Properties

Label 529.4.a.m.1.14
Level $529$
Weight $4$
Character 529.1
Self dual yes
Analytic conductor $31.212$
Analytic rank $1$
Dimension $25$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [529,4,Mod(1,529)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(529, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0])) N = Newforms(chi, 4, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("529.1"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Level: \( N \) \(=\) \( 529 = 23^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 529.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [25,0,-1,80,-51] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(31.2120103930\)
Analytic rank: \(1\)
Dimension: \(25\)
Twist minimal: no (minimal twist has level 23)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.14
Character \(\chi\) \(=\) 529.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+0.929572 q^{2} +0.505183 q^{3} -7.13590 q^{4} +10.4946 q^{5} +0.469604 q^{6} +30.2596 q^{7} -14.0699 q^{8} -26.7448 q^{9} +9.75547 q^{10} -36.7763 q^{11} -3.60494 q^{12} -65.2752 q^{13} +28.1284 q^{14} +5.30169 q^{15} +44.0082 q^{16} +36.6778 q^{17} -24.8612 q^{18} -42.1700 q^{19} -74.8883 q^{20} +15.2866 q^{21} -34.1862 q^{22} -7.10788 q^{24} -14.8637 q^{25} -60.6779 q^{26} -27.1510 q^{27} -215.929 q^{28} +57.5815 q^{29} +4.92830 q^{30} -58.5416 q^{31} +153.468 q^{32} -18.5788 q^{33} +34.0947 q^{34} +317.562 q^{35} +190.848 q^{36} -288.712 q^{37} -39.2000 q^{38} -32.9759 q^{39} -147.658 q^{40} -350.300 q^{41} +14.2100 q^{42} +186.494 q^{43} +262.432 q^{44} -280.675 q^{45} +217.230 q^{47} +22.2322 q^{48} +572.642 q^{49} -13.8169 q^{50} +18.5290 q^{51} +465.797 q^{52} -145.484 q^{53} -25.2388 q^{54} -385.952 q^{55} -425.749 q^{56} -21.3036 q^{57} +53.5262 q^{58} -800.665 q^{59} -37.8323 q^{60} -598.596 q^{61} -54.4186 q^{62} -809.286 q^{63} -209.406 q^{64} -685.036 q^{65} -17.2703 q^{66} +415.191 q^{67} -261.729 q^{68} +295.196 q^{70} -949.038 q^{71} +376.297 q^{72} -417.817 q^{73} -268.379 q^{74} -7.50889 q^{75} +300.921 q^{76} -1112.83 q^{77} -30.6535 q^{78} +82.7395 q^{79} +461.848 q^{80} +708.393 q^{81} -325.629 q^{82} -71.0365 q^{83} -109.084 q^{84} +384.919 q^{85} +173.359 q^{86} +29.0892 q^{87} +517.438 q^{88} -737.250 q^{89} -260.908 q^{90} -1975.20 q^{91} -29.5742 q^{93} +201.931 q^{94} -442.557 q^{95} +77.5295 q^{96} -1473.90 q^{97} +532.311 q^{98} +983.573 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 25 q - q^{3} + 80 q^{4} - 51 q^{5} + 86 q^{6} - 73 q^{7} + 3 q^{8} + 166 q^{9} - 139 q^{10} - 221 q^{11} - 191 q^{12} - 27 q^{13} - 372 q^{14} - 310 q^{15} + 152 q^{16} - 365 q^{17} - 538 q^{18} - 405 q^{19}+ \cdots - 7317 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.929572 0.328653 0.164327 0.986406i \(-0.447455\pi\)
0.164327 + 0.986406i \(0.447455\pi\)
\(3\) 0.505183 0.0972226 0.0486113 0.998818i \(-0.484520\pi\)
0.0486113 + 0.998818i \(0.484520\pi\)
\(4\) −7.13590 −0.891987
\(5\) 10.4946 0.938664 0.469332 0.883022i \(-0.344495\pi\)
0.469332 + 0.883022i \(0.344495\pi\)
\(6\) 0.469604 0.0319525
\(7\) 30.2596 1.63386 0.816932 0.576735i \(-0.195673\pi\)
0.816932 + 0.576735i \(0.195673\pi\)
\(8\) −14.0699 −0.621808
\(9\) −26.7448 −0.990548
\(10\) 9.75547 0.308495
\(11\) −36.7763 −1.00804 −0.504021 0.863691i \(-0.668147\pi\)
−0.504021 + 0.863691i \(0.668147\pi\)
\(12\) −3.60494 −0.0867213
\(13\) −65.2752 −1.39262 −0.696310 0.717741i \(-0.745176\pi\)
−0.696310 + 0.717741i \(0.745176\pi\)
\(14\) 28.1284 0.536974
\(15\) 5.30169 0.0912593
\(16\) 44.0082 0.687628
\(17\) 36.6778 0.523275 0.261638 0.965166i \(-0.415737\pi\)
0.261638 + 0.965166i \(0.415737\pi\)
\(18\) −24.8612 −0.325547
\(19\) −42.1700 −0.509182 −0.254591 0.967049i \(-0.581941\pi\)
−0.254591 + 0.967049i \(0.581941\pi\)
\(20\) −74.8883 −0.837276
\(21\) 15.2866 0.158848
\(22\) −34.1862 −0.331296
\(23\) 0 0
\(24\) −7.10788 −0.0604537
\(25\) −14.8637 −0.118909
\(26\) −60.6779 −0.457689
\(27\) −27.1510 −0.193526
\(28\) −215.929 −1.45738
\(29\) 57.5815 0.368711 0.184356 0.982860i \(-0.440980\pi\)
0.184356 + 0.982860i \(0.440980\pi\)
\(30\) 4.92830 0.0299927
\(31\) −58.5416 −0.339173 −0.169587 0.985515i \(-0.554243\pi\)
−0.169587 + 0.985515i \(0.554243\pi\)
\(32\) 153.468 0.847799
\(33\) −18.5788 −0.0980044
\(34\) 34.0947 0.171976
\(35\) 317.562 1.53365
\(36\) 190.848 0.883556
\(37\) −288.712 −1.28281 −0.641405 0.767203i \(-0.721648\pi\)
−0.641405 + 0.767203i \(0.721648\pi\)
\(38\) −39.2000 −0.167344
\(39\) −32.9759 −0.135394
\(40\) −147.658 −0.583669
\(41\) −350.300 −1.33433 −0.667166 0.744909i \(-0.732493\pi\)
−0.667166 + 0.744909i \(0.732493\pi\)
\(42\) 14.2100 0.0522060
\(43\) 186.494 0.661396 0.330698 0.943737i \(-0.392716\pi\)
0.330698 + 0.943737i \(0.392716\pi\)
\(44\) 262.432 0.899160
\(45\) −280.675 −0.929792
\(46\) 0 0
\(47\) 217.230 0.674176 0.337088 0.941473i \(-0.390558\pi\)
0.337088 + 0.941473i \(0.390558\pi\)
\(48\) 22.2322 0.0668529
\(49\) 572.642 1.66951
\(50\) −13.8169 −0.0390800
\(51\) 18.5290 0.0508742
\(52\) 465.797 1.24220
\(53\) −145.484 −0.377052 −0.188526 0.982068i \(-0.560371\pi\)
−0.188526 + 0.982068i \(0.560371\pi\)
