0.933473i \(0.383238\pi\)
\(158\) −1220.06 −0.614323
\(159\) 1481.24 0.738803
\(160\) −300.655 −0.148555
\(161\) 0 0
\(162\) −819.889 −0.397633
\(163\) 1287.49 0.618674 0.309337 0.950953i \(-0.399893\pi\)
0.309337 + 0.950953i \(0.399893\pi\)
\(164\) −2351.76 −1.11977
\(165\) 321.773 0.151818
\(166\) 741.649 0.346766
\(167\) −3814.73 −1.76762 −0.883810 0.467846i \(-0.845030\pi\)
−0.883810 + 0.467846i \(0.845030\pi\)
\(168\) 1176.02 0.540069
\(169\) 432.379 0.196804
\(170\) −154.493 −0.0697005
\(171\) 3311.32 1.48083
\(172\) 2070.96 0.918077
\(173\) −1331.42 −0.585122 −0.292561 0.956247i \(-0.594507\pi\)
−0.292561 + 0.956247i \(0.594507\pi\)
\(174\) 1721.05 0.749840
\(175\) −1389.57 −0.600240
\(176\) 1019.68 0.436713
\(177\) 804.515 0.341645
\(178\) −766.916 −0.322937
\(179\) −2774.90 −1.15869 −0.579346 0.815082i \(-0.696692\pi\)
−0.579346 + 0.815082i \(0.696692\pi\)
\(180\) 293.237 0.121425
\(181\) −1104.33 −0.453502 −0.226751 0.973953i \(-0.572810\pi\)
−0.226751 + 0.973953i \(0.572810\pi\)
\(182\) −572.858 −0.233314
\(183\) 1287.72 0.520171
\(184\) 0 0
\(185\) 67.8852 0.0269785
\(186\) −298.919 −0.117837
\(187\) 2024.19 0.791569
\(188\) 729.612 0.283045
\(189\) 405.152 0.155929
\(190\) −279.371 −0.106672
\(191\) −2290.51 −0.867725 −0.433862 0.900979i \(-0.642850\pi\)
−0.433862 + 0.900979i \(0.642850\pi\)
\(192\) 1270.54 0.477569
\(193\) −2525.33 −0.941851 −0.470926 0.882173i \(-0.656080\pi\)
−0.470926 + 0.882173i \(0.656080\pi\)
\(194\) 546.710 0.202327
\(195\) −680.318 −0.249839
\(196\) 1493.97 0.544449
\(197\) −1772.11 −0.640903 −0.320451 0.947265i \(-0.603835\pi\)
−0.320451 + 0.947265i \(0.603835\pi\)
\(198\) 519.365 0.186413
\(199\) −5093.23 −1.81432 −0.907159 0.420788i \(-0.861754\pi\)
−0.907159 + 0.420788i \(0.861754\pi\)
\(200\) 1783.03 0.630397
\(201\) −3815.03 −1.33876
\(202\) −378.910 −0.131980
\(203\) −2884.98 −0.997467
\(204\) 4114.77 1.41221
\(205\) −632.878 −0.215620
\(206\) −1098.61 −0.371572
\(207\) 0 0
\(208\) −2155.90 −0.718675
\(209\) 3660.36 1.21145
\(210\) 148.220 0.0487054
\(211\) 3756.97 1.22578 0.612892 0.790167i \(-0.290006\pi\)
0.612892 + 0.790167i \(0.290006\pi\)
\(212\) 1492.16 0.483407
\(213\) 4073.60 1.31041
\(214\) −387.093 −0.123650
\(215\) 557.313 0.176784
\(216\) −519.871 −0.163763
\(217\) 501.075 0.156752
\(218\) 1131.56 0.351553
\(219\) −331.629 −0.102326
\(220\) 324.147 0.0993362
\(221\) −4279.71 −1.30264
\(222\) 244.413 0.0738915
\(223\) −5980.67 −1.79594 −0.897971 0.440055i \(-0.854959\pi\)
−0.897971 + 0.440055i \(0.854959\pi\)
\(224\) 1814.54 0.541246
\(225\) −2663.61 −0.789218
\(226\) −959.973 −0.282551
\(227\) 3873.22 1.13249 0.566243 0.824238i \(-0.308396\pi\)
0.566243 + 0.824238i \(0.308396\pi\)
\(228\) 7440.78 2.16130
\(229\) 1782.47 0.514361 0.257181 0.966363i \(-0.417206\pi\)
0.257181 + 0.966363i \(0.417206\pi\)
\(230\) 0 0
\(231\) −1941.99 −0.553134
\(232\) 3701.86 1.04758
\(233\) 5942.10 1.67073 0.835365 0.549696i \(-0.185257\pi\)
0.835365 + 0.549696i \(0.185257\pi\)
\(234\) −1098.08 −0.306769
\(235\) 196.345 0.0545027
\(236\) 810.451 0.223542
\(237\) 8744.72 2.39675
\(238\) 932.413 0.253947
\(239\) 460.267 0.124570 0.0622849 0.998058i \(-0.480161\pi\)
0.0622849 + 0.998058i \(0.480161\pi\)
\(240\) 557.811 0.150027
\(241\) −4558.20 −1.21834 −0.609170 0.793040i \(-0.708497\pi\)
−0.609170 + 0.793040i \(0.708497\pi\)
\(242\) −725.002 −0.192582
\(243\) 4920.78 1.29905
\(244\) 1297.23 0.340354
\(245\) 402.040 0.104838
\(246\) −2278.61 −0.590563
\(247\) −7739.03 −1.99362
\(248\) −642.954 −0.164627
\(249\) −5315.72 −1.35289
\(250\) 456.109 0.115387
\(251\) −4397.71 −1.10590 −0.552951 0.833214i \(-0.686498\pi\)
−0.552951 + 0.833214i \(0.686498\pi\)
\(252\) −1769.77 −0.442401
\(253\) 0 0
\(254\) 58.8587 0.0145398
\(255\) 1107.32 0.271934
\(256\) 42.0461 0.0102652
\(257\) −5011.02 −1.21626 −0.608130 0.793837i \(-0.708080\pi\)
−0.608130 + 0.793837i \(0.708080\pi\)
\(258\) 2006.54 0.484193
\(259\) −409.707 −0.0982933
\(260\) −685.338 −0.163472
