Properties

Label 529.4.a.m.1.13
Level $529$
Weight $4$
Character 529.1
Self dual yes
Analytic conductor $31.212$
Analytic rank $1$
Dimension $25$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [529,4,Mod(1,529)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(529, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("529.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 529 = 23^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 529.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(31.2120103930\)
Analytic rank: \(1\)
Dimension: \(25\)
Twist minimal: no (minimal twist has level 23)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.13
Character \(\chi\) \(=\) 529.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-0.198677 q^{2} -8.81112 q^{3} -7.96053 q^{4} -10.0672 q^{5} +1.75056 q^{6} -25.3475 q^{7} +3.17098 q^{8} +50.6358 q^{9} +2.00012 q^{10} +14.1537 q^{11} +70.1411 q^{12} -4.58325 q^{13} +5.03595 q^{14} +88.7033 q^{15} +63.0542 q^{16} +102.166 q^{17} -10.0601 q^{18} -69.2898 q^{19} +80.1402 q^{20} +223.340 q^{21} -2.81201 q^{22} -27.9399 q^{24} -23.6515 q^{25} +0.910585 q^{26} -208.258 q^{27} +201.779 q^{28} +210.883 q^{29} -17.6233 q^{30} -282.393 q^{31} -37.8953 q^{32} -124.710 q^{33} -20.2979 q^{34} +255.178 q^{35} -403.088 q^{36} +174.114 q^{37} +13.7663 q^{38} +40.3836 q^{39} -31.9229 q^{40} +102.177 q^{41} -44.3724 q^{42} -128.557 q^{43} -112.671 q^{44} -509.761 q^{45} +130.950 q^{47} -555.578 q^{48} +299.495 q^{49} +4.69900 q^{50} -900.193 q^{51} +36.4851 q^{52} +96.8973 q^{53} +41.3759 q^{54} -142.488 q^{55} -80.3765 q^{56} +610.521 q^{57} -41.8975 q^{58} +276.358 q^{59} -706.125 q^{60} -458.018 q^{61} +56.1050 q^{62} -1283.49 q^{63} -496.905 q^{64} +46.1405 q^{65} +24.7770 q^{66} +350.178 q^{67} -813.292 q^{68} -50.6980 q^{70} +765.951 q^{71} +160.565 q^{72} +906.125 q^{73} -34.5925 q^{74} +208.396 q^{75} +551.584 q^{76} -358.761 q^{77} -8.02327 q^{78} -448.567 q^{79} -634.779 q^{80} +467.817 q^{81} -20.3002 q^{82} -430.462 q^{83} -1777.90 q^{84} -1028.52 q^{85} +25.5413 q^{86} -1858.11 q^{87} +44.8812 q^{88} +334.558 q^{89} +101.278 q^{90} +116.174 q^{91} +2488.20 q^{93} -26.0168 q^{94} +697.554 q^{95} +333.900 q^{96} -851.130 q^{97} -59.5027 q^{98} +716.685 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 25 q - q^{3} + 80 q^{4} - 51 q^{5} + 86 q^{6} - 73 q^{7} + 3 q^{8} + 166 q^{9} - 139 q^{10} - 221 q^{11} - 191 q^{12} - 27 q^{13} - 372 q^{14} - 310 q^{15} + 152 q^{16} - 365 q^{17} - 538 q^{18} - 405 q^{19}+ \cdots - 7317 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.198677 −0.0702428 −0.0351214 0.999383i \(-0.511182\pi\)
−0.0351214 + 0.999383i \(0.511182\pi\)
\(3\) −8.81112 −1.69570 −0.847850 0.530236i \(-0.822103\pi\)
−0.847850 + 0.530236i \(0.822103\pi\)
\(4\) −7.96053 −0.995066
\(5\) −10.0672 −0.900438 −0.450219 0.892918i \(-0.648654\pi\)
−0.450219 + 0.892918i \(0.648654\pi\)
\(6\) 1.75056 0.119111
\(7\) −25.3475 −1.36864 −0.684318 0.729184i \(-0.739900\pi\)
−0.684318 + 0.729184i \(0.739900\pi\)
\(8\) 3.17098 0.140139
\(9\) 50.6358 1.87540
\(10\) 2.00012 0.0632493
\(11\) 14.1537 0.387955 0.193978 0.981006i \(-0.437861\pi\)
0.193978 + 0.981006i \(0.437861\pi\)
\(12\) 70.1411 1.68733
\(13\) −4.58325 −0.0977820 −0.0488910 0.998804i \(-0.515569\pi\)
−0.0488910 + 0.998804i \(0.515569\pi\)
\(14\) 5.03595 0.0961368
\(15\) 88.7033 1.52687
\(16\) 63.0542 0.985222
\(17\) 102.166 1.45758 0.728788 0.684739i \(-0.240084\pi\)
0.728788 + 0.684739i \(0.240084\pi\)
\(18\) −10.0601 −0.131733
\(19\) −69.2898 −0.836641 −0.418320 0.908300i \(-0.637381\pi\)
−0.418320 + 0.908300i \(0.637381\pi\)
\(20\) 80.1402 0.895995
\(21\) 223.340 2.32080
\(22\) −2.81201 −0.0272511
\(23\) 0 0
\(24\) −27.9399 −0.237634
\(25\) −23.6515 −0.189212
\(26\) 0.910585 0.00686848
\(27\) −208.258 −1.48442
\(28\) 201.779 1.36188
\(29\) 210.883 1.35034 0.675172 0.737661i \(-0.264070\pi\)
0.675172 + 0.737661i \(0.264070\pi\)
\(30\) −17.6233 −0.107252
\(31\) −282.393 −1.63611 −0.818054 0.575141i \(-0.804947\pi\)
−0.818054 + 0.575141i \(0.804947\pi\)
\(32\) −37.8953 −0.209344
\(33\) −124.710 −0.657856
\(34\) −20.2979 −0.102384
\(35\) 255.178 1.23237
\(36\) −403.088 −1.86615
\(37\) 174.114 0.773628 0.386814 0.922158i \(-0.373576\pi\)
0.386814 + 0.922158i \(0.373576\pi\)
\(38\) 13.7663 0.0587680
\(39\) 40.3836 0.165809
\(40\) −31.9229 −0.126186
\(41\) 102.177 0.389204 0.194602 0.980882i \(-0.437659\pi\)
0.194602 + 0.980882i \(0.437659\pi\)
\(42\) −44.3724 −0.163019
\(43\) −128.557 −0.455925 −0.227962 0.973670i \(-0.573206\pi\)
−0.227962 + 0.973670i \(0.573206\pi\)
\(44\) −112.671 −0.386041
\(45\) −509.761 −1.68868
\(46\) 0 0
\(47\) 130.950 0.406406 0.203203 0.979137i \(-0.434865\pi\)
0.203203 + 0.979137i \(0.434865\pi\)
\(48\) −555.578 −1.67064
\(49\) 299.495 0.873164
\(50\) 4.69900 0.0132908
\(51\) −900.193 −2.47161
\(52\) 36.4851 0.0972995
\(53\) 96.8973 0.251130 0.125565 0.992085i \(-0.459926\pi\)
0.125565 + 0.992085i \(0.459926\pi\)
\(54\) 41.3759 0.104270
\(55\) −142.488 −0.349329
\(56\) −80.3765 −0.191799
\(57\) 610.521 1.41869
\(58\) −41.8975 −0.0948519