\(54\) −25.2388 −0.0636030
\(55\) −385.952 −0.946213
\(56\) −425.749 −1.01595
\(57\) −21.3036 −0.0495040
\(58\) 53.5262 0.121178
\(59\) −800.665 −1.76674 −0.883370 0.468676i \(-0.844731\pi\)
−0.883370 + 0.468676i \(0.844731\pi\)
\(60\) −37.8323 −0.0814021
\(61\) −598.596 −1.25643 −0.628216 0.778039i \(-0.716215\pi\)
−0.628216 + 0.778039i \(0.716215\pi\)
\(62\) −54.4186 −0.111470
\(63\) −809.286 −1.61842
\(64\) −209.406 −0.408996
\(65\) −685.036 −1.30720
\(66\) −17.2703 −0.0322095
\(67\) 415.191 0.757069 0.378535 0.925587i \(-0.376428\pi\)
0.378535 + 0.925587i \(0.376428\pi\)
\(68\) −261.729 −0.466755
\(69\) 0 0
\(70\) 295.196 0.504039
\(71\) −949.038 −1.58634 −0.793170 0.609001i \(-0.791571\pi\)
−0.793170 + 0.609001i \(0.791571\pi\)
\(72\) 376.297 0.615930
\(73\) −417.817 −0.669887 −0.334943 0.942238i \(-0.608717\pi\)
−0.334943 + 0.942238i \(0.608717\pi\)
\(74\) −268.379 −0.421600
\(75\) −7.50889 −0.0115607
\(76\) 300.921 0.454184
\(77\) −1112.83 −1.64700
\(78\) −30.6535 −0.0444977
\(79\) 82.7395 0.117834 0.0589172 0.998263i \(-0.481235\pi\)
0.0589172 + 0.998263i \(0.481235\pi\)
\(80\) 461.848 0.645452
\(81\) 708.393 0.971733
\(82\) −325.629 −0.438532
\(83\) −71.0365 −0.0939430 −0.0469715 0.998896i \(-0.514957\pi\)
−0.0469715 + 0.998896i \(0.514957\pi\)
\(84\) −109.084 −0.141691
\(85\) 384.919 0.491180
\(86\) 173.359 0.217370
\(87\) 29.0892 0.0358470
\(88\) 517.438 0.626808
\(89\) −737.250 −0.878071 −0.439036 0.898470i \(-0.644680\pi\)
−0.439036 + 0.898470i \(0.644680\pi\)
\(90\) −260.908 −0.305579
\(91\) −1975.20 −2.27535
\(92\) 0 0
\(93\) −29.5742 −0.0329753
\(94\) 201.931 0.221570
\(95\) −442.557 −0.477951
\(96\) 77.5295 0.0824252
\(97\) −1473.90 −1.54280 −0.771401 0.636350i \(-0.780444\pi\)
−0.771401 + 0.636350i \(0.780444\pi\)
\(98\) 532.311 0.548690
\(99\) 983.573 0.998514
\(100\) 106.066 0.106066
\(101\) 571.898 0.563425 0.281713 0.959499i \(-0.409098\pi\)
0.281713 + 0.959499i \(0.409098\pi\)
\(102\) 17.2241 0.0167200
\(103\) 255.521 0.244439 0.122220 0.992503i \(-0.460999\pi\)
0.122220 + 0.992503i \(0.460999\pi\)
\(104\) 918.415 0.865942
\(105\) 160.427 0.149105
\(106\) −135.238 −0.123919
\(107\) 694.013 0.627035 0.313518 0.949582i \(-0.398492\pi\)
0.313518 + 0.949582i \(0.398492\pi\)
\(108\) 193.746 0.172623
\(109\) 162.205 0.142536 0.0712679 0.997457i \(-0.477295\pi\)
0.0712679 + 0.997457i \(0.477295\pi\)
\(110\) −358.770 −0.310976
\(111\) −145.852 −0.124718
\(112\) 1331.67 1.12349
\(113\) 2011.80 1.67482 0.837409 0.546577i \(-0.184069\pi\)
0.837409 + 0.546577i \(0.184069\pi\)
\(114\) −19.8032 −0.0162696
\(115\) 0 0
\(116\) −410.896 −0.328885
\(117\) 1745.77 1.37946
\(118\) −744.275 −0.580645
\(119\) 1109.86 0.854961
\(120\) −74.5942 −0.0567458
\(121\) 21.4936 0.0161485
\(122\) −556.438 −0.412930
\(123\) −176.965 −0.129727
\(124\) 417.746 0.302538
\(125\) −1467.81 −1.05028
\(126\) −752.289 −0.531899
\(127\) −536.927 −0.375154 −0.187577 0.982250i \(-0.560063\pi\)
−0.187577 + 0.982250i \(0.560063\pi\)
\(128\) −1422.40 −0.982217
\(129\) 94.2134 0.0643026
\(130\) −636.790 −0.429617
\(131\) 545.888 0.364080 0.182040 0.983291i \(-0.441730\pi\)
0.182040 + 0.983291i \(0.441730\pi\)
\(132\) 132.576 0.0874187
\(133\) −1276.05 −0.831934
\(134\) 385.950 0.248813
\(135\) −284.938 −0.181656
\(136\) −516.054 −0.325377
\(137\) 728.474 0.454290 0.227145 0.973861i \(-0.427061\pi\)
0.227145 + 0.973861i \(0.427061\pi\)
\(138\) 0 0
\(139\) 1952.77 1.19159 0.595796 0.803135i \(-0.296837\pi\)
0.595796 + 0.803135i \(0.296837\pi\)
\(140\) −2266.09 −1.36799
\(141\) 109.741 0.0655451
\(142\) −882.199 −0.521356
\(143\) 2400.58 1.40382
\(144\) −1176.99 −0.681128
\(145\) 604.294 0.346096
\(146\) −388.391 −0.220161
\(147\) 289.289 0.162314
\(148\) 2060.22 1.14425
\(149\) 1446.99 0.795585 0.397793 0.917475i \(-0.369776\pi\)
0.397793 + 0.917475i \(0.369776\pi\)
\(150\) −6.98005 −0.00379946
\(151\) 356.783 0.192282 0.0961410 0.995368i \(-0.469350\pi\)
0.0961410 + 0.995368i \(0.469350\pi\)
\(152\) 593.328 0.316613
\(153\) −980.941 −0.518329
\(154\) −1034.46 −0.541293
\(155\) −614.369 −0.318370
\(156\) 235.313 0.120770
\(157\) −2361.17 −1.20027 −0.600134 0.799899i \(-0.704886\pi\)
−0.600134 + 0.799899i \(0.704886\pi\)
\(158\) 76.9123 0.0387267
\(159\) −73.4961 −0.0366580
\(160\) 1610.58 0.795798
\(161\) 0 0
\(162\) 658.502 0.319363
\(163\) 904.786 0.434775 0.217387 0.976085i \(-0.430246\pi\)
0.217387 + 0.976085i \(0.430246\pi\)
\(164\) 2499.70 1.19021
\(165\) −194.976 −0.0919932
\(166\) −66.0335 −0.0308747
\(167\) −363.482 −0.168426 −0.0842129 0.996448i \(-0.526838\pi\)
−0.0842129 + 0.996448i \(0.526838\pi\)
\(168\) −215.081 −0.0987731
\(169\) 2063.85 0.939393
\(170\) 357.810 0.161428
\(171\) 1127.83 0.504369
\(172\) −1330.80 −0.589956
\(173\) −403.664 −0.177399 −0.0886993 0.996058i \(-0.528271\pi\)
−0.0886993 + 0.996058i \(0.528271\pi\)
\(174\) 27.0405 0.0117812
\(175\) −449.769 −0.194282
\(176\) −1618.46 −0.693158
\(177\) −404.482 −0.171767
\(178\) −685.327 −0.288581
\(179\) 3531.72 1.47471 0.737354 0.675506i \(-0.236075\pi\)
0.737354 + 0.675506i \(0.236075\pi\)
\(180\) 2002.87 0.829362
\(181\) −374.126 −0.153638 −0.0768191 0.997045i \(-0.524476\pi\)