\(261\) −5530.08 −1.31151
\(262\) 1027.45 0.242275
\(263\) −262.425 −0.0615278 −0.0307639 0.999527i \(-0.509794\pi\)
−0.0307639 + 0.999527i \(0.509794\pi\)
\(264\) 2491.87 0.580924
\(265\) 401.554 0.0930841
\(266\) 1686.09 0.388650
\(267\) 5496.82 1.25993
\(268\) −3843.18 −0.875968
\(269\) −6957.80 −1.57704 −0.788521 0.615007i \(-0.789153\pi\)
−0.788521 + 0.615007i \(0.789153\pi\)
\(270\) −65.5222 −0.0147687
\(271\) −2111.07 −0.473205 −0.236602 0.971607i \(-0.576034\pi\)
−0.236602 + 0.971607i \(0.576034\pi\)
\(272\) 3509.04 0.782232
\(273\) 4105.92 0.910263
\(274\) 3023.93 0.666724
\(275\) −2944.38 −0.645647
\(276\) 0 0
\(277\) −4005.75 −0.868888 −0.434444 0.900699i \(-0.643055\pi\)
−0.434444 + 0.900699i \(0.643055\pi\)
\(278\) 499.304 0.107720
\(279\) 960.487 0.206103
\(280\) 318.811 0.0680450
\(281\) 2775.31 0.589186 0.294593 0.955623i \(-0.404816\pi\)
0.294593 + 0.955623i \(0.404816\pi\)
\(282\) 706.917 0.149278
\(283\) −3857.82 −0.810331 −0.405165 0.914243i \(-0.632786\pi\)
−0.405165 + 0.914243i \(0.632786\pi\)
\(284\) 4103.65 0.857418
\(285\) 2002.38 0.416177
\(286\) −1213.83 −0.250963
\(287\) 3819.61 0.785590
\(288\) 3478.21 0.711650
\(289\) 2052.87 0.417845
\(290\) 466.565 0.0944747
\(291\) −3918.51 −0.789372
\(292\) −334.075 −0.0669530
\(293\) −5749.21 −1.14632 −0.573161 0.819443i \(-0.694283\pi\)
−0.573161 + 0.819443i \(0.694283\pi\)
\(294\) 1447.50 0.287142
\(295\) 218.099 0.0430449
\(296\) 525.715 0.103232
\(297\) 858.481 0.167724
\(298\) 2386.57 0.463926
\(299\) 0 0
\(300\) −5985.34 −1.15188
\(301\) −3363.55 −0.644093
\(302\) −10.5090 −0.00200241
\(303\) 2715.82 0.514916
\(304\) 6345.43 1.19716
\(305\) 349.095 0.0655380
\(306\) 1787.30 0.333899
\(307\) −1182.24 −0.219785 −0.109892 0.993943i \(-0.535051\pi\)
−0.109892 + 0.993943i \(0.535051\pi\)
\(308\) −1956.32 −0.361921
\(309\) 7874.22 1.44967
\(310\) −81.0350 −0.0148467
\(311\) 5005.07 0.912576 0.456288 0.889832i \(-0.349179\pi\)
0.456288 + 0.889832i \(0.349179\pi\)
\(312\) −5268.51 −0.955996
\(313\) −1560.35 −0.281777 −0.140889 0.990025i \(-0.544996\pi\)
−0.140889 + 0.990025i \(0.544996\pi\)
\(314\) 1377.26 0.247526
\(315\) −476.261 −0.0851881
\(316\) 8809.24 1.56822
\(317\) −4410.51 −0.781448 −0.390724 0.920508i \(-0.627775\pi\)
−0.390724 + 0.920508i \(0.627775\pi\)
\(318\) 1445.75 0.254949
\(319\) −6113.00 −1.07292
\(320\) 344.436 0.0601704
\(321\) 2774.47 0.482416
\(322\) 0 0
\(323\) 12596.4 2.16992
\(324\) 5919.86 1.01506
\(325\) 6225.25 1.06251
\(326\) 1256.64 0.213494
\(327\) −8110.35 −1.37157
\(328\) −4901.13 −0.825060
\(329\) −1185.00 −0.198575
\(330\) 314.064 0.0523899
\(331\) −7781.38 −1.29215 −0.646077 0.763272i \(-0.723592\pi\)
−0.646077 + 0.763272i \(0.723592\pi\)
\(332\) −5354.94 −0.885213
\(333\) −785.349 −0.129240
\(334\) −3723.34 −0.609976
\(335\) −1034.23 −0.168675
\(336\) −3366.55 −0.546609
\(337\) 7538.46 1.21854 0.609268 0.792965i \(-0.291464\pi\)
0.609268 + 0.792965i \(0.291464\pi\)
\(338\) 422.020 0.0679138
\(339\) 6880.55 1.10236
\(340\) 1115.49 0.177929
\(341\) 1061.73 0.168610
\(342\) 3231.99 0.511011
\(343\) −6352.39 −0.999990
\(344\) 4315.94 0.676453
\(345\) 0 0
\(346\) −1299.52 −0.201916
\(347\) −1634.96 −0.252937 −0.126468 0.991971i \(-0.540364\pi\)
−0.126468 + 0.991971i \(0.540364\pi\)
\(348\) −12426.5 −1.91417
\(349\) −2149.95 −0.329754 −0.164877 0.986314i \(-0.552723\pi\)
−0.164877 + 0.986314i \(0.552723\pi\)
\(350\) −1356.28 −0.207133
\(351\) −1815.07 −0.276015
\(352\) 3844.84 0.582190
\(353\) 1333.51 0.201064 0.100532 0.994934i \(-0.467946\pi\)
0.100532 + 0.994934i \(0.467946\pi\)
\(354\) 785.242 0.117896
\(355\) 1104.33 0.165103
\(356\) 5537.38 0.824383
\(357\) −6683.01 −0.990763
\(358\) −2708.42 −0.399845
\(359\) −1935.35 −0.284523 −0.142261 0.989829i \(-0.545437\pi\)
−0.142261 + 0.989829i \(0.545437\pi\)
\(360\) 611.113 0.0894681
\(361\) 15919.2 2.32093
\(362\) −1077.87 −0.156496
\(363\) 5196.40 0.751351
\(364\) 4136.22 0.595595
\(365\) −89.9026 −0.0128924
\(366\) 1256.87 0.179502