\(59\) 276.358 0.609810 0.304905 0.952383i \(-0.401375\pi\)
0.304905 + 0.952383i \(0.401375\pi\)
\(60\) −706.125 −1.51934
\(61\) −458.018 −0.961364 −0.480682 0.876895i \(-0.659611\pi\)
−0.480682 + 0.876895i \(0.659611\pi\)
\(62\) 56.1050 0.114925
\(63\) −1283.49 −2.56674
\(64\) −496.905 −0.970517
\(65\) 46.1405 0.0880466
\(66\) 24.7770 0.0462096
\(67\) 350.178 0.638523 0.319262 0.947667i \(-0.396565\pi\)
0.319262 + 0.947667i \(0.396565\pi\)
\(68\) −813.292 −1.45038
\(69\) 0 0
\(70\) −50.6980 −0.0865652
\(71\) 765.951 1.28030 0.640152 0.768248i \(-0.278871\pi\)
0.640152 + 0.768248i \(0.278871\pi\)
\(72\) 160.565 0.262817
\(73\) 906.125 1.45279 0.726397 0.687276i \(-0.241194\pi\)
0.726397 + 0.687276i \(0.241194\pi\)
\(74\) −34.5925 −0.0543418
\(75\) 208.396 0.320847
\(76\) 551.584 0.832513
\(77\) −358.761 −0.530969
\(78\) −8.02327 −0.0116469
\(79\) −448.567 −0.638832 −0.319416 0.947615i \(-0.603487\pi\)
−0.319416 + 0.947615i \(0.603487\pi\)
\(80\) −634.779 −0.887131
\(81\) 467.817 0.641724
\(82\) −20.3002 −0.0273387
\(83\) −430.462 −0.569269 −0.284634 0.958636i \(-0.591872\pi\)
−0.284634 + 0.958636i \(0.591872\pi\)
\(84\) −1777.90 −2.30935
\(85\) −1028.52 −1.31246
\(86\) 25.5413 0.0320254
\(87\) −1858.11 −2.28978
\(88\) 44.8812 0.0543676
\(89\) 334.558 0.398461 0.199231 0.979953i \(-0.436156\pi\)
0.199231 + 0.979953i \(0.436156\pi\)
\(90\) 101.278 0.118618
\(91\) 116.174 0.133828
\(92\) 0 0
\(93\) 2488.20 2.77435
\(94\) −26.0168 −0.0285471
\(95\) 697.554 0.753343
\(96\) 333.900 0.354984
\(97\) −851.130 −0.890919 −0.445460 0.895302i \(-0.646960\pi\)
−0.445460 + 0.895302i \(0.646960\pi\)
\(98\) −59.5027 −0.0613335
\(99\) 716.685 0.727571
\(100\) 188.278 0.188278
\(101\) −144.338 −0.142200 −0.0710998 0.997469i \(-0.522651\pi\)
−0.0710998 + 0.997469i \(0.522651\pi\)
\(102\) 178.847 0.173613
\(103\) −491.302 −0.469994 −0.234997 0.971996i \(-0.575508\pi\)
−0.234997 + 0.971996i \(0.575508\pi\)
\(104\) −14.5334 −0.0137031
\(105\) −2248.41 −2.08973
\(106\) −19.2512 −0.0176400
\(107\) 426.627 0.385455 0.192727 0.981252i \(-0.438267\pi\)
0.192727 + 0.981252i \(0.438267\pi\)
\(108\) 1657.84 1.47709
\(109\) −507.283 −0.445769 −0.222885 0.974845i \(-0.571547\pi\)
−0.222885 + 0.974845i \(0.571547\pi\)
\(110\) 28.3091 0.0245379
\(111\) −1534.14 −1.31184
\(112\) −1598.27 −1.34841
\(113\) 1242.42 1.03431 0.517155 0.855892i \(-0.326991\pi\)
0.517155 + 0.855892i \(0.326991\pi\)
\(114\) −121.296 −0.0996529
\(115\) 0 0
\(116\) −1678.74 −1.34368
\(117\) −232.077 −0.183380
\(118\) −54.9059 −0.0428348
\(119\) −2589.64 −1.99489
\(120\) 281.277 0.213974
\(121\) −1130.67 −0.849491
\(122\) 90.9975 0.0675289
\(123\) −900.292 −0.659973
\(124\) 2248.00 1.62804
\(125\) 1496.50 1.07081
\(126\) 255.000 0.180295
\(127\) 1637.13 1.14387 0.571936 0.820298i \(-0.306193\pi\)
0.571936 + 0.820298i \(0.306193\pi\)
\(128\) 401.886 0.277516
\(129\) 1132.73 0.773112
\(130\) −9.16704 −0.00618464
\(131\) 716.603 0.477938 0.238969 0.971027i \(-0.423191\pi\)
0.238969 + 0.971027i \(0.423191\pi\)
\(132\) 992.758 0.654610
\(133\) 1756.32 1.14506
\(134\) −69.5722 −0.0448517
\(135\) 2096.57 1.33662
\(136\) 323.965 0.204263
\(137\) −1582.55 −0.986905 −0.493452 0.869773i \(-0.664265\pi\)
−0.493452 + 0.869773i \(0.664265\pi\)
\(138\) 0 0
\(139\) −1194.38 −0.728822 −0.364411 0.931238i \(-0.618730\pi\)
−0.364411 + 0.931238i \(0.618730\pi\)
\(140\) −2031.35 −1.22629
\(141\) −1153.82 −0.689143
\(142\) −152.176 −0.0899322
\(143\) −64.8700 −0.0379350
\(144\) 3192.80 1.84769
\(145\) −2123.00 −1.21590
\(146\) −180.026 −0.102048
\(147\) −2638.89 −1.48062
\(148\) −1386.04 −0.769811
\(149\) 1057.27 0.581306 0.290653 0.956829i \(-0.406128\pi\)
0.290653 + 0.956829i \(0.406128\pi\)
\(150\) −41.4034 −0.0225372
\(151\) 1115.00 0.600909 0.300454 0.953796i \(-0.402862\pi\)
0.300454 + 0.953796i \(0.402862\pi\)
\(152\) −219.717 −0.117246
\(153\) 5173.24 2.73354
\(154\) 71.2775 0.0372968
\(155\) 2842.91 1.47321
\(156\) −321.475 −0.164991
\(157\) 1161.37 0.590365 0.295182 0.955441i \(-0.404620\pi\)
0.295182 + 0.955441i \(0.404620\pi\)
\(158\) 89.1197 0.0448733
\(159\) −853.774 −0.425841
\(160\) 381.499 0.188501
\(161\) 0 0
\(162\) −92.9443 −0.0450765
\(163\) 1603.29 0.770428 0.385214 0.922827i \(-0.374128\pi\)
0.385214 + 0.922827i \(0.374128\pi\)
\(164\) −813.382 −0.387283
\(165\) 1255.48 0.592358
\(166\) 85.5227 0.0399870
\(167\) 1325.30 0.614102 0.307051 0.951693i \(-0.400658\pi\)
0.307051 + 0.951693i \(0.400658\pi\)
\(168\) 708.207 0.325234
\(169\) −2175.99 −0.990439
\(170\) 204.343 0.0921906
\(171\) −3508.54 −1.56904
\(172\) 1023.38 0.453675
\(173\) 1133.69 0.498226 0.249113 0.968474i \(-0.419861\pi\)
0.249113 + 0.968474i \(0.419861\pi\)
\(174\) 369.164 0.160840
\(175\) 599.506 0.258962
\(176\) 892.451 0.382222
\(177\) −2435.02 −1.03405
\(178\) −66.4688 −0.0279890
\(179\) 4006.99 1.67316 0.836581 0.547843i \(-0.184551\pi\)
0.836581 + 0.547843i \(0.184551\pi\)
\(180\) 4057.96 1.68035
\(181\) −2791.31 −1.14628 −0.573139 0.819458i \(-0.694274\pi\)
−0.573139 + 0.819458i \(0.694274\pi\)
\(182\) −23.0810 −0.00940044
\(183\) 4035.65 1.63018
\(184\) 0 0
\(185\) −1752.85 −0.696604
\(186\) −494.348 −0.194878