−0.0768191 + 0.997045i \(0.524476\pi\)
\(182\) −1836.09 −0.747802
\(183\) −302.401 −0.122154
\(184\) 0 0
\(185\) −3029.91 −1.20413
\(186\) −27.4914 −0.0108374
\(187\) −1348.87 −0.527484
\(188\) −1550.13 −0.601356
\(189\) −821.577 −0.316195
\(190\) −411.388 −0.157080
\(191\) −3712.31 −1.40635 −0.703177 0.711015i \(-0.748236\pi\)
−0.703177 + 0.711015i \(0.748236\pi\)
\(192\) −105.788 −0.0397637
\(193\) −3046.61 −1.13627 −0.568135 0.822935i \(-0.692335\pi\)
−0.568135 + 0.822935i \(0.692335\pi\)
\(194\) −1370.09 −0.507047
\(195\) −346.069 −0.127090
\(196\) −4086.31 −1.48918
\(197\) 4466.37 1.61531 0.807654 0.589657i \(-0.200737\pi\)
0.807654 + 0.589657i \(0.200737\pi\)
\(198\) 914.302 0.328165
\(199\) 5180.23 1.84531 0.922655 0.385626i \(-0.126015\pi\)
0.922655 + 0.385626i \(0.126015\pi\)
\(200\) 209.131 0.0739388
\(201\) 209.747 0.0736042
\(202\) 531.620 0.185172
\(203\) 1742.39 0.602423
\(204\) −132.221 −0.0453791
\(205\) −3676.25 −1.25249
\(206\) 237.525 0.0803357
\(207\) 0 0
\(208\) −2872.64 −0.957605
\(209\) 1550.86 0.513277
\(210\) 149.128 0.0490039
\(211\) 4171.06 1.36089 0.680445 0.732799i \(-0.261786\pi\)
0.680445 + 0.732799i \(0.261786\pi\)
\(212\) 1038.16 0.336326
\(213\) −479.438 −0.154228
\(214\) 645.135 0.206077
\(215\) 1957.17 0.620828
\(216\) 382.011 0.120336
\(217\) −1771.44 −0.554163
\(218\) 150.781 0.0468449
\(219\) −211.074 −0.0651281
\(220\) 2754.11 0.844010
\(221\) −2394.15 −0.728724
\(222\) −135.580 −0.0409890
\(223\) −3011.36 −0.904285 −0.452143 0.891946i \(-0.649340\pi\)
−0.452143 + 0.891946i \(0.649340\pi\)
\(224\) 4643.88 1.38519
\(225\) 397.526 0.117786
\(226\) 1870.11 0.550434
\(227\) −363.862 −0.106389 −0.0531946 0.998584i \(-0.516940\pi\)
−0.0531946 + 0.998584i \(0.516940\pi\)
\(228\) 152.020 0.0441569
\(229\) 4638.08 1.33840 0.669198 0.743084i \(-0.266638\pi\)
0.669198 + 0.743084i \(0.266638\pi\)
\(230\) 0 0
\(231\) −562.185 −0.160126
\(232\) −810.166 −0.229267
\(233\) −6420.52 −1.80525 −0.902623 0.430433i \(-0.858361\pi\)
−0.902623 + 0.430433i \(0.858361\pi\)
\(234\) 1622.82 0.453363
\(235\) 2279.74 0.632825
\(236\) 5713.46 1.57591
\(237\) 41.7986 0.0114562
\(238\) 1031.69 0.280986
\(239\) −1241.97 −0.336135 −0.168067 0.985776i \(-0.553753\pi\)
−0.168067 + 0.985776i \(0.553753\pi\)
\(240\) 233.318 0.0627525
\(241\) 299.554 0.0800663 0.0400332 0.999198i \(-0.487254\pi\)
0.0400332 + 0.999198i \(0.487254\pi\)
\(242\) 19.9799 0.00530725
\(243\) 1090.94 0.288000
\(244\) 4271.52 1.12072
\(245\) 6009.64 1.56711
\(246\) −164.502 −0.0426352
\(247\) 2752.65 0.709098
\(248\) 823.674 0.210901
\(249\) −35.8864 −0.00913338
\(250\) −1364.44 −0.345178
\(251\) −3478.23 −0.874678 −0.437339 0.899297i \(-0.644079\pi\)
−0.437339 + 0.899297i \(0.644079\pi\)
\(252\) 5774.98 1.44361
\(253\) 0 0
\(254\) −499.112 −0.123296
\(255\) 194.454 0.0477538
\(256\) 353.024 0.0861874
\(257\) −3168.54 −0.769058 −0.384529 0.923113i \(-0.625636\pi\)
−0.384529 + 0.923113i \(0.625636\pi\)
\(258\) 87.5782 0.0211332
\(259\) −8736.30 −2.09594
\(260\) 4888.34 1.16601
\(261\) −1540.01 −0.365226
\(262\) 507.442 0.119656
\(263\) 6391.26 1.49849 0.749243 0.662295i \(-0.230417\pi\)
0.749243 + 0.662295i \(0.230417\pi\)
\(264\) 261.401 0.0609399
\(265\) −1526.79 −0.353925
\(266\) −1186.18 −0.273418
\(267\) −372.446 −0.0853683
\(268\) −2962.76 −0.675296
\(269\) 5422.53 1.22906 0.614531 0.788893i \(-0.289345\pi\)
0.614531 + 0.788893i \(0.289345\pi\)
\(270\) −264.870 −0.0597019
\(271\) 1728.18 0.387379 0.193689 0.981063i \(-0.437955\pi\)
0.193689 + 0.981063i \(0.437955\pi\)
\(272\) 1614.13 0.359819
\(273\) −997.837 −0.221216
\(274\) 677.168 0.149304
\(275\) 546.631 0.119866
\(276\) 0 0
\(277\) 1790.89 0.388463 0.194232 0.980956i \(-0.437779\pi\)
0.194232 + 0.980956i \(0.437779\pi\)
\(278\) 1815.24 0.391621
\(279\) 1565.68 0.335967
\(280\) −4468.06 −0.953635
\(281\) 5903.46 1.25328 0.626639 0.779310i \(-0.284430\pi\)
0.626639 + 0.779310i \(0.284430\pi\)
\(282\) 102.012 0.0215416
\(283\) −7327.59 −1.53915 −0.769576 0.638555i \(-0.779532\pi\)
−0.769576 + 0.638555i \(0.779532\pi\)
\(284\) 6772.24 1.41499
\(285\) −223.572 −0.0464676
\(286\) 2231.51 0.461370
\(287\) −10599.9 −2.18012
\(288\) −4104.47 −0.839785
\(289\) −3567.74 −0.726183
\(290\) 561.735 0.113746
\(291\) −744.589 −0.149995
\(292\) 2981.50 0.597530
\(293\) 1562.43 0.311530 0.155765 0.987794i \(-0.450216\pi\)
0.155765 + 0.987794i \(0.450216\pi\)
\(294\) 268.915 0.0533450
\(295\) −8402.65 −1.65838
\(296\) 4062.15 0.797661
\(297\) 998.511 0.195082
\(298\) 1345.08 0.261472
\(299\) 0 0
\(300\) 53.5826 0.0103120
\(301\) 5643.22 1.08063
\(302\) 331.655 0.0631941
\(303\) 288.913 0.0547776
\(304\) −1855.83 −0.350128
\(305\) −6282.02 −1.17937
\(306\) −911.855 −0.170351
\(307\) −584.640 −0.108688 −0.0543439 0.998522i \(-0.517307\pi\)
−0.0543439 + 0.998522i \(0.517307\pi\)
\(308\) 7941.07 1.46910
\(309\) 129.085 0.0237650
\(310\) −571.100 −0.104633
\(311\) 2343.59 0.427309 0.213654 0.976909i \(-0.431463\pi\)
0.213654 + 0.976909i \(0.431463\pi\)
\(312\) 463.968 0.0841891
\(313\) 3503.27 0.632641 0.316320 0.948652i \(-0.397553\pi\)
0.316320 + 0.948652i \(0.397553\pi\)
\(314\) −2194.88 −0.394472
\(315\) −8493.12 −1.51915