\(367\) −419.985 −0.0597359 −0.0298679 0.999554i \(-0.509509\pi\)
−0.0298679 + 0.999554i \(0.509509\pi\)
\(368\) 0 0
\(369\) 7321.63 1.03292
\(370\) 66.2588 0.00930982
\(371\) −2423.50 −0.339142
\(372\) 2158.29 0.300812
\(373\) −216.563 −0.0300623 −0.0150311 0.999887i \(-0.504785\pi\)
−0.0150311 + 0.999887i \(0.504785\pi\)
\(374\) 1975.70 0.273157
\(375\) −3269.13 −0.450179
\(376\) 1520.53 0.208552
\(377\) 12924.6 1.76565
\(378\) 395.446 0.0538084
\(379\) 3612.85 0.489656 0.244828 0.969567i \(-0.421269\pi\)
0.244828 + 0.969567i \(0.421269\pi\)
\(380\) 2017.15 0.272309
\(381\) −421.866 −0.0567266
\(382\) −2235.64 −0.299437
\(383\) 5389.88 0.719086 0.359543 0.933128i \(-0.382933\pi\)
0.359543 + 0.933128i \(0.382933\pi\)
\(384\) 10112.4 1.34387
\(385\) −526.463 −0.0696910
\(386\) −2464.83 −0.325017
\(387\) −6447.44 −0.846878
\(388\) −3947.42 −0.516495
\(389\) −10855.6 −1.41491 −0.707453 0.706760i \(-0.750156\pi\)
−0.707453 + 0.706760i \(0.750156\pi\)
\(390\) −664.020 −0.0862153
\(391\) 0 0
\(392\) 3113.47 0.401158
\(393\) −7364.18 −0.945226
\(394\) −1729.66 −0.221165
\(395\) 2370.64 0.301975
\(396\) −3749.98 −0.475868
\(397\) −6124.16 −0.774213 −0.387107 0.922035i \(-0.626525\pi\)
−0.387107 + 0.922035i \(0.626525\pi\)
\(398\) −4971.21 −0.626091
\(399\) −12084.9 −1.51630
\(400\) −5104.25 −0.638031
\(401\) 3825.29 0.476373 0.238187 0.971219i \(-0.423447\pi\)
0.238187 + 0.971219i \(0.423447\pi\)
\(402\) −3723.63 −0.461985
\(403\) −2244.80 −0.277473
\(404\) 2735.85 0.336915
\(405\) 1593.08 0.195459
\(406\) −2815.86 −0.344209
\(407\) −868.132 −0.105729
\(408\) 8575.30 1.04054
\(409\) 11735.5 1.41878 0.709391 0.704815i \(-0.248970\pi\)
0.709391 + 0.704815i \(0.248970\pi\)
\(410\) −617.716 −0.0744069
\(411\) −21673.8 −2.60119
\(412\) 7932.32 0.948537
\(413\) −1316.29 −0.156830
\(414\) 0 0
\(415\) −1441.06 −0.170455
\(416\) −8129.08 −0.958080
\(417\) −3578.73 −0.420266
\(418\) 3572.67 0.418050
\(419\) −4616.94 −0.538311 −0.269156 0.963097i \(-0.586745\pi\)
−0.269156 + 0.963097i \(0.586745\pi\)
\(420\) −1070.19 −0.124334
\(421\) 890.986 0.103145 0.0515724 0.998669i \(-0.483577\pi\)
0.0515724 + 0.998669i \(0.483577\pi\)
\(422\) 3666.96 0.422998
\(423\) −2271.47 −0.261094
\(424\) 3109.71 0.356181
\(425\) −10132.5 −1.15647
\(426\) 3976.00 0.452202
\(427\) −2106.89 −0.238781
\(428\) 2794.94 0.315650
\(429\) 8700.08 0.979123
\(430\) 543.962 0.0610050
\(431\) −777.663 −0.0869112 −0.0434556 0.999055i \(-0.513837\pi\)
−0.0434556 + 0.999055i \(0.513837\pi\)
\(432\) 1488.22 0.165746
\(433\) 8919.78 0.989970 0.494985 0.868901i \(-0.335173\pi\)
0.494985 + 0.868901i \(0.335173\pi\)
\(434\) 489.071 0.0540925
\(435\) −3344.08 −0.368589
\(436\) −8170.19 −0.897434
\(437\) 0 0
\(438\) −323.684 −0.0353110
\(439\) −6510.99 −0.707864 −0.353932 0.935271i \(-0.615156\pi\)
−0.353932 + 0.935271i \(0.615156\pi\)
\(440\) 675.531 0.0731924
\(441\) −4651.11 −0.502226
\(442\) −4177.18 −0.449521
\(443\) 11735.9 1.25867 0.629333 0.777136i \(-0.283328\pi\)
0.629333 + 0.777136i \(0.283328\pi\)
\(444\) −1764.74 −0.188628
\(445\) 1490.16 0.158742
\(446\) −5837.39 −0.619749
\(447\) −17105.6 −1.80999
\(448\) −2078.77 −0.219225
\(449\) −11103.7 −1.16708 −0.583539 0.812085i \(-0.698333\pi\)
−0.583539 + 0.812085i \(0.698333\pi\)
\(450\) −2599.80 −0.272346
\(451\) 8093.40 0.845019
\(452\) 6931.31 0.721286
\(453\) 75.3229 0.00781231
\(454\) 3780.43 0.390802
\(455\) 1113.09 0.114687
\(456\) 15506.8 1.59248
\(457\) 4696.48 0.480727 0.240364 0.970683i \(-0.422733\pi\)
0.240364 + 0.970683i \(0.422733\pi\)
\(458\) 1739.76 0.177497
\(459\) 2954.30 0.300425
\(460\) 0 0
\(461\) −3603.63 −0.364074 −0.182037 0.983292i \(-0.558269\pi\)
−0.182037 + 0.983292i \(0.558269\pi\)
\(462\) −1895.47 −0.190877
\(463\) −4059.96 −0.407522 −0.203761 0.979021i \(-0.565316\pi\)
−0.203761 + 0.979021i \(0.565316\pi\)
\(464\) −10597.2 −1.06027
\(465\) 580.814 0.0579238
\(466\) 5799.74 0.576541
\(467\) −13178.8 −1.30587 −0.652936 0.757413i \(-0.726463\pi\)