\(187\) 1446.02 0.565474
\(188\) −1042.43 −0.404401
\(189\) 5278.81 2.03162
\(190\) −138.588 −0.0529169
\(191\) −3753.90 −1.42211 −0.711055 0.703137i \(-0.751782\pi\)
−0.711055 + 0.703137i \(0.751782\pi\)
\(192\) 4378.29 1.64571
\(193\) −730.043 −0.272278 −0.136139 0.990690i \(-0.543469\pi\)
−0.136139 + 0.990690i \(0.543469\pi\)
\(194\) 169.100 0.0625807
\(195\) −406.549 −0.149301
\(196\) −2384.14 −0.868855
\(197\) 2028.40 0.733591 0.366795 0.930302i \(-0.380455\pi\)
0.366795 + 0.930302i \(0.380455\pi\)
\(198\) −142.388 −0.0511066
\(199\) −3901.11 −1.38966 −0.694829 0.719175i \(-0.744520\pi\)
−0.694829 + 0.719175i \(0.744520\pi\)
\(200\) −74.9985 −0.0265160
\(201\) −3085.46 −1.08274
\(202\) 28.6766 0.00998850
\(203\) −5345.35 −1.84813
\(204\) 7166.01 2.45942
\(205\) −1028.63 −0.350454
\(206\) 97.6102 0.0330137
\(207\) 0 0
\(208\) −288.993 −0.0963370
\(209\) −980.708 −0.324579
\(210\) 446.706 0.146789
\(211\) 643.596 0.209986 0.104993 0.994473i \(-0.466518\pi\)
0.104993 + 0.994473i \(0.466518\pi\)
\(212\) −771.354 −0.249891
\(213\) −6748.88 −2.17101
\(214\) −84.7609 −0.0270754
\(215\) 1294.21 0.410532
\(216\) −660.382 −0.208025
\(217\) 7157.96 2.23924
\(218\) 100.785 0.0313121
\(219\) −7983.97 −2.46350
\(220\) 1134.28 0.347606
\(221\) −468.251 −0.142525
\(222\) 304.798 0.0921474
\(223\) 28.2177 0.00847354 0.00423677 0.999991i \(-0.498651\pi\)
0.00423677 + 0.999991i \(0.498651\pi\)
\(224\) 960.550 0.286515
\(225\) −1197.61 −0.354848
\(226\) −246.840 −0.0726528
\(227\) −6795.33 −1.98688 −0.993440 0.114351i \(-0.963521\pi\)
−0.993440 + 0.114351i \(0.963521\pi\)
\(228\) −4860.07 −1.41169
\(229\) −281.246 −0.0811583 −0.0405791 0.999176i \(-0.512920\pi\)
−0.0405791 + 0.999176i \(0.512920\pi\)
\(230\) 0 0
\(231\) 3161.09 0.900365
\(232\) 668.706 0.189236
\(233\) −1986.40 −0.558512 −0.279256 0.960217i \(-0.590088\pi\)
−0.279256 + 0.960217i \(0.590088\pi\)
\(234\) 46.1082 0.0128811
\(235\) −1318.30 −0.365943
\(236\) −2199.96 −0.606801
\(237\) 3952.37 1.08327
\(238\) 514.501 0.140127
\(239\) 4918.57 1.33120 0.665598 0.746311i \(-0.268177\pi\)
0.665598 + 0.746311i \(0.268177\pi\)
\(240\) 5593.12 1.50431
\(241\) −4781.43 −1.27800 −0.639002 0.769205i \(-0.720652\pi\)
−0.639002 + 0.769205i \(0.720652\pi\)
\(242\) 224.638 0.0596706
\(243\) 1500.97 0.396244
\(244\) 3646.06 0.956620
\(245\) −3015.08 −0.786229
\(246\) 178.867 0.0463583
\(247\) 317.573 0.0818084
\(248\) −895.465 −0.229283
\(249\) 3792.85 0.965309
\(250\) −297.320 −0.0752168
\(251\) −3375.15 −0.848755 −0.424378 0.905485i \(-0.639507\pi\)
−0.424378 + 0.905485i \(0.639507\pi\)
\(252\) 10217.3 2.55407
\(253\) 0 0
\(254\) −325.259 −0.0803487
\(255\) 9062.42 2.22553
\(256\) 3895.39 0.951024
\(257\) 7028.18 1.70586 0.852930 0.522026i \(-0.174824\pi\)
0.852930 + 0.522026i \(0.174824\pi\)
\(258\) −225.047 −0.0543055
\(259\) −4413.36 −1.05882
\(260\) −367.303 −0.0876121
\(261\) 10678.2 2.53243
\(262\) −142.372 −0.0335717
\(263\) −7926.76 −1.85850 −0.929249 0.369455i \(-0.879544\pi\)
−0.929249 + 0.369455i \(0.879544\pi\)
\(264\) −395.454 −0.0921912
\(265\) −975.485 −0.226127
\(266\) −348.940 −0.0804320
\(267\) −2947.83 −0.675671
\(268\) −2787.60 −0.635373
\(269\) −1737.10 −0.393729 −0.196864 0.980431i \(-0.563076\pi\)
−0.196864 + 0.980431i \(0.563076\pi\)
\(270\) −416.540 −0.0938882
\(271\) 993.779 0.222759 0.111380 0.993778i \(-0.464473\pi\)
0.111380 + 0.993778i \(0.464473\pi\)
\(272\) 6441.97 1.43604
\(273\) −1023.62 −0.226932
\(274\) 314.415 0.0693230
\(275\) −334.757 −0.0734057
\(276\) 0 0
\(277\) 71.1195 0.0154266 0.00771328 0.999970i \(-0.497545\pi\)
0.00771328 + 0.999970i \(0.497545\pi\)
\(278\) 237.296 0.0511945
\(279\) −14299.2 −3.06836
\(280\) 809.166 0.172703
\(281\) 4188.95 0.889294 0.444647 0.895706i \(-0.353329\pi\)
0.444647 + 0.895706i \(0.353329\pi\)
\(282\) 229.237 0.0484073
\(283\) 5653.19 1.18745 0.593723 0.804670i \(-0.297658\pi\)
0.593723 + 0.804670i \(0.297658\pi\)
\(284\) −6097.37 −1.27399
\(285\) −6146.23 −1.27744
\(286\) 12.8882 0.00266466
\(287\) −2589.93 −0.532678
\(288\) −1918.86 −0.392603
\(289\) 5524.81 1.12453
\(290\) 421.790 0.0854082
\(291\) 7499.41 1.51073
\(292\) −7213.23 −1.44562
\(293\) 9184.13 1.83120 0.915602 0.402087i \(-0.131715\pi\)
0.915602 + 0.402087i \(0.131715\pi\)
\(294\) 524.285 0.104003
\(295\) −2782.15 −0.549096
\(296\) 552.114 0.108415
\(297\) −2947.62 −0.575887
\(298\) −210.054 −0.0408325
\(299\) 0 0
\(300\) −1658.94 −0.319264
\(301\) 3258.60 0.623995
\(302\) −221.524 −0.0422095
\(303\) 1271.78 0.241128
\(304\) −4369.02 −0.824277
\(305\) 4610.96 0.865648
\(306\) −1027.80 −0.192011
\(307\) −3586.10 −0.666677 −0.333338 0.942807i \(-0.608175\pi\)
−0.333338 + 0.942807i \(0.608175\pi\)
\(308\) 2855.93 0.528349
\(309\) 4328.92 0.796969
\(310\) −564.820 −0.103483
\(311\) −4763.91 −0.868607 −0.434304 0.900767i \(-0.643005\pi\)
−0.434304 + 0.900767i \(0.643005\pi\)
\(312\) 128.056 0.0232363
\(313\) −3334.41 −0.602147 −0.301074 0.953601i \(-0.597345\pi\)
−0.301074 + 0.953601i \(0.597345\pi\)
\(314\) −230.737 −0.0414689
\(315\) 12921.2 2.31119
\(316\) 3570.83 0.635680
\(317\) −4486.63 −0.794935 −0.397467 0.917616i \(-0.630111\pi\)