\(316\) −590.420 −0.105107
\(317\) −291.844 −0.0517084 −0.0258542 0.999666i \(-0.508231\pi\)
−0.0258542 + 0.999666i \(0.508231\pi\)
\(318\) −68.3199 −0.0120478
\(319\) −2117.63 −0.371676
\(320\) −2197.63 −0.383910
\(321\) 350.604 0.0609620
\(322\) 0 0
\(323\) −1546.70 −0.266443
\(324\) −5055.02 −0.866773
\(325\) 970.230 0.165596
\(326\) 841.063 0.142890
\(327\) 81.9432 0.0138577
\(328\) 4928.68 0.829698
\(329\) 6573.29 1.10151
\(330\) −181.244 −0.0302339
\(331\) −2124.61 −0.352807 −0.176404 0.984318i \(-0.556446\pi\)
−0.176404 + 0.984318i \(0.556446\pi\)
\(332\) 506.909 0.0837959
\(333\) 7721.54 1.27068
\(334\) −337.883 −0.0553537
\(335\) 4357.26 0.710634
\(336\) 672.737 0.109229
\(337\) −264.713 −0.0427889 −0.0213944 0.999771i \(-0.506811\pi\)
−0.0213944 + 0.999771i \(0.506811\pi\)
\(338\) 1918.49 0.308735
\(339\) 1016.33 0.162830
\(340\) −2746.74 −0.438126
\(341\) 2152.94 0.341901
\(342\) 1048.40 0.165763
\(343\) 6948.86 1.09389
\(344\) −2623.95 −0.411261
\(345\) 0 0
\(346\) −375.234 −0.0583027
\(347\) 1281.55 0.198263 0.0991317 0.995074i \(-0.468393\pi\)
0.0991317 + 0.995074i \(0.468393\pi\)
\(348\) −207.578 −0.0319751
\(349\) 8705.35 1.33521 0.667603 0.744517i \(-0.267320\pi\)
0.667603 + 0.744517i \(0.267320\pi\)
\(350\) −418.092 −0.0638514
\(351\) 1772.28 0.269509
\(352\) −5643.98 −0.854617
\(353\) −4960.03 −0.747863 −0.373931 0.927456i \(-0.621990\pi\)
−0.373931 + 0.927456i \(0.621990\pi\)
\(354\) −375.995 −0.0564518
\(355\) −9959.76 −1.48904
\(356\) 5260.94 0.783228
\(357\) 560.680 0.0831215
\(358\) 3282.98 0.484668
\(359\) −9394.15 −1.38107 −0.690535 0.723299i \(-0.742625\pi\)
−0.690535 + 0.723299i \(0.742625\pi\)
\(360\) 3949.08 0.578152
\(361\) −5080.69 −0.740734
\(362\) −347.777 −0.0504937
\(363\) 10.8582 0.00157000
\(364\) 14094.8 2.02958
\(365\) −4384.81 −0.628799
\(366\) −281.103 −0.0401462
\(367\) −3557.98 −0.506063 −0.253032 0.967458i \(-0.581428\pi\)
−0.253032 + 0.967458i \(0.581428\pi\)
\(368\) 0 0
\(369\) 9368.69 1.32172
\(370\) −2816.52 −0.395740
\(371\) −4402.28 −0.616052
\(372\) 211.039 0.0294135
\(373\) −2036.18 −0.282653 −0.141326 0.989963i \(-0.545137\pi\)
−0.141326 + 0.989963i \(0.545137\pi\)
\(374\) −1253.88 −0.173359
\(375\) −741.514 −0.102111
\(376\) −3056.41 −0.419208
\(377\) −3758.64 −0.513475
\(378\) −763.714 −0.103919
\(379\) 6940.66 0.940680 0.470340 0.882485i \(-0.344131\pi\)
0.470340 + 0.882485i \(0.344131\pi\)
\(380\) 3158.04 0.426326
\(381\) −271.246 −0.0364734
\(382\) −3450.86 −0.462203
\(383\) −6218.78 −0.829673 −0.414837 0.909896i \(-0.636161\pi\)
−0.414837 + 0.909896i \(0.636161\pi\)
\(384\) −718.574 −0.0954936
\(385\) −11678.7 −1.54598
\(386\) −2832.05 −0.373439
\(387\) −4987.73 −0.655144
\(388\) 10517.6 1.37616
\(389\) −1498.75 −0.195346 −0.0976728 0.995219i \(-0.531140\pi\)
−0.0976728 + 0.995219i \(0.531140\pi\)
\(390\) −321.696 −0.0417684
\(391\) 0 0
\(392\) −8057.01 −1.03811
\(393\) 275.773 0.0353968
\(394\) 4151.81 0.530876
\(395\) 868.316 0.110607
\(396\) −7018.68 −0.890661
\(397\) 10983.0 1.38847 0.694233 0.719750i \(-0.255744\pi\)
0.694233 + 0.719750i \(0.255744\pi\)
\(398\) 4815.39 0.606467
\(399\) −644.637 −0.0808828
\(400\) −654.124 −0.0817655
\(401\) −3456.81 −0.430486 −0.215243 0.976561i \(-0.569054\pi\)
−0.215243 + 0.976561i \(0.569054\pi\)
\(402\) 194.975 0.0241903
\(403\) 3821.31 0.472340
\(404\) −4081.00 −0.502568
\(405\) 7434.29 0.912131
\(406\) 1619.68 0.197988
\(407\) 10617.7 1.29313
\(408\) −260.702 −0.0316340
\(409\) 11470.8 1.38678 0.693389 0.720563i \(-0.256117\pi\)
0.693389 + 0.720563i \(0.256117\pi\)
\(410\) −3417.34 −0.411635
\(411\) 368.013 0.0441672
\(412\) −1823.37 −0.218037
\(413\) −24227.8 −2.88661
\(414\) 0 0
\(415\) −745.499 −0.0881809
\(416\) −10017.6 −1.18066
\(417\) 986.504 0.115850
\(418\) 1441.63 0.168690
\(419\) −4497.28 −0.524359 −0.262179 0.965019i \(-0.584441\pi\)
−0.262179 + 0.965019i \(0.584441\pi\)
\(420\) −1144.79 −0.133000
\(421\) 3908.00 0.452409 0.226205 0.974080i \(-0.427368\pi\)
0.226205 + 0.974080i \(0.427368\pi\)
\(422\) 3877.30 0.447261
\(423\) −5809.77 −0.667803
\(424\) 2046.95 0.234454
\(425\) −545.168 −0.0622224
\(426\) −445.672 −0.0506875
\(427\) −18113.3 −2.05284
\(428\) −4952.41 −0.559308
\(429\) 1212.73 0.136483
\(430\) 1819.33 0.204037
\(431\) −10563.4 −1.18056 −0.590281 0.807198i \(-0.700983\pi\)
−0.590281 + 0.807198i \(0.700983\pi\)
\(432\) −1194.86 −0.133074
\(433\) −5752.34 −0.638430 −0.319215 0.947682i \(-0.603419\pi\)
−0.319215 + 0.947682i \(0.603419\pi\)
\(434\) −1646.68 −0.182127
\(435\) 305.279 0.0336483
\(436\) −1157.48 −0.127140
\(437\) 0 0
\(438\) −196.208 −0.0214046
\(439\) 6120.04 0.665361 0.332681 0.943040i \(-0.392047\pi\)
0.332681 + 0.943040i \(0.392047\pi\)
\(440\) 5430.30 0.588362
\(441\) −15315.2 −1.65373
\(442\) −2225.54 −0.239498
\(443\) 421.355 0.0451900 0.0225950 0.999745i \(-0.492807\pi\)
0.0225950 + 0.999745i \(0.492807\pi\)
\(444\) 1040.79 0.111247
\(445\) −7737.13 −0.824214
\(446\) −2799.28 −0.297196
\(447\) 730.996 0.0773488
\(448\) −6336.54 −0.668244
\(449\) 87.6960 0.00921744 0.00460872 0.999989i \(-0.498533\pi\)
0.00460872 + 0.999989i \(0.498533\pi\)
\(450\) 369.529 0.0387106