−0.652936 + 0.757413i \(0.726463\pi\)
\(468\) 7928.52 0.783111
\(469\) 6241.90 0.614550
\(470\) 191.641 0.0188080
\(471\) −9871.41 −0.965712
\(472\) 1689.00 0.164709
\(473\) −7127.06 −0.692817
\(474\) 8535.23 0.827080
\(475\) −18322.7 −1.76991
\(476\) −6732.32 −0.648267
\(477\) −4645.49 −0.445917
\(478\) 449.240 0.0429870
\(479\) −18975.1 −1.81001 −0.905003 0.425406i \(-0.860131\pi\)
−0.905003 + 0.425406i \(0.860131\pi\)
\(480\) 2103.30 0.200004
\(481\) 1835.48 0.173993
\(482\) −4449.00 −0.420429
\(483\) 0 0
\(484\) 5234.74 0.491617
\(485\) −1062.29 −0.0994554
\(486\) 4802.90 0.448279
\(487\) 1641.31 0.152720 0.0763600 0.997080i \(-0.475670\pi\)
0.0763600 + 0.997080i \(0.475670\pi\)
\(488\) 2703.45 0.250778
\(489\) −9006.91 −0.832938
\(490\) 392.408 0.0361779
\(491\) −2822.20 −0.259398 −0.129699 0.991553i \(-0.541401\pi\)
−0.129699 + 0.991553i \(0.541401\pi\)
\(492\) 16452.3 1.50757
\(493\) −21036.7 −1.92180
\(494\) −7553.63 −0.687963
\(495\) −1009.15 −0.0916324
\(496\) 1840.57 0.166621
\(497\) −6664.95 −0.601537
\(498\) −5188.37 −0.466861
\(499\) −8976.11 −0.805262 −0.402631 0.915362i \(-0.631904\pi\)
−0.402631 + 0.915362i \(0.631904\pi\)
\(500\) −3293.25 −0.294557
\(501\) 26686.8 2.37980
\(502\) −4292.36 −0.381628
\(503\) 4506.75 0.399495 0.199747 0.979847i \(-0.435988\pi\)
0.199747 + 0.979847i \(0.435988\pi\)
\(504\) −3688.25 −0.325968
\(505\) 736.242 0.0648759
\(506\) 0 0
\(507\) −3024.80 −0.264963
\(508\) −424.978 −0.0371169
\(509\) 3033.74 0.264181 0.132091 0.991238i \(-0.457831\pi\)
0.132091 + 0.991238i \(0.457831\pi\)
\(510\) 1080.79 0.0938398
\(511\) 542.589 0.0469720
\(512\) 11605.2 1.00172
\(513\) 5342.29 0.459781
\(514\) −4890.97 −0.419711
\(515\) 2134.65 0.182649
\(516\) −14487.9 −1.23603
\(517\) −2510.91 −0.213597
\(518\) −399.892 −0.0339194
\(519\) 9314.25 0.787766
\(520\) −1428.26 −0.120449
\(521\) −225.173 −0.0189348 −0.00946739 0.999955i \(-0.503014\pi\)
−0.00946739 + 0.999955i \(0.503014\pi\)
\(522\) −5397.59 −0.452579
\(523\) 13965.4 1.16762 0.583809 0.811891i \(-0.301562\pi\)
0.583809 + 0.811891i \(0.301562\pi\)
\(524\) −7418.51 −0.618472
\(525\) 9721.09 0.808120
\(526\) −256.138 −0.0212322
\(527\) 3653.75 0.302011
\(528\) −7133.42 −0.587959
\(529\) 0 0
\(530\) 391.934 0.0321218
\(531\) −2523.14 −0.206205
\(532\) −12174.1 −0.992132
\(533\) −17111.7 −1.39060
\(534\) 5365.14 0.434779
\(535\) 752.141 0.0607811
\(536\) −8009.28 −0.645426
\(537\) 19412.5 1.55998
\(538\) −6791.11 −0.544211
\(539\) −5141.38 −0.410863
\(540\) 473.091 0.0377011
\(541\) 14464.1 1.14946 0.574731 0.818343i \(-0.305107\pi\)
0.574731 + 0.818343i \(0.305107\pi\)
\(542\) −2060.50 −0.163295
\(543\) 7725.57 0.610563
\(544\) 13231.3 1.04281
\(545\) −2198.67 −0.172808
\(546\) 4007.56 0.314117
\(547\) 3435.63 0.268550 0.134275 0.990944i \(-0.457129\pi\)
0.134275 + 0.990944i \(0.457129\pi\)
\(548\) −21833.7 −1.70199
\(549\) −4038.60 −0.313958
\(550\) −2873.84 −0.222802
\(551\) −38040.9 −2.94119
\(552\) 0 0
\(553\) −14307.5 −1.10021
\(554\) −3909.78 −0.299839
\(555\) −474.906 −0.0363219
\(556\) −3605.13 −0.274985
\(557\) −16149.5 −1.22851 −0.614253 0.789109i \(-0.710542\pi\)
−0.614253 + 0.789109i \(0.710542\pi\)
\(558\) 937.477 0.0711229
\(559\) 15068.6 1.14013
\(560\) −912.653 −0.0688689
\(561\) −14160.7 −1.06571
\(562\) 2708.82 0.203318
\(563\) −15799.5 −1.18272 −0.591360 0.806408i \(-0.701409\pi\)
−0.591360 + 0.806408i \(0.701409\pi\)
\(564\) −5104.17 −0.381071
\(565\) 1865.27 0.138890
\(566\) −3765.40 −0.279632
\(567\) −9614.74 −0.712136
\(568\) 8552.12 0.631759
\(569\) −18975.0 −1.39802 −0.699010 0.715112i \(-0.746376\pi\)
−0.699010 + 0.715112i \(0.746376\pi\)
\(570\) 1954.41 0.143616
\(571\) 21023.1 1.54079 0.770395 0.637567i \(-0.220059\pi\)
0.770395 + 0.637567i \(0.220059\pi\)
\(572\) 8764.26 0.640651
\(573\) 16023.8 1.16824
\(574\) 3728.10 0.271094
\(575\) 0 0
\(576\) −3984.70 −0.288245
\(577\) 4123.92 0.297541 0.148770 0.988872i \(-0.452468\pi\)
0.148770 + 0.988872i \(0.452468\pi\)