−0.397467 + 0.917616i \(0.630111\pi\)
\(318\) 169.625 0.0299122
\(319\) 2984.78 0.523873
\(320\) 5002.44 0.873890
\(321\) −3759.06 −0.653615
\(322\) 0 0
\(323\) −7079.04 −1.21947
\(324\) −3724.07 −0.638558
\(325\) 108.401 0.0185015
\(326\) −318.537 −0.0541170
\(327\) 4469.73 0.755891
\(328\) 324.001 0.0545426
\(329\) −3319.26 −0.556222
\(330\) −249.435 −0.0416089
\(331\) −449.598 −0.0746590 −0.0373295 0.999303i \(-0.511885\pi\)
−0.0373295 + 0.999303i \(0.511885\pi\)
\(332\) 3426.70 0.566460
\(333\) 8816.42 1.45086
\(334\) −263.307 −0.0431363
\(335\) −3525.31 −0.574950
\(336\) 14082.5 2.28650
\(337\) 9504.68 1.53636 0.768179 0.640235i \(-0.221163\pi\)
0.768179 + 0.640235i \(0.221163\pi\)
\(338\) 432.319 0.0695712
\(339\) −10947.1 −1.75388
\(340\) 8187.57 1.30598
\(341\) −3996.92 −0.634737
\(342\) 697.066 0.110213
\(343\) 1102.74 0.173593
\(344\) −407.652 −0.0638928
\(345\) 0 0
\(346\) −225.238 −0.0349968
\(347\) −12480.2 −1.93076 −0.965380 0.260849i \(-0.915998\pi\)
−0.965380 + 0.260849i \(0.915998\pi\)
\(348\) 14791.6 2.27848
\(349\) −6983.74 −1.07115 −0.535575 0.844488i \(-0.679905\pi\)
−0.535575 + 0.844488i \(0.679905\pi\)
\(350\) −119.108 −0.0181902
\(351\) 954.498 0.145149
\(352\) −536.359 −0.0812160
\(353\) 2371.92 0.357634 0.178817 0.983882i \(-0.442773\pi\)
0.178817 + 0.983882i \(0.442773\pi\)
\(354\) 483.783 0.0726349
\(355\) −7710.98 −1.15283
\(356\) −2663.26 −0.396495
\(357\) 22817.6 3.38274
\(358\) −796.094 −0.117528
\(359\) −8102.23 −1.19114 −0.595570 0.803303i \(-0.703074\pi\)
−0.595570 + 0.803303i \(0.703074\pi\)
\(360\) −1616.44 −0.236650
\(361\) −2057.92 −0.300032
\(362\) 554.568 0.0805177
\(363\) 9962.49 1.44048
\(364\) −924.806 −0.133168
\(365\) −9122.14 −1.30815
\(366\) −801.789 −0.114509
\(367\) −3397.55 −0.483244 −0.241622 0.970370i \(-0.577679\pi\)
−0.241622 + 0.970370i \(0.577679\pi\)
\(368\) 0 0
\(369\) 5173.81 0.729912
\(370\) 348.249 0.0489314
\(371\) −2456.10 −0.343705
\(372\) −19807.4 −2.76066
\(373\) −111.632 −0.0154962 −0.00774809 0.999970i \(-0.502466\pi\)
−0.00774809 + 0.999970i \(0.502466\pi\)
\(374\) −287.291 −0.0397205
\(375\) −13185.9 −1.81578
\(376\) 415.242 0.0569533
\(377\) −966.529 −0.132039
\(378\) −1048.78 −0.142707
\(379\) 4021.13 0.544991 0.272495 0.962157i \(-0.412151\pi\)
0.272495 + 0.962157i \(0.412151\pi\)
\(380\) −5552.90 −0.749626
\(381\) −14424.9 −1.93966
\(382\) 745.813 0.0998929
\(383\) −6352.12 −0.847463 −0.423731 0.905788i \(-0.639280\pi\)
−0.423731 + 0.905788i \(0.639280\pi\)
\(384\) −3541.06 −0.470583
\(385\) 3611.72 0.478105
\(386\) 145.043 0.0191256
\(387\) −6509.59 −0.855041
\(388\) 6775.44 0.886523
\(389\) 3778.39 0.492473 0.246236 0.969210i \(-0.420806\pi\)
0.246236 + 0.969210i \(0.420806\pi\)
\(390\) 80.7719 0.0104873
\(391\) 0 0
\(392\) 949.694 0.122364
\(393\) −6314.07 −0.810440
\(394\) −402.995 −0.0515295
\(395\) 4515.81 0.575228
\(396\) −5705.19 −0.723981
\(397\) 8840.89 1.11766 0.558831 0.829282i \(-0.311250\pi\)
0.558831 + 0.829282i \(0.311250\pi\)
\(398\) 775.059 0.0976135
\(399\) −15475.2 −1.94167
\(400\) −1491.33 −0.186416
\(401\) −6345.08 −0.790170 −0.395085 0.918645i \(-0.629285\pi\)
−0.395085 + 0.918645i \(0.629285\pi\)
\(402\) 613.009 0.0760550
\(403\) 1294.28 0.159982
\(404\) 1149.01 0.141498
\(405\) −4709.61 −0.577833
\(406\) 1062.00 0.129818
\(407\) 2464.37 0.300133
\(408\) −2854.50 −0.346369
\(409\) −12450.7 −1.50525 −0.752626 0.658448i \(-0.771213\pi\)
−0.752626 + 0.658448i \(0.771213\pi\)
\(410\) 204.366 0.0246168
\(411\) 13944.0 1.67349
\(412\) 3911.02 0.467675
\(413\) −7004.99 −0.834607
\(414\) 0 0
\(415\) 4333.54 0.512591
\(416\) 173.684 0.0204700
\(417\) 10523.8 1.23586
\(418\) 194.844 0.0227993
\(419\) 11026.1 1.28559 0.642794 0.766039i \(-0.277775\pi\)
0.642794 + 0.766039i \(0.277775\pi\)
\(420\) 17898.5 2.07942
\(421\) −9350.05 −1.08241 −0.541204 0.840891i \(-0.682031\pi\)
−0.541204 + 0.840891i \(0.682031\pi\)
\(422\) −127.867 −0.0147500
\(423\) 6630.78 0.762174
\(424\) 307.260 0.0351931
\(425\) −2416.37 −0.275791
\(426\) 1340.84 0.152498
\(427\) 11609.6 1.31576
\(428\) −3396.18 −0.383553
\(429\) 571.578 0.0643264
\(430\) −257.129 −0.0288369
\(431\) −9598.85 −1.07276 −0.536381 0.843976i \(-0.680209\pi\)
−0.536381 + 0.843976i \(0.680209\pi\)
\(432\) −13131.5 −1.46248
\(433\) 2841.22 0.315336 0.157668 0.987492i \(-0.449602\pi\)
0.157668 + 0.987492i \(0.449602\pi\)
\(434\) −1422.12 −0.157290
\(435\) 18706.0 2.06180
\(436\) 4038.24 0.443570
\(437\) 0 0
\(438\) 1586.23 0.173043
\(439\) 6795.87 0.738836 0.369418 0.929263i \(-0.379557\pi\)
0.369418 + 0.929263i \(0.379557\pi\)
\(440\) −451.828 −0.0489547
\(441\) 15165.2 1.63753
\(442\) 93.0305 0.0100113
\(443\) −7238.65 −0.776340 −0.388170 0.921588i \(-0.626893\pi\)
−0.388170 + 0.921588i \(0.626893\pi\)
\(444\) 12212.6 1.30537
\(445\) −3368.06 −0.358790
\(446\) −5.60621 −0.000595205 0
\(447\) −9315.69 −0.985720
\(448\) 12595.3 1.32828
\(449\) 14383.3 1.51179 0.755893 0.654696i \(-0.227203\pi\)
0.755893 + 0.654696i \(0.227203\pi\)
\(450\) 237.938 0.0249255
\(451\) 1446.18 0.150993
\(452\) −9890.32 −1.02921
\(453\) −9824.37 −1.01896