\(451\) 12882.7 1.34506
\(452\) −14356.0 −1.49392
\(453\) 180.241 0.0186941
\(454\) −338.235 −0.0349651
\(455\) −20728.9 −2.13579
\(456\) 299.739 0.0307820
\(457\) −10926.7 −1.11845 −0.559223 0.829017i \(-0.688900\pi\)
−0.559223 + 0.829017i \(0.688900\pi\)
\(458\) 4311.43 0.439868
\(459\) −995.839 −0.101267
\(460\) 0 0
\(461\) 16330.7 1.64988 0.824940 0.565221i \(-0.191209\pi\)
0.824940 + 0.565221i \(0.191209\pi\)
\(462\) −522.591 −0.0526259
\(463\) 10924.1 1.09651 0.548256 0.836311i \(-0.315292\pi\)
0.548256 + 0.836311i \(0.315292\pi\)
\(464\) 2534.06 0.253536
\(465\) −310.369 −0.0309527
\(466\) −5968.33 −0.593300
\(467\) 2389.48 0.236771 0.118386 0.992968i \(-0.462228\pi\)
0.118386 + 0.992968i \(0.462228\pi\)
\(468\) −12457.6 −1.23046
\(469\) 12563.5 1.23695
\(470\) 2119.18 0.207980
\(471\) −1192.83 −0.116693
\(472\) 11265.3 1.09857
\(473\) −6858.54 −0.666714
\(474\) 38.8548 0.00376510
\(475\) 626.802 0.0605466
\(476\) −7919.82 −0.762614
\(477\) 3890.94 0.373488
\(478\) −1154.50 −0.110472
\(479\) −8981.11 −0.856696 −0.428348 0.903614i \(-0.640904\pi\)
−0.428348 + 0.903614i \(0.640904\pi\)
\(480\) 813.639 0.0773696
\(481\) 18845.7 1.78647
\(482\) 278.457 0.0263141
\(483\) 0 0
\(484\) −153.376 −0.0144042
\(485\) −15468.0 −1.44817
\(486\) 1014.11 0.0946523
\(487\) −8484.20 −0.789437 −0.394719 0.918802i \(-0.629158\pi\)
−0.394719 + 0.918802i \(0.629158\pi\)
\(488\) 8422.19 0.781259
\(489\) 457.083 0.0422699
\(490\) 5586.39 0.515035
\(491\) −1421.07 −0.130615 −0.0653074 0.997865i \(-0.520803\pi\)
−0.0653074 + 0.997865i \(0.520803\pi\)
\(492\) 1262.81 0.115715
\(493\) 2111.97 0.192937
\(494\) 2558.79 0.233047
\(495\) 10322.2 0.937269
\(496\) −2576.31 −0.233225
\(497\) −28717.5 −2.59186
\(498\) −33.3590 −0.00300171
\(499\) 6053.06 0.543030 0.271515 0.962434i \(-0.412475\pi\)
0.271515 + 0.962434i \(0.412475\pi\)
\(500\) 10474.1 0.936836
\(501\) −183.625 −0.0163748
\(502\) −3233.27 −0.287466
\(503\) −1616.88 −0.143327 −0.0716634 0.997429i \(-0.522831\pi\)
−0.0716634 + 0.997429i \(0.522831\pi\)
\(504\) 11386.6 1.00635
\(505\) 6001.83 0.528867
\(506\) 0 0
\(507\) 1042.62 0.0913302
\(508\) 3831.45 0.334632
\(509\) −14178.3 −1.23466 −0.617330 0.786704i \(-0.711786\pi\)
−0.617330 + 0.786704i \(0.711786\pi\)
\(510\) 180.759 0.0156944
\(511\) −12643.0 −1.09450
\(512\) 11707.4 1.01054
\(513\) 1144.96 0.0985401
\(514\) −2945.38 −0.252753
\(515\) 2681.59 0.229446
\(516\) −672.297 −0.0573571
\(517\) −7988.91 −0.679598
\(518\) −8121.02 −0.688836
\(519\) −203.924 −0.0172472
\(520\) 9638.38 0.812829
\(521\) −10315.7 −0.867449 −0.433725 0.901045i \(-0.642801\pi\)
−0.433725 + 0.901045i \(0.642801\pi\)
\(522\) −1431.55 −0.120033
\(523\) −79.7623 −0.00666876 −0.00333438 0.999994i \(-0.501061\pi\)
−0.00333438 + 0.999994i \(0.501061\pi\)
\(524\) −3895.40 −0.324754
\(525\) −227.216 −0.0188886
\(526\) 5941.14 0.492483
\(527\) −2147.18 −0.177481
\(528\) −817.617 −0.0673906
\(529\) 0 0
\(530\) −1419.26 −0.116319
\(531\) 21413.6 1.75004
\(532\) 9105.73 0.742074
\(533\) 22865.9 1.85822
\(534\) −346.216 −0.0280566
\(535\) 7283.38 0.588576
\(536\) −5841.69 −0.470751
\(537\) 1784.16 0.143375
\(538\) 5040.63 0.403935
\(539\) −21059.6 −1.68294
\(540\) 2033.29 0.162035
\(541\) 21296.9 1.69247 0.846234 0.532812i \(-0.178865\pi\)
0.846234 + 0.532812i \(0.178865\pi\)
\(542\) 1606.47 0.127313
\(543\) −189.002 −0.0149371
\(544\) 5628.87 0.443632
\(545\) 1702.27 0.133793
\(546\) −927.561 −0.0727032
\(547\) −18547.5 −1.44979 −0.724894 0.688861i \(-0.758111\pi\)
−0.724894 + 0.688861i \(0.758111\pi\)
\(548\) −5198.31 −0.405221
\(549\) 16009.3 1.24456
\(550\) 508.133 0.0393943
\(551\) −2428.21 −0.187741
\(552\) 0 0
\(553\) 2503.66 0.192525
\(554\) 1664.76 0.127670
\(555\) −1530.66 −0.117068
\(556\) −13934.7 −1.06289
\(557\) −4307.03 −0.327639 −0.163819 0.986490i \(-0.552381\pi\)
−0.163819 + 0.986490i \(0.552381\pi\)
\(558\) 1455.41 0.110417
\(559\) −12173.4 −0.921073
\(560\) 13975.3 1.05458
\(561\) −681.429 −0.0512833
\(562\) 5487.69 0.411894
\(563\) 1775.12 0.132882 0.0664408 0.997790i \(-0.478836\pi\)
0.0664408 + 0.997790i \(0.478836\pi\)
\(564\) −783.100 −0.0584654
\(565\) 21113.0 1.57209
\(566\) −6811.52 −0.505847
\(567\) 21435.7 1.58768
\(568\) 13352.9 0.986398
\(569\) −3766.88 −0.277532 −0.138766 0.990325i \(-0.544314\pi\)
−0.138766 + 0.990325i \(0.544314\pi\)
\(570\) −207.826 −0.0152717
\(571\) 9128.39 0.669022 0.334511 0.942392i \(-0.391429\pi\)
0.334511 + 0.942392i \(0.391429\pi\)
\(572\) −17130.3 −1.25219
\(573\) −1875.40 −0.136729
\(574\) −9853.38 −0.716502
\(575\) 0 0
\(576\) 5600.52 0.405130
\(577\) −6763.76 −0.488005 −0.244003 0.969775i \(-0.578461\pi\)
−0.244003 + 0.969775i \(0.578461\pi\)
\(578\) −3316.47 −0.238662
\(579\) −1539.10 −0.110471
\(580\) −4312.18 −0.308713
\(581\) −2149.53 −0.153490
\(582\) −692.149 −0.0492964
\(583\) 5350.36 0.380084
\(584\) 5878.64 0.416541
\(585\) 18321.1 1.29485
\(586\) 1452.39 0.102385
\(587\) −3956.59 −0.278204 −0.139102 0.990278i \(-0.544422\pi\)
−0.139102 + 0.990278i \(0.544422\pi\)
\(588\) −2064.34 −0.144782
\(589\) 2468.70 0.172701
\(590\) −7810.86 −0.545031
\(591\) 2256.33 0.157044
\(592\) −12705.7 −0.882096