\(578\) 2003.69 0.144191
\(579\) 17666.5 1.26804
\(580\) −3368.75 −0.241172
\(581\) 8697.23 0.621036
\(582\) −3824.64 −0.272399
\(583\) −5135.17 −0.364798
\(584\) −696.222 −0.0493320
\(585\) 2133.63 0.150795
\(586\) −5611.47 −0.395577
\(587\) −1377.37 −0.0968488 −0.0484244 0.998827i \(-0.515420\pi\)
−0.0484244 + 0.998827i \(0.515420\pi\)
\(588\) −10451.4 −0.733007
\(589\) 6607.11 0.462209
\(590\) 212.874 0.0148541
\(591\) 12397.2 0.862865
\(592\) −1504.95 −0.104482
\(593\) −11421.1 −0.790908 −0.395454 0.918486i \(-0.629413\pi\)
−0.395454 + 0.918486i \(0.629413\pi\)
\(594\) 837.914 0.0578788
\(595\) −1811.72 −0.124829
\(596\) −17231.8 −1.18430
\(597\) 35630.8 2.44267
\(598\) 0 0
\(599\) 6209.30 0.423548 0.211774 0.977319i \(-0.432076\pi\)
0.211774 + 0.977319i \(0.432076\pi\)
\(600\) −12473.6 −0.848721
\(601\) 5467.09 0.371060 0.185530 0.982639i \(-0.440600\pi\)
0.185530 + 0.982639i \(0.440600\pi\)
\(602\) −3282.97 −0.222266
\(603\) 11964.8 0.808034
\(604\) 75.8786 0.00511168
\(605\) 1408.71 0.0946651
\(606\) 2650.75 0.177689
\(607\) 20600.7 1.37752 0.688762 0.724988i \(-0.258154\pi\)
0.688762 + 0.724988i \(0.258154\pi\)
\(608\) 23926.3 1.59595
\(609\) 20182.5 1.34292
\(610\) 340.731 0.0226161
\(611\) 5308.76 0.351505
\(612\) −12904.9 −0.852366
\(613\) 10396.7 0.685025 0.342513 0.939513i \(-0.388722\pi\)
0.342513 + 0.939513i \(0.388722\pi\)
\(614\) −1153.92 −0.0758440
\(615\) 4427.44 0.290296
\(616\) −4077.03 −0.266669
\(617\) −15241.2 −0.994472 −0.497236 0.867615i \(-0.665652\pi\)
−0.497236 + 0.867615i \(0.665652\pi\)
\(618\) 7685.58 0.500258
\(619\) 12683.1 0.823549 0.411775 0.911286i \(-0.364909\pi\)
0.411775 + 0.911286i \(0.364909\pi\)
\(620\) 585.099 0.0379002
\(621\) 0 0
\(622\) 4885.16 0.314915
\(623\) −8993.54 −0.578360
\(624\) 15082.1 0.967573
\(625\) 14289.2 0.914507
\(626\) −1522.97 −0.0972366
\(627\) −25606.9 −1.63101
\(628\) −9944.24 −0.631876
\(629\) −2987.51 −0.189380
\(630\) −464.851 −0.0293970
\(631\) 18851.6 1.18933 0.594667 0.803972i \(-0.297284\pi\)
0.594667 + 0.803972i \(0.297284\pi\)
\(632\) 18358.7 1.15549
\(633\) −26282.7 −1.65031
\(634\) −4304.85 −0.269665
\(635\) −114.365 −0.00714716
\(636\) −10438.8 −0.650824
\(637\) 10870.3 0.676135
\(638\) −5966.55 −0.370248
\(639\) −12775.7 −0.790923
\(640\) 2741.42 0.169319
\(641\) −8024.02 −0.494430 −0.247215 0.968961i \(-0.579515\pi\)
−0.247215 + 0.968961i \(0.579515\pi\)
\(642\) 2708.00 0.166474
\(643\) 16814.4 1.03125 0.515627 0.856813i \(-0.327559\pi\)
0.515627 + 0.856813i \(0.327559\pi\)
\(644\) 0 0
\(645\) −3898.81 −0.238009
\(646\) 12294.7 0.748804
\(647\) −21369.7 −1.29850 −0.649251 0.760574i \(-0.724918\pi\)
−0.649251 + 0.760574i \(0.724918\pi\)
\(648\) 12337.1 0.747915
\(649\) −2789.11 −0.168693
\(650\) 6076.11 0.366654
\(651\) −3505.38 −0.211040
\(652\) −9073.36 −0.545000
\(653\) 7739.68 0.463824 0.231912 0.972737i \(-0.425502\pi\)
0.231912 + 0.972737i \(0.425502\pi\)
\(654\) −7916.05 −0.473306
\(655\) −1996.39 −0.119092
\(656\) 14030.4 0.835051
\(657\) 1040.06 0.0617606
\(658\) −1156.61 −0.0685249
\(659\) 8062.59 0.476592 0.238296 0.971193i \(-0.423411\pi\)
0.238296 + 0.971193i \(0.423411\pi\)
\(660\) −2267.64 −0.133739
\(661\) 13292.5 0.782175 0.391088 0.920353i \(-0.372099\pi\)
0.391088 + 0.920353i \(0.372099\pi\)
\(662\) −7594.96 −0.445901
\(663\) 29939.7 1.75379
\(664\) −11159.8 −0.652238
\(665\) −3276.16 −0.191043
\(666\) −766.534 −0.0445985
\(667\) 0 0
\(668\) 26883.7 1.55713
\(669\) 41839.1 2.41793
\(670\) −1009.45 −0.0582069
\(671\) −4464.31 −0.256844
\(672\) −12694.0 −0.728694
\(673\) −9422.80 −0.539706 −0.269853 0.962902i \(-0.586975\pi\)
−0.269853 + 0.962902i \(0.586975\pi\)
\(674\) 7357.86 0.420496
\(675\) −4297.32 −0.245043
\(676\) −3047.12 −0.173368
\(677\) 2837.83 0.161103 0.0805515 0.996750i \(-0.474332\pi\)
0.0805515 + 0.996750i \(0.474332\pi\)
\(678\) 6715.71 0.380406
\(679\) 6411.21 0.362356
\(680\) 2324.71 0.131101
\(681\) −27096.0 −1.52470
\(682\) 1036.30 0.0581845
\(683\) 2482.80 0.139095 0.0695473 0.997579i \(-0.477845\pi\)