\(454\) 1350.07 0.139564
\(455\) −1169.55 −0.120504
\(456\) 1935.95 0.198814
\(457\) −7446.84 −0.762251 −0.381125 0.924523i \(-0.624463\pi\)
−0.381125 + 0.924523i \(0.624463\pi\)
\(458\) 55.8770 0.00570078
\(459\) −21276.8 −2.16365
\(460\) 0 0
\(461\) −10563.3 −1.06720 −0.533602 0.845735i \(-0.679162\pi\)
−0.533602 + 0.845735i \(0.679162\pi\)
\(462\) −628.034 −0.0632441
\(463\) −1191.98 −0.119646 −0.0598230 0.998209i \(-0.519054\pi\)
−0.0598230 + 0.998209i \(0.519054\pi\)
\(464\) 13297.1 1.33039
\(465\) −25049.2 −2.49813
\(466\) 394.651 0.0392314
\(467\) 18859.4 1.86875 0.934375 0.356290i \(-0.115958\pi\)
0.934375 + 0.356290i \(0.115958\pi\)
\(468\) 1847.45 0.182475
\(469\) −8876.13 −0.873906
\(470\) 261.916 0.0257049
\(471\) −10233.0 −1.00108
\(472\) 876.328 0.0854582
\(473\) −1819.56 −0.176878
\(474\) −785.244 −0.0760917
\(475\) 1638.81 0.158302
\(476\) 20614.9 1.98505
\(477\) 4906.47 0.470968
\(478\) −977.204 −0.0935069
\(479\) −4024.11 −0.383854 −0.191927 0.981409i \(-0.561474\pi\)
−0.191927 + 0.981409i \(0.561474\pi\)
\(480\) −3361.43 −0.319641
\(481\) −798.010 −0.0756469
\(482\) 949.959 0.0897706
\(483\) 0 0
\(484\) 9000.75 0.845299
\(485\) 8568.50 0.802217
\(486\) −298.207 −0.0278333
\(487\) −14938.2 −1.38997 −0.694983 0.719026i \(-0.744588\pi\)
−0.694983 + 0.719026i \(0.744588\pi\)
\(488\) −1452.37 −0.134725
\(489\) −14126.8 −1.30641
\(490\) 599.025 0.0552270
\(491\) 15589.4 1.43287 0.716436 0.697653i \(-0.245772\pi\)
0.716436 + 0.697653i \(0.245772\pi\)
\(492\) 7166.80 0.656716
\(493\) 21545.0 1.96823
\(494\) −63.0943 −0.00574645
\(495\) −7215.01 −0.655132
\(496\) −17806.1 −1.61193
\(497\) −19414.9 −1.75227
\(498\) −753.550 −0.0678060
\(499\) −4048.59 −0.363206 −0.181603 0.983372i \(-0.558129\pi\)
−0.181603 + 0.983372i \(0.558129\pi\)
\(500\) −11913.0 −1.06553
\(501\) −11677.4 −1.04133
\(502\) 670.563 0.0596189
\(503\) −4367.65 −0.387165 −0.193583 0.981084i \(-0.562011\pi\)
−0.193583 + 0.981084i \(0.562011\pi\)
\(504\) −4069.93 −0.359700
\(505\) 1453.08 0.128042
\(506\) 0 0
\(507\) 19172.9 1.67949
\(508\) −13032.4 −1.13823
\(509\) −6168.89 −0.537193 −0.268597 0.963253i \(-0.586560\pi\)
−0.268597 + 0.963253i \(0.586560\pi\)
\(510\) −1800.49 −0.156328
\(511\) −22968.0 −1.98834
\(512\) −3989.01 −0.344318
\(513\) 14430.1 1.24192
\(514\) −1396.34 −0.119824
\(515\) 4946.03 0.423200
\(516\) −9017.14 −0.769297
\(517\) 1853.44 0.157667
\(518\) 876.832 0.0743741
\(519\) −9989.10 −0.844841
\(520\) 146.311 0.0123388
\(521\) −21832.1 −1.83586 −0.917928 0.396748i \(-0.870139\pi\)
−0.917928 + 0.396748i \(0.870139\pi\)
\(522\) −2121.51 −0.177885
\(523\) −12961.9 −1.08372 −0.541858 0.840470i \(-0.682279\pi\)
−0.541858 + 0.840470i \(0.682279\pi\)
\(524\) −5704.54 −0.475580
\(525\) −5282.32 −0.439122
\(526\) 1574.86 0.130546
\(527\) −28850.9 −2.38475
\(528\) −7863.49 −0.648134
\(529\) 0 0
\(530\) 193.806 0.0158838
\(531\) 13993.6 1.14364
\(532\) −13981.3 −1.13941
\(533\) −468.302 −0.0380571
\(534\) 585.665 0.0474610
\(535\) −4294.94 −0.347078
\(536\) 1110.41 0.0894820
\(537\) −35306.0 −2.83718
\(538\) 345.122 0.0276566
\(539\) 4238.97 0.338748
\(540\) −16689.8 −1.33003
\(541\) −8551.62 −0.679598 −0.339799 0.940498i \(-0.610359\pi\)
−0.339799 + 0.940498i \(0.610359\pi\)
\(542\) −197.441 −0.0156472
\(543\) 24594.5 1.94374
\(544\) −3871.59 −0.305135
\(545\) 5106.92 0.401388
\(546\) 203.370 0.0159403
\(547\) 9562.02 0.747426 0.373713 0.927544i \(-0.378084\pi\)
0.373713 + 0.927544i \(0.378084\pi\)
\(548\) 12597.9 0.982035
\(549\) −23192.1 −1.80294
\(550\) 66.5083 0.00515622
\(551\) −14612.0 −1.12975
\(552\) 0 0
\(553\) 11370.0 0.874328
\(554\) −14.1298 −0.00108361
\(555\) 15444.5 1.18123
\(556\) 9507.92 0.725226
\(557\) 2940.80 0.223709 0.111854 0.993725i \(-0.464321\pi\)
0.111854 + 0.993725i \(0.464321\pi\)
\(558\) 2840.92 0.215530
\(559\) 589.209 0.0445812
\(560\) 16090.1 1.21416
\(561\) −12741.1 −0.958875
\(562\) −832.246 −0.0624665
\(563\) −12352.5 −0.924681 −0.462341 0.886702i \(-0.652990\pi\)
−0.462341 + 0.886702i \(0.652990\pi\)
\(564\) 9185.01 0.685743
\(565\) −12507.7 −0.931332
\(566\) −1123.16 −0.0834095
\(567\) −11858.0 −0.878287
\(568\) 2428.82 0.179421
\(569\) −1872.77 −0.137980 −0.0689900 0.997617i \(-0.521978\pi\)
−0.0689900 + 0.997617i \(0.521978\pi\)
\(570\) 1221.11 0.0897312
\(571\) −20368.8 −1.49283 −0.746416 0.665479i \(-0.768227\pi\)
−0.746416 + 0.665479i \(0.768227\pi\)
\(572\) 516.400 0.0377478
\(573\) 33076.1 2.41147
\(574\) 514.558 0.0374168
\(575\) 0 0
\(576\) −25161.2 −1.82011
\(577\) −4476.69 −0.322993 −0.161497 0.986873i \(-0.551632\pi\)
−0.161497 + 0.986873i \(0.551632\pi\)
\(578\) −1097.65 −0.0789901
\(579\) 6432.50 0.461702
\(580\) 16900.2 1.20990
\(581\) 10911.1 0.779121
\(582\) −1489.96 −0.106118
\(583\) 1371.46 0.0974270
\(584\) 2873.31 0.203593
\(585\) 2336.36 0.165122
\(586\) −1824.67 −0.128629
\(587\) −8331.79 −0.585843 −0.292921 0.956137i \(-0.594627\pi\)
−0.292921 + 0.956137i \(0.594627\pi\)
\(588\) 21006.9 1.47332
\(589\) 19567.0 1.36883
\(590\) 552.749 0.0385700
\(591\) −17872.5 −1.24395
\(592\) 10978.7 0.762196
\(593\) −17672.2 −1.22379 −0.611897 0.790937i \(-0.709593\pi\)