\(593\) 1784.21 0.123556 0.0617779 0.998090i \(-0.480323\pi\)
0.0617779 + 0.998090i \(0.480323\pi\)
\(594\) 928.188 0.0641145
\(595\) 11647.5 0.802521
\(596\) −10325.6 −0.709652
\(597\) 2616.96 0.179406
\(598\) 0 0
\(599\) −21692.8 −1.47970 −0.739851 0.672771i \(-0.765104\pi\)
−0.739851 + 0.672771i \(0.765104\pi\)
\(600\) 105.649 0.00718852
\(601\) 2781.39 0.188777 0.0943886 0.995535i \(-0.469910\pi\)
0.0943886 + 0.995535i \(0.469910\pi\)
\(602\) 5245.77 0.355153
\(603\) −11104.2 −0.749913
\(604\) −2545.96 −0.171513
\(605\) 225.567 0.0151580
\(606\) 268.565 0.0180029
\(607\) −24744.7 −1.65462 −0.827312 0.561743i \(-0.810131\pi\)
−0.827312 + 0.561743i \(0.810131\pi\)
\(608\) −6471.74 −0.431684
\(609\) 880.227 0.0585691
\(610\) −5839.58 −0.387603
\(611\) −14179.7 −0.938871
\(612\) 6999.89 0.462343
\(613\) 8345.37 0.549863 0.274932 0.961464i \(-0.411345\pi\)
0.274932 + 0.961464i \(0.411345\pi\)
\(614\) −543.465 −0.0357206
\(615\) −1857.18 −0.121770
\(616\) 15657.5 1.02412
\(617\) 15792.2 1.03042 0.515211 0.857064i \(-0.327714\pi\)
0.515211 + 0.857064i \(0.327714\pi\)
\(618\) 119.994 0.00781044
\(619\) −19030.0 −1.23567 −0.617835 0.786308i \(-0.711990\pi\)
−0.617835 + 0.786308i \(0.711990\pi\)
\(620\) 4384.08 0.283982
\(621\) 0 0
\(622\) 2178.54 0.140436
\(623\) −22308.9 −1.43465
\(624\) −1451.21 −0.0931008
\(625\) −13546.1 −0.866951
\(626\) 3256.54 0.207919
\(627\) 783.466 0.0499021
\(628\) 16849.1 1.07062
\(629\) −10589.3 −0.671263
\(630\) −7894.96 −0.499274
\(631\) −4214.18 −0.265870 −0.132935 0.991125i \(-0.542440\pi\)
−0.132935 + 0.991125i \(0.542440\pi\)
\(632\) −1164.14 −0.0732703
\(633\) 2107.15 0.132309
\(634\) −271.290 −0.0169941
\(635\) −5634.82 −0.352144
\(636\) 524.460 0.0326984
\(637\) −37379.3 −2.32499
\(638\) −1968.49 −0.122153
\(639\) 25381.8 1.57135
\(640\) −14927.5 −0.921972
\(641\) −26926.4 −1.65917 −0.829587 0.558378i \(-0.811424\pi\)
−0.829587 + 0.558378i \(0.811424\pi\)
\(642\) 325.911 0.0200354
\(643\) 4923.29 0.301953 0.150976 0.988537i \(-0.451758\pi\)
0.150976 + 0.988537i \(0.451758\pi\)
\(644\) 0 0
\(645\) 988.731 0.0603585
\(646\) −1437.77 −0.0875672
\(647\) −2007.97 −0.122011 −0.0610057 0.998137i \(-0.519431\pi\)
−0.0610057 + 0.998137i \(0.519431\pi\)
\(648\) −9967.02 −0.604231
\(649\) 29445.5 1.78095
\(650\) 901.898 0.0544236
\(651\) −894.903 −0.0538771
\(652\) −6456.46 −0.387814
\(653\) 9349.83 0.560317 0.280158 0.959954i \(-0.409613\pi\)
0.280158 + 0.959954i \(0.409613\pi\)
\(654\) 76.1721 0.00455438
\(655\) 5728.87 0.341749
\(656\) −15416.0 −0.917524
\(657\) 11174.4 0.663555
\(658\) 6110.34 0.362015
\(659\) −26550.3 −1.56943 −0.784715 0.619857i \(-0.787191\pi\)
−0.784715 + 0.619857i \(0.787191\pi\)
\(660\) 1391.33 0.0820568
\(661\) 21621.2 1.27226 0.636132 0.771580i \(-0.280533\pi\)
0.636132 + 0.771580i \(0.280533\pi\)
\(662\) −1974.98 −0.115951
\(663\) −1209.49 −0.0708484
\(664\) 999.477 0.0584145
\(665\) −13391.6 −0.780907
\(666\) 7177.73 0.417615
\(667\) 0 0
\(668\) 2593.77 0.150234
\(669\) −1521.29 −0.0879169
\(670\) 4050.38 0.233552
\(671\) 22014.1 1.26654
\(672\) 2346.01 0.134671
\(673\) −15816.8 −0.905931 −0.452966 0.891528i \(-0.649634\pi\)
−0.452966 + 0.891528i \(0.649634\pi\)
\(674\) −246.070 −0.0140627
\(675\) 403.563 0.0230121
\(676\) −14727.4 −0.837926
\(677\) 2288.74 0.129931 0.0649656 0.997888i \(-0.479306\pi\)
0.0649656 + 0.997888i \(0.479306\pi\)
\(678\) 944.750 0.0535146
\(679\) −44599.5 −2.52073
\(680\) −5415.77 −0.305419
\(681\) −183.817 −0.0103434
\(682\) 2001.31 0.112367
\(683\) 19860.7 1.11266 0.556330 0.830961i \(-0.312209\pi\)
0.556330 + 0.830961i \(0.312209\pi\)
\(684\) −8048.06 −0.449891
\(685\) 7645.03 0.426426
\(686\) 6459.46 0.359509
\(687\) 2343.08 0.130122
\(688\) 8207.25 0.454794
\(689\) 9496.49 0.525091
\(690\) 0 0
\(691\) −11436.4 −0.629609 −0.314804 0.949157i \(-0.601939\pi\)
−0.314804 + 0.949157i \(0.601939\pi\)
\(692\) 2880.50 0.158237
\(693\) 29762.5 1.63143
\(694\) 1191.30 0.0651599
\(695\) 20493.5 1.11851
\(696\) −409.282 −0.0222900
\(697\) −12848.2 −0.698223
\(698\) 8092.25 0.438820
\(699\) −3243.54 −0.175511
\(700\) 3209.50 0.173297
\(701\) −19366.2 −1.04344 −0.521721 0.853116i \(-0.674710\pi\)
−0.521721 + 0.853116i \(0.674710\pi\)
\(702\) 1647.46 0.0885749
\(703\) 12175.0 0.653184
\(704\) 7701.17 0.412285
\(705\) 1151.69 0.0615248
\(706\) −4610.70 −0.245788
\(707\) 17305.4 0.920560
\(708\) 2886.35 0.153214
\(709\) 9108.02 0.482453 0.241226 0.970469i \(-0.422450\pi\)
0.241226 + 0.970469i \(0.422450\pi\)
\(710\) −9258.31 −0.489378
\(711\) −2212.85 −0.116721
\(712\) 10373.0 0.545991
\(713\) 0 0
\(714\) 521.193 0.0273181
\(715\) 25193.1 1.31772
\(716\) −25202.0 −1.31542
\(717\) −627.421 −0.0326799
\(718\) −8732.54 −0.453893
\(719\) −3320.22 −0.172216 −0.0861079 0.996286i \(-0.527443\pi\)
−0.0861079 + 0.996286i \(0.527443\pi\)
\(720\) −12352.0 −0.639351
\(721\) 7731.96 0.399380
\(722\) −4722.87 −0.243444
\(723\) 151.330 0.00778425
\(724\) 2669.72 0.137043
\(725\) −855.874 −0.0438432
\(726\) 10.0935 0.000515984 0
\(727\) 31049.1 1.58397 0.791986 0.610539i \(-0.209047\pi\)
0.791986 + 0.610539i \(0.209047\pi\)
\(728\) 27790.8 1.41483
\(729\) −18575.5 −0.943733
\(730\) −4076.00 −0.206657