0.0695473 + 0.997579i \(0.477845\pi\)
\(684\) −23336.0 −1.30449
\(685\) −5875.64 −0.327733
\(686\) −6200.20 −0.345080
\(687\) −12469.7 −0.692499
\(688\) −12355.1 −0.684645
\(689\) 10857.2 0.600329
\(690\) 0 0
\(691\) −20470.8 −1.12699 −0.563493 0.826121i \(-0.690543\pi\)
−0.563493 + 0.826121i \(0.690543\pi\)
\(692\) 9382.97 0.515444
\(693\) 6090.54 0.333853
\(694\) −1595.79 −0.0872842
\(695\) −970.172 −0.0529507
\(696\) −25897.2 −1.41039
\(697\) 27851.9 1.51358
\(698\) −2098.44 −0.113793
\(699\) −41569.3 −2.24935
\(700\) 9792.81 0.528762
\(701\) 23934.1 1.28956 0.644779 0.764369i \(-0.276950\pi\)
0.644779 + 0.764369i \(0.276950\pi\)
\(702\) −1771.59 −0.0952482
\(703\) −5402.34 −0.289834
\(704\) −4404.73 −0.235809
\(705\) −1373.57 −0.0733785
\(706\) 1301.56 0.0693837
\(707\) −4443.44 −0.236369
\(708\) −5669.69 −0.300961
\(709\) −6356.35 −0.336697 −0.168348 0.985728i \(-0.553843\pi\)
−0.168348 + 0.985728i \(0.553843\pi\)
\(710\) 1077.87 0.0569743
\(711\) −27425.4 −1.44660
\(712\) 11540.1 0.607418
\(713\) 0 0
\(714\) −6522.90 −0.341896
\(715\) 2358.54 0.123363
\(716\) 19555.7 1.02071
\(717\) −3219.90 −0.167712
\(718\) −1888.98 −0.0981841
\(719\) 11750.5 0.609485 0.304743 0.952435i \(-0.401430\pi\)
0.304743 + 0.952435i \(0.401430\pi\)
\(720\) −1749.42 −0.0905515
\(721\) −12883.3 −0.665462
\(722\) 15537.9 0.800914
\(723\) 31888.0 1.64028
\(724\) 7782.56 0.399498
\(725\) 30600.0 1.56752
\(726\) 5071.91 0.259279
\(727\) −4275.35 −0.218107 −0.109054 0.994036i \(-0.534782\pi\)
−0.109054 + 0.994036i \(0.534782\pi\)
\(728\) 8619.99 0.438844
\(729\) −11744.1 −0.596662
\(730\) −87.7488 −0.00444894
\(731\) −24526.4 −1.24096
\(732\) −9075.04 −0.458228
\(733\) 26942.9 1.35765 0.678826 0.734299i \(-0.262489\pi\)
0.678826 + 0.734299i \(0.262489\pi\)
\(734\) −409.924 −0.0206138
\(735\) −2812.56 −0.141147
\(736\) 0 0
\(737\) 13226.0 0.661040
\(738\) 7146.23 0.356445
\(739\) 2467.16 0.122809 0.0614046 0.998113i \(-0.480442\pi\)
0.0614046 + 0.998113i \(0.480442\pi\)
\(740\) −478.410 −0.0237658
\(741\) 54140.2 2.68406
\(742\) −2365.44 −0.117032
\(743\) −4429.40 −0.218707 −0.109353 0.994003i \(-0.534878\pi\)
−0.109353 + 0.994003i \(0.534878\pi\)
\(744\) 4497.93 0.221643
\(745\) −4637.21 −0.228046
\(746\) −211.375 −0.0103740
\(747\) 16671.3 0.816562
\(748\) −14265.2 −0.697307
\(749\) −4539.40 −0.221450
\(750\) −3190.81 −0.155349
\(751\) −28222.9 −1.37133 −0.685664 0.727918i \(-0.740488\pi\)
−0.685664 + 0.727918i \(0.740488\pi\)
\(752\) −4352.79 −0.211077
\(753\) 30765.2 1.48891
\(754\) 12615.0 0.609297
\(755\) 20.4196 0.000984297 0
\(756\) −2855.25 −0.137360
\(757\) 40706.7 1.95444 0.977218 0.212236i \(-0.0680746\pi\)
0.977218 + 0.212236i \(0.0680746\pi\)
\(758\) 3526.30 0.168972
\(759\) 0 0
\(760\) 4203.80 0.200642
\(761\) −20094.0 −0.957173 −0.478586 0.878040i \(-0.658851\pi\)
−0.478586 + 0.878040i \(0.658851\pi\)
\(762\) −411.759 −0.0195754
\(763\) 13269.6 0.629610
\(764\) 16142.0 0.764394
\(765\) −3472.81 −0.164130
\(766\) 5260.76 0.248145
\(767\) 5896.96 0.277610
\(768\) −294.143 −0.0138203
\(769\) 19329.4 0.906421 0.453210 0.891404i \(-0.350279\pi\)
0.453210 + 0.891404i \(0.350279\pi\)
\(770\) −513.851 −0.0240492
\(771\) 35055.7 1.63749
\(772\) 17796.9 0.829693
\(773\) 30502.2 1.41926 0.709629 0.704575i \(-0.248863\pi\)
0.709629 + 0.704575i \(0.248863\pi\)
\(774\) −6292.98 −0.292243
\(775\) −5314.74 −0.246337
\(776\) −8226.54 −0.380561
\(777\) 2866.20 0.132335
\(778\) −10595.5 −0.488260
\(779\) 50364.9 2.31644
\(780\) 4794.43 0.220088
\(781\) −14122.4 −0.647042
\(782\) 0 0
\(783\) −8921.91 −0.407207
\(784\) −8912.87 −0.406016
\(785\) −2676.08 −0.121673
\(786\) −7187.76 −0.326182
\(787\) 1690.36 0.0765629 0.0382814 0.999267i \(-0.487812\pi\)
0.0382814 + 0.999267i \(0.487812\pi\)
\(788\) 12488.7 0.564582
\(789\) 1835.85 0.0828367
\(790\) 2313.85 0.104206
\(791\) −11257.5 −0.506031
\(792\) −7815.07 −0.350627
\(793\) 9438.80 0.422675
\(794\) −5977.44 −0.267168