−0.611897 + 0.790937i \(0.709593\pi\)
\(594\) 585.623 0.0404519
\(595\) 26070.4 1.79628
\(596\) −8416.39 −0.578437
\(597\) 34373.1 2.35644
\(598\) 0 0
\(599\) 6746.87 0.460217 0.230108 0.973165i \(-0.426092\pi\)
0.230108 + 0.973165i \(0.426092\pi\)
\(600\) 660.821 0.0449632
\(601\) 19281.7 1.30868 0.654339 0.756202i \(-0.272947\pi\)
0.654339 + 0.756202i \(0.272947\pi\)
\(602\) −647.407 −0.0438311
\(603\) 17731.5 1.19749
\(604\) −8875.97 −0.597944
\(605\) 11382.7 0.764914
\(606\) −252.673 −0.0169375
\(607\) −10210.7 −0.682769 −0.341385 0.939924i \(-0.610896\pi\)
−0.341385 + 0.939924i \(0.610896\pi\)
\(608\) 2625.76 0.175146
\(609\) 47098.5 3.13387
\(610\) −916.090 −0.0608055
\(611\) −600.179 −0.0397392
\(612\) −41181.7 −2.72005
\(613\) 25743.0 1.69617 0.848085 0.529860i \(-0.177756\pi\)
0.848085 + 0.529860i \(0.177756\pi\)
\(614\) 712.475 0.0468292
\(615\) 9063.42 0.594264
\(616\) −1137.63 −0.0744095
\(617\) 15056.4 0.982412 0.491206 0.871043i \(-0.336556\pi\)
0.491206 + 0.871043i \(0.336556\pi\)
\(618\) −860.055 −0.0559813
\(619\) 18370.6 1.19286 0.596429 0.802666i \(-0.296586\pi\)
0.596429 + 0.802666i \(0.296586\pi\)
\(620\) −22631.1 −1.46594
\(621\) 0 0
\(622\) 946.479 0.0610134
\(623\) −8480.20 −0.545348
\(624\) 2546.35 0.163359
\(625\) −12109.2 −0.774987
\(626\) 662.470 0.0422965
\(627\) 8641.14 0.550389
\(628\) −9245.11 −0.587452
\(629\) 17788.5 1.12762
\(630\) −2567.13 −0.162344
\(631\) −23273.2 −1.46829 −0.734145 0.678993i \(-0.762417\pi\)
−0.734145 + 0.678993i \(0.762417\pi\)
\(632\) −1422.40 −0.0895252
\(633\) −5670.80 −0.356073
\(634\) 891.389 0.0558384
\(635\) −16481.3 −1.02999
\(636\) 6796.49 0.423739
\(637\) −1372.66 −0.0853797
\(638\) −593.005 −0.0367983
\(639\) 38784.5 2.40108
\(640\) −4045.86 −0.249886
\(641\) 17381.2 1.07101 0.535505 0.844532i \(-0.320121\pi\)
0.535505 + 0.844532i \(0.320121\pi\)
\(642\) 746.838 0.0459118
\(643\) 28080.8 1.72224 0.861119 0.508403i \(-0.169764\pi\)
0.861119 + 0.508403i \(0.169764\pi\)
\(644\) 0 0
\(645\) −11403.4 −0.696139
\(646\) 1406.44 0.0856588
\(647\) −7212.91 −0.438282 −0.219141 0.975693i \(-0.570326\pi\)
−0.219141 + 0.975693i \(0.570326\pi\)
\(648\) 1483.44 0.0899306
\(649\) 3911.50 0.236579
\(650\) −21.5367 −0.00129960
\(651\) −63069.7 −3.79707
\(652\) −12763.1 −0.766626
\(653\) 10240.4 0.613688 0.306844 0.951760i \(-0.400727\pi\)
0.306844 + 0.951760i \(0.400727\pi\)
\(654\) −888.031 −0.0530959
\(655\) −7214.18 −0.430353
\(656\) 6442.68 0.383452
\(657\) 45882.4 2.72457
\(658\) 659.460 0.0390706
\(659\) 23388.4 1.38252 0.691261 0.722605i \(-0.257055\pi\)
0.691261 + 0.722605i \(0.257055\pi\)
\(660\) −9994.29 −0.589435
\(661\) −14508.7 −0.853744 −0.426872 0.904312i \(-0.640385\pi\)
−0.426872 + 0.904312i \(0.640385\pi\)
\(662\) 89.3245 0.00524426
\(663\) 4125.81 0.241679
\(664\) −1364.99 −0.0797768
\(665\) −17681.3 −1.03105
\(666\) −1751.62 −0.101913
\(667\) 0 0
\(668\) −10550.1 −0.611072
\(669\) −248.630 −0.0143686
\(670\) 700.397 0.0403861
\(671\) −6482.66 −0.372966
\(672\) −8463.52 −0.485844
\(673\) 17715.8 1.01470 0.507352 0.861739i \(-0.330624\pi\)
0.507352 + 0.861739i \(0.330624\pi\)
\(674\) −1888.36 −0.107918
\(675\) 4925.61 0.280869
\(676\) 17322.1 0.985552
\(677\) −7260.93 −0.412201 −0.206101 0.978531i \(-0.566077\pi\)
−0.206101 + 0.978531i \(0.566077\pi\)
\(678\) 2174.93 0.123197
\(679\) 21574.0 1.21934
\(680\) −3261.43 −0.183926
\(681\) 59874.5 3.36915
\(682\) 794.094 0.0445857
\(683\) 30080.6 1.68522 0.842609 0.538526i \(-0.181019\pi\)
0.842609 + 0.538526i \(0.181019\pi\)
\(684\) 27929.9 1.56129
\(685\) 15931.8 0.888646
\(686\) −219.088 −0.0121936
\(687\) 2478.09 0.137620
\(688\) −8106.06 −0.449187
\(689\) −444.105 −0.0245559
\(690\) 0 0
\(691\) −6377.88 −0.351123 −0.175562 0.984468i \(-0.556174\pi\)
−0.175562 + 0.984468i \(0.556174\pi\)
\(692\) −9024.79 −0.495767
\(693\) −18166.2 −0.995779
\(694\) 2479.53 0.135622
\(695\) 12024.1 0.656259
\(696\) −5892.05 −0.320887
\(697\) 10439.0 0.567294
\(698\) 1387.51 0.0752406
\(699\) 17502.4 0.947068
\(700\) −4772.38 −0.257685
\(701\) −7709.10 −0.415362 −0.207681 0.978197i \(-0.566592\pi\)
−0.207681 + 0.978197i \(0.566592\pi\)
\(702\) −189.636 −0.0101957
\(703\) −12064.4 −0.647249
\(704\) −7033.05 −0.376517
\(705\) 11615.7 0.620530
\(706\) −471.246 −0.0251212
\(707\) 3658.60 0.194619
\(708\) 19384.1 1.02895
\(709\) 35861.2 1.89957 0.949784 0.312906i \(-0.101302\pi\)
0.949784 + 0.312906i \(0.101302\pi\)
\(710\) 1531.99 0.0809783
\(711\) −22713.5 −1.19806
\(712\) 1060.88 0.0558400
\(713\) 0 0
\(714\) −4533.33 −0.237613
\(715\) 653.060 0.0341581
\(716\) −31897.7 −1.66491
\(717\) −43338.1 −2.25731
\(718\) 1609.72 0.0836690
\(719\) 9993.59 0.518356 0.259178 0.965830i \(-0.416548\pi\)
0.259178 + 0.965830i \(0.416548\pi\)
\(720\) −32142.6 −1.66373
\(721\) 12453.3 0.643251
\(722\) 408.861 0.0210751
\(723\) 42129.7 2.16711
\(724\) 22220.3 1.14062
\(725\) −4987.69 −0.255501
\(726\) −1979.31 −0.101183
\(727\) 6104.88 0.311441 0.155720 0.987801i \(-0.450230\pi\)
0.155720 + 0.987801i \(0.450230\pi\)
\(728\) 368.386 0.0187545
\(729\) −25856.3 −1.31363
\(730\) 1812.36 0.0918881