\(731\) 6840.18 0.346092
\(732\) 2157.90 0.108959
\(733\) 26190.8 1.31975 0.659876 0.751374i \(-0.270609\pi\)
0.659876 + 0.751374i \(0.270609\pi\)
\(734\) −3307.40 −0.166319
\(735\) 3035.97 0.152358
\(736\) 0 0
\(737\) −15269.2 −0.763157
\(738\) 8708.87 0.434387
\(739\) −29002.9 −1.44369 −0.721847 0.692053i \(-0.756707\pi\)
−0.721847 + 0.692053i \(0.756707\pi\)
\(740\) 21621.1 1.07407
\(741\) 1390.59 0.0689403
\(742\) −4092.24 −0.202467
\(743\) 8442.89 0.416877 0.208439 0.978035i \(-0.433162\pi\)
0.208439 + 0.978035i \(0.433162\pi\)
\(744\) 416.106 0.0205043
\(745\) 15185.6 0.746787
\(746\) −1892.78 −0.0928947
\(747\) 1899.86 0.0930550
\(748\) 9625.42 0.470509
\(749\) 21000.5 1.02449
\(750\) −689.290 −0.0335591
\(751\) 10264.8 0.498758 0.249379 0.968406i \(-0.419774\pi\)
0.249379 + 0.968406i \(0.419774\pi\)
\(752\) 9559.90 0.463582
\(753\) −1757.15 −0.0850385
\(754\) −3493.93 −0.168755
\(755\) 3744.29 0.180488
\(756\) 5862.69 0.282042
\(757\) −16443.5 −0.789499 −0.394749 0.918789i \(-0.629169\pi\)
−0.394749 + 0.918789i \(0.629169\pi\)
\(758\) 6451.84 0.309158
\(759\) 0 0
\(760\) 6226.73 0.297194
\(761\) 768.989 0.0366305 0.0183153 0.999832i \(-0.494170\pi\)
0.0183153 + 0.999832i \(0.494170\pi\)
\(762\) −252.143 −0.0119871
\(763\) 4908.25 0.232884
\(764\) 26490.7 1.25445
\(765\) −10294.6 −0.486537
\(766\) −5780.80 −0.272675
\(767\) 52263.5 2.46040
\(768\) 178.342 0.00837936
\(769\) 36463.7 1.70990 0.854951 0.518709i \(-0.173587\pi\)
0.854951 + 0.518709i \(0.173587\pi\)
\(770\) −10856.2 −0.508092
\(771\) −1600.69 −0.0747698
\(772\) 21740.3 1.01354
\(773\) −23350.4 −1.08649 −0.543244 0.839575i \(-0.682804\pi\)
−0.543244 + 0.839575i \(0.682804\pi\)
\(774\) −4636.46 −0.215315
\(775\) 870.143 0.0403309
\(776\) 20737.6 0.959326
\(777\) −4413.43 −0.203772
\(778\) −1393.19 −0.0642010
\(779\) 14772.1 0.679418
\(780\) 2469.51 0.113362
\(781\) 34902.1 1.59910
\(782\) 0 0
\(783\) −1563.39 −0.0713552
\(784\) 25200.9 1.14800
\(785\) −24779.5 −1.12665
\(786\) 256.351 0.0116333
\(787\) −26050.4 −1.17992 −0.589959 0.807433i \(-0.700856\pi\)
−0.589959 + 0.807433i \(0.700856\pi\)
\(788\) −31871.5 −1.44083
\(789\) 3228.76 0.145687
\(790\) 807.162 0.0363513
\(791\) 60876.3 2.73642
\(792\) −13838.8 −0.620883
\(793\) 39073.4 1.74973
\(794\) 10209.5 0.456324
\(795\) −771.311 −0.0344095
\(796\) −36965.6 −1.64599
\(797\) −1255.25 −0.0557880 −0.0278940 0.999611i \(-0.508880\pi\)
−0.0278940 + 0.999611i \(0.508880\pi\)
\(798\) −599.236 −0.0265824
\(799\) 7967.53 0.352780
\(800\) −2281.10 −0.100811
\(801\) 19717.6 0.869771
\(802\) −3213.35 −0.141481
\(803\) 15365.7 0.675274
\(804\) −1496.74 −0.0656540
\(805\) 0 0
\(806\) 3552.18 0.155236
\(807\) 2739.37 0.119493
\(808\) −8046.54 −0.350342
\(809\) −36116.2 −1.56956 −0.784782 0.619772i \(-0.787225\pi\)
−0.784782 + 0.619772i \(0.787225\pi\)
\(810\) 6910.71 0.299775
\(811\) 2736.30 0.118476 0.0592382 0.998244i \(-0.481133\pi\)
0.0592382 + 0.998244i \(0.481133\pi\)
\(812\) −12433.5 −0.537354
\(813\) 873.049 0.0376620
\(814\) 9869.96 0.424990
\(815\) 9495.35 0.408108
\(816\) 815.429 0.0349825
\(817\) −7864.44 −0.336771
\(818\) 10662.9 0.455769
\(819\) 52826.3 2.25384
\(820\) 26233.3 1.11720
\(821\) 39943.7 1.69798 0.848991 0.528407i \(-0.177211\pi\)
0.848991 + 0.528407i \(0.177211\pi\)
\(822\) 342.094 0.0145157
\(823\) 22498.7 0.952925 0.476462 0.879195i \(-0.341919\pi\)
0.476462 + 0.879195i \(0.341919\pi\)
\(824\) −3595.16 −0.151994
\(825\) 276.149 0.0116537
\(826\) −22521.5 −0.948694
\(827\) 1455.02 0.0611802 0.0305901 0.999532i \(-0.490261\pi\)
0.0305901 + 0.999532i \(0.490261\pi\)
\(828\) 0 0
\(829\) 26124.8 1.09451 0.547257 0.836964i \(-0.315672\pi\)
0.547257 + 0.836964i \(0.315672\pi\)
\(830\) −692.994 −0.0289809
\(831\) 904.729 0.0377674
\(832\) 13669.0 0.569577
\(833\) 21003.3 0.873613
\(834\) 917.027 0.0380744
\(835\) −3814.59 −0.158095
\(836\) −11066.7 −0.457836
\(837\) 1589.46 0.0656389
\(838\) −4180.54 −0.172332
\(839\) −22967.6 −0.945090 −0.472545 0.881307i \(-0.656665\pi\)
−0.472545 + 0.881307i \(0.656665\pi\)
\(840\) −2257.19 −0.0927148
\(841\) −21073.4 −0.864052
\(842\) 3632.77 0.148686
\(843\) 2982.33 0.121847
\(844\) −29764.3 −1.21390
\(845\) 21659.2 0.881775
\(846\) −5400.60 −0.219476
\(847\) 650.388 0.0263844
\(848\) −6402.49 −0.259272
\(849\) −3701.78 −0.149640
\(850\) −506.773 −0.0204496
\(851\) 0 0
\(852\) 3421.22 0.137569
\(853\) −30675.1 −1.23130 −0.615648 0.788021i \(-0.711106\pi\)
−0.615648 + 0.788021i \(0.711106\pi\)
\(854\) −16837.6 −0.674672
\(855\) 11836.1 0.473433
\(856\) −9764.70 −0.389895
\(857\) 10501.3 0.418573 0.209287 0.977854i \(-0.432886\pi\)
0.209287 + 0.977854i \(0.432886\pi\)
\(858\) 1127.32 0.0448556
\(859\) −6550.81 −0.260199 −0.130099 0.991501i \(-0.541530\pi\)
−0.130099 + 0.991501i \(0.541530\pi\)
\(860\) −13966.2 −0.553771
\(861\) −5354.90 −0.211956
\(862\) −9819.47 −0.387996
\(863\) −35060.1 −1.38292 −0.691461 0.722414i \(-0.743032\pi\)
−0.691461 + 0.722414i \(0.743032\pi\)
\(864\) −4166.80 −0.164071
\(865\) −4236.28 −0.166518
\(866\) −5347.22 −0.209822
\(867\) −1802.36 −0.0706013
\(868\) 12640.8 0.494306
\(869\) −3042.85 −0.118782
\(870\) 283.779 0.0110586