\(795\) −2809.16 −0.125322
\(796\) 35893.7 1.59826
\(797\) 18197.7 0.808778 0.404389 0.914587i \(-0.367484\pi\)
0.404389 + 0.914587i \(0.367484\pi\)
\(798\) −11795.4 −0.523250
\(799\) −8640.81 −0.382591
\(800\) −19246.2 −0.850571
\(801\) −17239.3 −0.760450
\(802\) 3733.65 0.164389
\(803\) 1149.70 0.0505254
\(804\) 26885.8 1.17934
\(805\) 0 0
\(806\) −2191.02 −0.0957512
\(807\) 48674.9 2.12322
\(808\) 5701.59 0.248244
\(809\) −11740.4 −0.510225 −0.255112 0.966911i \(-0.582112\pi\)
−0.255112 + 0.966911i \(0.582112\pi\)
\(810\) 1554.92 0.0674497
\(811\) 16603.3 0.718891 0.359446 0.933166i \(-0.382966\pi\)
0.359446 + 0.933166i \(0.382966\pi\)
\(812\) 20331.4 0.878686
\(813\) 14768.5 0.637089
\(814\) −847.334 −0.0364853
\(815\) −2441.72 −0.104944
\(816\) −24548.3 −1.05314
\(817\) −44351.4 −1.89921
\(818\) 11454.3 0.489598
\(819\) −12877.1 −0.549405
\(820\) 4460.11 0.189944
\(821\) −41823.8 −1.77790 −0.888952 0.457999i \(-0.848566\pi\)
−0.888952 + 0.457999i \(0.848566\pi\)
\(822\) −21154.6 −0.897629
\(823\) 6012.68 0.254665 0.127332 0.991860i \(-0.459359\pi\)
0.127332 + 0.991860i \(0.459359\pi\)
\(824\) 16531.2 0.698896
\(825\) 20598.1 0.869253
\(826\) −1284.76 −0.0541193
\(827\) −33118.9 −1.39257 −0.696286 0.717764i \(-0.745166\pi\)
−0.696286 + 0.717764i \(0.745166\pi\)
\(828\) 0 0
\(829\) 2680.69 0.112309 0.0561545 0.998422i \(-0.482116\pi\)
0.0561545 + 0.998422i \(0.482116\pi\)
\(830\) −1406.54 −0.0588212
\(831\) 28023.1 1.16981
\(832\) 9312.83 0.388058
\(833\) −17693.1 −0.735930
\(834\) −3492.99 −0.145027
\(835\) 7234.63 0.299838
\(836\) −25795.8 −1.06718
\(837\) 1549.59 0.0639926
\(838\) −4506.33 −0.185762
\(839\) 10649.8 0.438225 0.219113 0.975700i \(-0.429684\pi\)
0.219113 + 0.975700i \(0.429684\pi\)
\(840\) −2230.31 −0.0916108
\(841\) 39141.4 1.60488
\(842\) 869.641 0.0355936
\(843\) −19415.3 −0.793237
\(844\) −26476.6 −1.07981
\(845\) −820.006 −0.0333835
\(846\) −2217.05 −0.0900991
\(847\) −8502.01 −0.344903
\(848\) −8902.10 −0.360495
\(849\) 26988.3 1.09097
\(850\) −9889.79 −0.399079
\(851\) 0 0
\(852\) −28708.0 −1.15437
\(853\) 13056.9 0.524104 0.262052 0.965054i \(-0.415601\pi\)
0.262052 + 0.965054i \(0.415601\pi\)
\(854\) −2056.41 −0.0823994
\(855\) −6279.91 −0.251191
\(856\) 5824.73 0.232576
\(857\) 16103.1 0.641857 0.320928 0.947103i \(-0.396005\pi\)
0.320928 + 0.947103i \(0.396005\pi\)
\(858\) 8491.65 0.337879
\(859\) 19332.2 0.767875 0.383937 0.923359i \(-0.374568\pi\)
0.383937 + 0.923359i \(0.374568\pi\)
\(860\) −3927.58 −0.155732
\(861\) −26720.9 −1.05766
\(862\) −759.033 −0.0299916
\(863\) 34748.6 1.37063 0.685316 0.728246i \(-0.259664\pi\)
0.685316 + 0.728246i \(0.259664\pi\)
\(864\) 5611.54 0.220959
\(865\) 2525.04 0.0992531
\(866\) 8706.09 0.341622
\(867\) −14361.3 −0.562556
\(868\) −3531.25 −0.138086
\(869\) −30316.4 −1.18344
\(870\) −3263.96 −0.127194
\(871\) −27963.5 −1.08784
\(872\) −17026.9 −0.661243
\(873\) 12289.3 0.476439
\(874\) 0 0
\(875\) 5348.73 0.206652
\(876\) 2337.10 0.0901408
\(877\) −10501.6 −0.404350 −0.202175 0.979349i \(-0.564801\pi\)
−0.202175 + 0.979349i \(0.564801\pi\)
\(878\) −6355.00 −0.244272
\(879\) 40219.9 1.54333
\(880\) −1933.83 −0.0740787
\(881\) −42462.2 −1.62382 −0.811912 0.583780i \(-0.801573\pi\)
−0.811912 + 0.583780i \(0.801573\pi\)
\(882\) −4539.68 −0.173310
\(883\) −8273.87 −0.315332 −0.157666 0.987493i \(-0.550397\pi\)
−0.157666 + 0.987493i \(0.550397\pi\)
\(884\) 30160.6 1.14752
\(885\) −1525.76 −0.0579525
\(886\) 11454.7 0.434344
\(887\) −7538.67 −0.285371 −0.142685 0.989768i \(-0.545574\pi\)
−0.142685 + 0.989768i \(0.545574\pi\)
\(888\) −3677.76 −0.138984
\(889\) 690.229 0.0260400
\(890\) 1454.46 0.0547792
\(891\) −20372.8 −0.766008
\(892\) 42147.8 1.58208
\(893\) −15625.2 −0.585531
\(894\) −16695.8 −0.624597
\(895\) 5262.60 0.196547
\(896\) −16545.3 −0.616897
\(897\) 0 0
\(898\) −10837.7 −0.402739
\(899\) −11034.2 −0.409357
\(900\) 18771.4 0.695236
\(901\) −17671.7 −0.653419
\(902\) 7899.51 0.291602
\(903\) 23530.5 0.867160