\(731\) −13134.1 −0.664545
\(732\) −32125.9 −1.62214
\(733\) 8985.95 0.452802 0.226401 0.974034i \(-0.427304\pi\)
0.226401 + 0.974034i \(0.427304\pi\)
\(734\) 675.014 0.0339444
\(735\) 26566.2 1.33321
\(736\) 0 0
\(737\) 4956.32 0.247718
\(738\) −1027.91 −0.0512711
\(739\) 19935.3 0.992331 0.496165 0.868228i \(-0.334741\pi\)
0.496165 + 0.868228i \(0.334741\pi\)
\(740\) 13953.6 0.693167
\(741\) −2798.17 −0.138722
\(742\) 487.970 0.0241428
\(743\) 2078.74 0.102640 0.0513201 0.998682i \(-0.483657\pi\)
0.0513201 + 0.998682i \(0.483657\pi\)
\(744\) 7890.05 0.388795
\(745\) −10643.7 −0.523430
\(746\) 22.1786 0.00108849
\(747\) −21796.8 −1.06761
\(748\) −11511.1 −0.562684
\(749\) −10813.9 −0.527547
\(750\) 2619.73 0.127545
\(751\) 27501.7 1.33629 0.668143 0.744033i \(-0.267090\pi\)
0.668143 + 0.744033i \(0.267090\pi\)
\(752\) 8256.98 0.400400
\(753\) 29738.8 1.43923
\(754\) 192.027 0.00927481
\(755\) −11224.9 −0.541081
\(756\) −42022.1 −2.02160
\(757\) −5803.29 −0.278632 −0.139316 0.990248i \(-0.544490\pi\)
−0.139316 + 0.990248i \(0.544490\pi\)
\(758\) −798.904 −0.0382817
\(759\) 0 0
\(760\) 2211.93 0.105573
\(761\) −4781.12 −0.227747 −0.113873 0.993495i \(-0.536326\pi\)
−0.113873 + 0.993495i \(0.536326\pi\)
\(762\) 2865.90 0.136247
\(763\) 12858.3 0.610096
\(764\) 29883.0 1.41509
\(765\) −52080.0 −2.46138
\(766\) 1262.02 0.0595282
\(767\) −1266.62 −0.0596284
\(768\) −34322.8 −1.61265
\(769\) 12230.2 0.573516 0.286758 0.958003i \(-0.407422\pi\)
0.286758 + 0.958003i \(0.407422\pi\)
\(770\) −717.564 −0.0335834
\(771\) −61926.1 −2.89263
\(772\) 5811.53 0.270935
\(773\) −28377.2 −1.32038 −0.660191 0.751098i \(-0.729525\pi\)
−0.660191 + 0.751098i \(0.729525\pi\)
\(774\) 1293.30 0.0600605
\(775\) 6679.03 0.309571
\(776\) −2698.92 −0.124853
\(777\) 38886.7 1.79543
\(778\) −750.677 −0.0345927
\(779\) −7079.82 −0.325624
\(780\) 3236.35 0.148564
\(781\) 10841.0 0.496701
\(782\) 0 0
\(783\) −43918.0 −2.00447
\(784\) 18884.4 0.860260
\(785\) −11691.7 −0.531587
\(786\) 1254.46 0.0569276
\(787\) 6706.08 0.303743 0.151872 0.988400i \(-0.451470\pi\)
0.151872 + 0.988400i \(0.451470\pi\)
\(788\) −16147.1 −0.729971
\(789\) 69843.6 3.15145
\(790\) −897.186 −0.0404056
\(791\) −31492.2 −1.41559
\(792\) 2272.60 0.101961
\(793\) 2099.21 0.0940040
\(794\) −1756.48 −0.0785076
\(795\) 8595.11 0.383443
\(796\) 31054.9 1.38280
\(797\) −24717.7 −1.09855 −0.549277 0.835641i \(-0.685097\pi\)
−0.549277 + 0.835641i \(0.685097\pi\)
\(798\) 3074.55 0.136389
\(799\) 13378.6 0.592368
\(800\) 896.280 0.0396103
\(801\) 16940.6 0.747274
\(802\) 1260.62 0.0555038
\(803\) 12825.0 0.563618
\(804\) 24561.9 1.07740
\(805\) 0 0
\(806\) −257.143 −0.0112376
\(807\) 15305.8 0.667646
\(808\) −457.693 −0.0199277
\(809\) 24194.7 1.05147 0.525736 0.850648i \(-0.323790\pi\)
0.525736 + 0.850648i \(0.323790\pi\)
\(810\) 935.689 0.0405886
\(811\) −3717.21 −0.160948 −0.0804741 0.996757i \(-0.525643\pi\)
−0.0804741 + 0.996757i \(0.525643\pi\)
\(812\) 42551.8 1.83901
\(813\) −8756.30 −0.377733
\(814\) −489.612 −0.0210822
\(815\) −16140.7 −0.693722
\(816\) −56761.0 −2.43509
\(817\) 8907.69 0.381445
\(818\) 2473.67 0.105733
\(819\) 5882.56 0.250981
\(820\) 8188.48 0.348724
\(821\) 13895.0 0.590669 0.295335 0.955394i \(-0.404569\pi\)
0.295335 + 0.955394i \(0.404569\pi\)
\(822\) −2770.35 −0.117551
\(823\) −45379.1 −1.92201 −0.961007 0.276525i \(-0.910817\pi\)
−0.961007 + 0.276525i \(0.910817\pi\)
\(824\) −1557.91 −0.0658645
\(825\) 2949.58 0.124474
\(826\) 1391.73 0.0586252
\(827\) 26239.2 1.10330 0.551648 0.834077i \(-0.313999\pi\)
0.551648 + 0.834077i \(0.313999\pi\)
\(828\) 0 0
\(829\) 24569.3 1.02934 0.514672 0.857387i \(-0.327914\pi\)
0.514672 + 0.857387i \(0.327914\pi\)
\(830\) −860.974 −0.0360058
\(831\) −626.643 −0.0261588
\(832\) 2277.44 0.0948991
\(833\) 30598.1 1.27270
\(834\) −2090.84 −0.0868105
\(835\) −13342.1 −0.552961
\(836\) 7806.96 0.322978
\(837\) 58810.6 2.42866
\(838\) −2190.63 −0.0903033
\(839\) −23214.8 −0.955262 −0.477631 0.878561i \(-0.658504\pi\)
−0.477631 + 0.878561i \(0.658504\pi\)
\(840\) −7129.66 −0.292853
\(841\) 20082.6 0.823428
\(842\) 1857.64 0.0760313
\(843\) −36909.3 −1.50798
\(844\) −5123.36 −0.208949
\(845\) 21906.2 0.891828
\(846\) −1317.38 −0.0535372
\(847\) 28659.7 1.16264
\(848\) 6109.79 0.247418
\(849\) −49810.9 −2.01355
\(850\) 480.076 0.0193723
\(851\) 0 0
\(852\) 53724.6 2.16030
\(853\) 35062.1 1.40739 0.703694 0.710503i \(-0.251533\pi\)
0.703694 + 0.710503i \(0.251533\pi\)
\(854\) −2306.56 −0.0924224
\(855\) 35321.2 1.41282
\(856\) 1352.83 0.0540172
\(857\) 22603.3 0.900950 0.450475 0.892789i \(-0.351255\pi\)
0.450475 + 0.892789i \(0.351255\pi\)
\(858\) −113.559 −0.00451847
\(859\) 26669.9 1.05933 0.529665 0.848207i \(-0.322318\pi\)
0.529665 + 0.848207i \(0.322318\pi\)
\(860\) −10302.6 −0.408506
\(861\) 22820.1 0.903262
\(862\) 1907.07 0.0753538
\(863\) −22584.1 −0.890814 −0.445407 0.895328i \(-0.646941\pi\)
−0.445407 + 0.895328i \(0.646941\pi\)
\(864\) 7891.98 0.310753
\(865\) −11413.1 −0.448621
\(866\) −564.484 −0.0221501
\(867\) −48679.7 −1.90686
\(868\) −56981.2 −2.22819
\(869\) −6348.89 −0.247838
\(870\) −3716.45 −0.144827