\(871\) −27101.6 −1.05431
\(872\) −2282.21 −0.0886299
\(873\) 39419.1 1.52822
\(874\) 0 0
\(875\) −44415.3 −1.71601
\(876\) 1506.20 0.0580934
\(877\) 18548.2 0.714172 0.357086 0.934071i \(-0.383770\pi\)
0.357086 + 0.934071i \(0.383770\pi\)
\(878\) 5689.01 0.218673
\(879\) 789.314 0.0302877
\(880\) −16985.0 −0.650642
\(881\) 38133.3 1.45828 0.729140 0.684365i \(-0.239920\pi\)
0.729140 + 0.684365i \(0.239920\pi\)
\(882\) −14236.6 −0.543503
\(883\) −41211.3 −1.57064 −0.785318 0.619092i \(-0.787501\pi\)
−0.785318 + 0.619092i \(0.787501\pi\)
\(884\) 17084.4 0.650013
\(885\) −4244.88 −0.161232
\(886\) 391.680 0.0148518
\(887\) −11653.4 −0.441130 −0.220565 0.975372i \(-0.570790\pi\)
−0.220565 + 0.975372i \(0.570790\pi\)
\(888\) 2052.13 0.0775506
\(889\) −16247.2 −0.612950
\(890\) −7192.22 −0.270881
\(891\) −26052.1 −0.979547
\(892\) 21488.8 0.806611
\(893\) −9160.59 −0.343278
\(894\) 679.513 0.0254209
\(895\) 37063.9 1.38426
\(896\) −43041.3 −1.60481
\(897\) 0 0
\(898\) 81.5197 0.00302934
\(899\) −3370.91 −0.125057
\(900\) −2836.71 −0.105063
\(901\) −5336.04 −0.197302
\(902\) 11975.4 0.442059
\(903\) 2850.86 0.105062
\(904\) −28305.9 −1.04141
\(905\) −3926.29 −0.144215
\(906\) 167.547 0.00614389
\(907\) −5172.81 −0.189372 −0.0946860 0.995507i \(-0.530185\pi\)
−0.0946860 + 0.995507i \(0.530185\pi\)
\(908\) 2596.48 0.0948978
\(909\) −15295.3 −0.558100
\(910\) −19269.0 −0.701935
\(911\) 24937.2 0.906922 0.453461 0.891276i \(-0.350189\pi\)
0.453461 + 0.891276i \(0.350189\pi\)
\(912\) −937.532 −0.0340403
\(913\) 2612.46 0.0946985
\(914\) −10157.2 −0.367581
\(915\) −3173.57 −0.114661
\(916\) −33096.8 −1.19383
\(917\) 16518.3 0.594856
\(918\) −925.704 −0.0332819
\(919\) −3145.70 −0.112913 −0.0564564 0.998405i \(-0.517980\pi\)
−0.0564564 + 0.998405i \(0.517980\pi\)
\(920\) 0 0
\(921\) −295.350 −0.0105669
\(922\) 15180.5 0.542238
\(923\) 61948.6 2.20917
\(924\) 4011.69 0.142830
\(925\) 4291.32 0.152538
\(926\) 10154.7 0.360372
\(927\) −6833.86 −0.242129
\(928\) 8836.92 0.312593
\(929\) −43571.3 −1.53878 −0.769391 0.638778i \(-0.779440\pi\)
−0.769391 + 0.638778i \(0.779440\pi\)
\(930\) −288.510 −0.0101727
\(931\) −24148.3 −0.850084
\(932\) 45816.2 1.61026
\(933\) 1183.94 0.0415441
\(934\) 2221.20 0.0778156
\(935\) −14155.9 −0.495130
\(936\) −24562.8 −0.857757
\(937\) 5850.96 0.203994 0.101997 0.994785i \(-0.467477\pi\)
0.101997 + 0.994785i \(0.467477\pi\)
\(938\) 11678.7 0.406527
\(939\) 1769.79 0.0615069
\(940\) −16268.0 −0.564471
\(941\) −52094.7 −1.80472 −0.902358 0.430986i \(-0.858166\pi\)
−0.902358 + 0.430986i \(0.858166\pi\)
\(942\) −1108.82 −0.0383516
\(943\) 0 0
\(944\) −35235.8 −1.21486
\(945\) −8622.11 −0.296801
\(946\) −6375.50 −0.219118
\(947\) −25167.2 −0.863596 −0.431798 0.901970i \(-0.642121\pi\)
−0.431798 + 0.901970i \(0.642121\pi\)
\(948\) −298.270 −0.0102187
\(949\) 27273.1 0.932899
\(950\) 582.657 0.0198988
\(951\) −147.435 −0.00502723
\(952\) −15615.6 −0.531621
\(953\) −18123.4 −0.616028 −0.308014 0.951382i \(-0.599664\pi\)
−0.308014 + 0.951382i \(0.599664\pi\)
\(954\) 3616.91 0.122748
\(955\) −38959.2 −1.32009
\(956\) 8862.55 0.299828
\(957\) −1069.79 −0.0361353
\(958\) −8348.58 −0.281556
\(959\) 22043.3 0.742247
\(960\) −1110.21 −0.0373247
\(961\) −26363.9 −0.884961
\(962\) 17518.5 0.587128
\(963\) −18561.2 −0.621109
\(964\) −2137.59 −0.0714181
\(965\) −31972.9 −1.06658
\(966\) 0 0
\(967\) 45040.1 1.49782 0.748910 0.662671i \(-0.230577\pi\)
0.748910 + 0.662671i \(0.230577\pi\)
\(968\) −302.413 −0.0100412
\(969\) −781.369 −0.0259042
\(970\) −14378.6 −0.475947
\(971\) 16722.5 0.552678 0.276339 0.961060i \(-0.410879\pi\)
0.276339 + 0.961060i \(0.410879\pi\)
\(972\) −7784.87 −0.256893
\(973\) 59089.8 1.94690
\(974\) −7886.67 −0.259451
\(975\) 490.144 0.0160997
\(976\) −26343.1 −0.863958
\(977\) 24491.0 0.801983 0.400992 0.916082i \(-0.368666\pi\)
0.400992 + 0.916082i \(0.368666\pi\)
\(978\) 424.891 0.0138921
\(979\) 27113.3 0.885132
\(980\) −42884.1 −1.39784
\(981\) −4338.13 −0.141189
\(982\) −1320.98 −0.0429270
\(983\) −43577.9 −1.41396 −0.706979 0.707235i \(-0.749942\pi\)
−0.706979 + 0.707235i \(0.749942\pi\)
\(984\) 2489.89 0.0806653
\(985\) 46872.7 1.51623
\(986\) 1963.22 0.0634095
\(987\) 3320.72 0.107092
\(988\) −19642.6 −0.632506
\(989\) 0 0
\(990\) 9595.22 0.308037
\(991\) −29438.9 −0.943651 −0.471825 0.881692i \(-0.656405\pi\)
−0.471825 + 0.881692i \(0.656405\pi\)
\(992\) −8984.25 −0.287551
\(993\) −1073.32 −0.0343008
\(994\) −26695.0 −0.851824
\(995\) 54364.4 1.73213
\(996\) 256.082 0.00814686
\(997\) −55586.4 −1.76574 −0.882868 0.469621i \(-0.844390\pi\)
−0.882868 + 0.469621i \(0.844390\pi\)
\(998\) 5626.75 0.178469
\(999\) 7838.81 0.248257
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 529.4.a.m.1.14 25
23.7 odd 22 23.4.c.a.3.2 50
23.10 odd 22 23.4.c.a.8.2 yes 50
23.22 odd 2 529.4.a.n.1.14 25
69.53 even 22 207.4.i.a.118.4 50
69.56 even 22 207.4.i.a.100.4 50
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
23.4.c.a.3.2 50 23.7 odd 22
23.4.c.a.8.2 yes 50 23.10 odd 22
207.4.i.a.100.4 50 69.56 even 22
207.4.i.a.118.4 50 69.53 even 22
529.4.a.m.1.14 25 1.1 even 1 trivial
529.4.a.n.1.14 25 23.22 odd 2