\(904\) 14445.0 0.531455
\(905\) 2094.35 0.0769267
\(906\) 73.5184 0.00269590
\(907\) −31302.8 −1.14597 −0.572983 0.819567i \(-0.694214\pi\)
−0.572983 + 0.819567i \(0.694214\pi\)
\(908\) −27295.9 −0.997628
\(909\) −8517.42 −0.310787
\(910\) 1086.43 0.0395765
\(911\) −45518.9 −1.65544 −0.827722 0.561138i \(-0.810364\pi\)
−0.827722 + 0.561138i \(0.810364\pi\)
\(912\) −44390.9 −1.61177
\(913\) 18428.6 0.668016
\(914\) 4583.97 0.165891
\(915\) −2442.17 −0.0882357
\(916\) −12561.7 −0.453110
\(917\) 12048.8 0.433899
\(918\) 2883.52 0.103672
\(919\) 7630.92 0.273907 0.136954 0.990577i \(-0.456269\pi\)
0.136954 + 0.990577i \(0.456269\pi\)
\(920\) 0 0
\(921\) 8270.62 0.295902
\(922\) −3517.30 −0.125636
\(923\) 29858.8 1.06480
\(924\) 13685.9 0.487265
\(925\) 4345.63 0.154468
\(926\) −3962.70 −0.140629
\(927\) −24695.4 −0.874975
\(928\) −39958.2 −1.41346
\(929\) 41303.0 1.45867 0.729337 0.684155i \(-0.239829\pi\)
0.729337 + 0.684155i \(0.239829\pi\)
\(930\) 566.899 0.0199885
\(931\) −31994.6 −1.12629
\(932\) −41876.0 −1.47177
\(933\) −35014.1 −1.22863
\(934\) −12863.1 −0.450635
\(935\) −3838.88 −0.134272
\(936\) 16523.3 0.577008
\(937\) −34295.5 −1.19571 −0.597857 0.801603i \(-0.703981\pi\)
−0.597857 + 0.801603i \(0.703981\pi\)
\(938\) 6092.36 0.212071
\(939\) 10915.8 0.379365
\(940\) −1383.71 −0.0480123
\(941\) −42263.9 −1.46415 −0.732074 0.681225i \(-0.761448\pi\)
−0.732074 + 0.681225i \(0.761448\pi\)
\(942\) −9634.92 −0.333251
\(943\) 0 0
\(944\) −4835.07 −0.166703
\(945\) −768.371 −0.0264499
\(946\) −6956.32 −0.239080
\(947\) −1172.46 −0.0402320 −0.0201160 0.999798i \(-0.506404\pi\)
−0.0201160 + 0.999798i \(0.506404\pi\)
\(948\) −61627.0 −2.11134
\(949\) −2430.78 −0.0831470
\(950\) −17883.8 −0.610765
\(951\) 30854.7 1.05209
\(952\) −14030.3 −0.477653
\(953\) 17286.8 0.587590 0.293795 0.955868i \(-0.405082\pi\)
0.293795 + 0.955868i \(0.405082\pi\)
\(954\) −4534.20 −0.153879
\(955\) 4343.95 0.147191
\(956\) −3243.66 −0.109736
\(957\) 42764.9 1.44451
\(958\) −18520.5 −0.624603
\(959\) 35461.3 1.19406
\(960\) −2409.58 −0.0810091
\(961\) −27874.5 −0.935669
\(962\) 1791.50 0.0600420
\(963\) −8701.36 −0.291171
\(964\) 32123.2 1.07326
\(965\) 4789.29 0.159764
\(966\) 0 0
\(967\) −25025.4 −0.832225 −0.416113 0.909313i \(-0.636608\pi\)
−0.416113 + 0.909313i \(0.636608\pi\)
\(968\) 10909.3 0.362231
\(969\) −88121.3 −2.92143
\(970\) −1036.84 −0.0343204
\(971\) −32767.0 −1.08295 −0.541474 0.840718i \(-0.682133\pi\)
−0.541474 + 0.840718i \(0.682133\pi\)
\(972\) −34678.4 −1.14435
\(973\) 5855.28 0.192920
\(974\) 1601.99 0.0527011
\(975\) −43550.2 −1.43048
\(976\) −7739.12 −0.253815
\(977\) 20295.0 0.664581 0.332291 0.943177i \(-0.392179\pi\)
0.332291 + 0.943177i \(0.392179\pi\)
\(978\) −8791.13 −0.287433
\(979\) −19056.5 −0.622112
\(980\) −2833.31 −0.0923539
\(981\) 25435.9 0.827835
\(982\) −2754.59 −0.0895138
\(983\) 40144.1 1.30254 0.651270 0.758846i \(-0.274236\pi\)
0.651270 + 0.758846i \(0.274236\pi\)
\(984\) 34287.0 1.11080
\(985\) 3360.81 0.108715
\(986\) −20532.8 −0.663181
\(987\) 8289.93 0.267347
\(988\) 54539.6 1.75621
\(989\) 0 0
\(990\) −984.976 −0.0316208
\(991\) −39720.6 −1.27323 −0.636613 0.771184i \(-0.719665\pi\)
−0.636613 + 0.771184i \(0.719665\pi\)
\(992\) 6940.11 0.222126
\(993\) 54436.4 1.73966
\(994\) −6505.27 −0.207580
\(995\) 9659.30 0.307759
\(996\) 37461.7 1.19179
\(997\) 30487.0 0.968439 0.484220 0.874947i \(-0.339104\pi\)
0.484220 + 0.874947i \(0.339104\pi\)
\(998\) −8761.07 −0.277882
\(999\) −1267.04 −0.0401274
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 529.4.a.m.1.15 25
23.17 odd 22 23.4.c.a.13.3 50
23.19 odd 22 23.4.c.a.16.3 yes 50
23.22 odd 2 529.4.a.n.1.15 25
69.17 even 22 207.4.i.a.82.3 50
69.65 even 22 207.4.i.a.154.3 50
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
23.4.c.a.13.3 50 23.17 odd 22
23.4.c.a.16.3 yes 50 23.19 odd 22
207.4.i.a.82.3 50 69.17 even 22
207.4.i.a.154.3 50 69.65 even 22
529.4.a.m.1.15 25 1.1 even 1 trivial
529.4.a.n.1.15 25 23.22 odd 2