\(871\) −1604.95 −0.0624361
\(872\) −1608.59 −0.0624697
\(873\) −43097.6 −1.67083
\(874\) 0 0
\(875\) −37932.6 −1.46555
\(876\) 63556.6 2.45135
\(877\) −35100.3 −1.35149 −0.675743 0.737137i \(-0.736177\pi\)
−0.675743 + 0.737137i \(0.736177\pi\)
\(878\) −1350.18 −0.0518979
\(879\) −80922.4 −3.10517
\(880\) −8984.49 −0.344167
\(881\) −44929.8 −1.71819 −0.859093 0.511819i \(-0.828972\pi\)
−0.859093 + 0.511819i \(0.828972\pi\)
\(882\) −3012.97 −0.115025
\(883\) −15789.5 −0.601765 −0.300883 0.953661i \(-0.597281\pi\)
−0.300883 + 0.953661i \(0.597281\pi\)
\(884\) 3727.52 0.141821
\(885\) 24513.9 0.931102
\(886\) 1438.15 0.0545323
\(887\) −9655.87 −0.365516 −0.182758 0.983158i \(-0.558502\pi\)
−0.182758 + 0.983158i \(0.558502\pi\)
\(888\) −4864.74 −0.183840
\(889\) −41497.1 −1.56554
\(890\) 669.155 0.0252024
\(891\) 6621.35 0.248960
\(892\) −224.628 −0.00843173
\(893\) −9073.53 −0.340016
\(894\) 1850.81 0.0692397
\(895\) −40339.1 −1.50658
\(896\) −10186.8 −0.379818
\(897\) 0 0
\(898\) −2857.63 −0.106192
\(899\) −59551.9 −2.20931
\(900\) 9533.62 0.353097
\(901\) 9899.57 0.366041
\(902\) −287.323 −0.0106062
\(903\) −28711.9 −1.05811
\(904\) 3939.69 0.144947
\(905\) 28100.6 1.03215
\(906\) 1951.87 0.0715747
\(907\) 20754.5 0.759804 0.379902 0.925027i \(-0.375958\pi\)
0.379902 + 0.925027i \(0.375958\pi\)
\(908\) 54094.4 1.97708
\(909\) −7308.67 −0.266681
\(910\) 232.361 0.00846451
\(911\) −30666.9 −1.11530 −0.557651 0.830076i \(-0.688297\pi\)
−0.557651 + 0.830076i \(0.688297\pi\)
\(912\) 38495.9 1.39773
\(913\) −6092.63 −0.220851
\(914\) 1479.51 0.0535426
\(915\) −40627.7 −1.46788
\(916\) 2238.86 0.0807578
\(917\) −18164.1 −0.654123
\(918\) 4227.20 0.151981
\(919\) 25701.9 0.922555 0.461277 0.887256i \(-0.347391\pi\)
0.461277 + 0.887256i \(0.347391\pi\)
\(920\) 0 0
\(921\) 31597.6 1.13048
\(922\) 2098.68 0.0749635
\(923\) −3510.54 −0.125191
\(924\) −25163.9 −0.895922
\(925\) −4118.07 −0.146380
\(926\) 236.819 0.00840426
\(927\) −24877.4 −0.881427
\(928\) −7991.46 −0.282686
\(929\) 47880.2 1.69096 0.845478 0.534009i \(-0.179315\pi\)
0.845478 + 0.534009i \(0.179315\pi\)
\(930\) 4976.70 0.175476
\(931\) −20752.0 −0.730524
\(932\) 15812.8 0.555756
\(933\) 41975.4 1.47290
\(934\) −3746.91 −0.131266
\(935\) −14557.4 −0.509174
\(936\) −735.911 −0.0256987
\(937\) −30597.8 −1.06680 −0.533398 0.845865i \(-0.679085\pi\)
−0.533398 + 0.845865i \(0.679085\pi\)
\(938\) 1763.48 0.0613856
\(939\) 29379.9 1.02106
\(940\) 10494.4 0.364138
\(941\) 18849.7 0.653010 0.326505 0.945195i \(-0.394129\pi\)
0.326505 + 0.945195i \(0.394129\pi\)
\(942\) 2033.05 0.0703188
\(943\) 0 0
\(944\) 17425.6 0.600798
\(945\) −53142.8 −1.82935
\(946\) 361.504 0.0124244
\(947\) 6070.66 0.208310 0.104155 0.994561i \(-0.466786\pi\)
0.104155 + 0.994561i \(0.466786\pi\)
\(948\) −31463.0 −1.07792
\(949\) −4153.00 −0.142057
\(950\) −325.593 −0.0111196
\(951\) 39532.2 1.34797
\(952\) −8211.71 −0.279562
\(953\) −26206.8 −0.890788 −0.445394 0.895335i \(-0.646936\pi\)
−0.445394 + 0.895335i \(0.646936\pi\)
\(954\) −974.801 −0.0330821
\(955\) 37791.3 1.28052
\(956\) −39154.4 −1.32463
\(957\) −26299.2 −0.888331
\(958\) 799.496 0.0269630
\(959\) 40113.5 1.35071
\(960\) −44077.1 −1.48186
\(961\) 49955.0 1.67685
\(962\) 158.546 0.00531365
\(963\) 21602.6 0.722881
\(964\) 38062.7 1.27170
\(965\) 7349.49 0.245169
\(966\) 0 0
\(967\) −42074.3 −1.39919 −0.699595 0.714539i \(-0.746636\pi\)
−0.699595 + 0.714539i \(0.746636\pi\)
\(968\) −3585.34 −0.119047
\(969\) 62374.2 2.06785
\(970\) −1702.36 −0.0563500
\(971\) 16425.9 0.542875 0.271438 0.962456i \(-0.412501\pi\)
0.271438 + 0.962456i \(0.412501\pi\)
\(972\) −11948.5 −0.394288
\(973\) 30274.6 0.997492
\(974\) 2967.87 0.0976351
\(975\) −955.132 −0.0313730
\(976\) −28880.0 −0.947157
\(977\) 17470.1 0.572077 0.286039 0.958218i \(-0.407661\pi\)
0.286039 + 0.958218i \(0.407661\pi\)
\(978\) 2806.67 0.0917662
\(979\) 4735.24 0.154585
\(980\) 24001.6 0.782350
\(981\) −25686.7 −0.835996
\(982\) −3097.25 −0.100649
\(983\) 17415.6 0.565076 0.282538 0.959256i \(-0.408824\pi\)
0.282538 + 0.959256i \(0.408824\pi\)
\(984\) −2854.81 −0.0924879
\(985\) −20420.3 −0.660553
\(986\) −4280.48 −0.138254
\(987\) 29246.4 0.943186
\(988\) −2528.05 −0.0814047
\(989\) 0 0
\(990\) 1433.45 0.0460183
\(991\) 10513.9 0.337018 0.168509 0.985700i \(-0.446105\pi\)
0.168509 + 0.985700i \(0.446105\pi\)
\(992\) 10701.4 0.342509
\(993\) 3961.46 0.126599
\(994\) 3857.29 0.123084
\(995\) 39273.2 1.25130
\(996\) −30193.1 −0.960546
\(997\) −52110.7 −1.65533 −0.827665 0.561223i \(-0.810331\pi\)
−0.827665 + 0.561223i \(0.810331\pi\)
\(998\) 804.360 0.0255126
\(999\) −36260.7 −1.14839
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 529.4.a.m.1.13 25
23.7 odd 22 23.4.c.a.3.3 50
23.10 odd 22 23.4.c.a.8.3 yes 50
23.22 odd 2 529.4.a.n.1.13 25
69.53 even 22 207.4.i.a.118.3 50
69.56 even 22 207.4.i.a.100.3 50
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
23.4.c.a.3.3 50 23.7 odd 22
23.4.c.a.8.3 yes 50 23.10 odd 22
207.4.i.a.100.3 50 69.56 even 22
207.4.i.a.118.3 50 69.53 even 22
529.4.a.m.1.13 25 1.1 even 1 trivial
529.4.a.n.1.13 25 23.22 odd 2