Properties

Label 529.4.a.m.1.12
Level $529$
Weight $4$
Character 529.1
Self dual yes
Analytic conductor $31.212$
Analytic rank $1$
Dimension $25$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [529,4,Mod(1,529)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(529, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("529.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 529 = 23^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 529.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(31.2120103930\)
Analytic rank: \(1\)
Dimension: \(25\)
Twist minimal: no (minimal twist has level 23)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.12
Character \(\chi\) \(=\) 529.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-0.525953 q^{2} +5.51332 q^{3} -7.72337 q^{4} +13.2745 q^{5} -2.89975 q^{6} -8.04220 q^{7} +8.26975 q^{8} +3.39674 q^{9} -6.98174 q^{10} +13.2705 q^{11} -42.5815 q^{12} -71.9274 q^{13} +4.22982 q^{14} +73.1864 q^{15} +57.4375 q^{16} -113.151 q^{17} -1.78653 q^{18} -19.3870 q^{19} -102.524 q^{20} -44.3393 q^{21} -6.97966 q^{22} +45.5938 q^{24} +51.2112 q^{25} +37.8304 q^{26} -130.132 q^{27} +62.1129 q^{28} -77.0710 q^{29} -38.4926 q^{30} +240.220 q^{31} -96.3674 q^{32} +73.1646 q^{33} +59.5121 q^{34} -106.756 q^{35} -26.2343 q^{36} -261.861 q^{37} +10.1966 q^{38} -396.559 q^{39} +109.776 q^{40} +115.325 q^{41} +23.3204 q^{42} -352.920 q^{43} -102.493 q^{44} +45.0899 q^{45} +385.301 q^{47} +316.671 q^{48} -278.323 q^{49} -26.9347 q^{50} -623.838 q^{51} +555.522 q^{52} +279.112 q^{53} +68.4435 q^{54} +176.159 q^{55} -66.5070 q^{56} -106.887 q^{57} +40.5357 q^{58} +503.910 q^{59} -565.246 q^{60} -643.723 q^{61} -126.344 q^{62} -27.3173 q^{63} -408.815 q^{64} -954.797 q^{65} -38.4811 q^{66} -472.252 q^{67} +873.908 q^{68} +56.1486 q^{70} +168.643 q^{71} +28.0902 q^{72} -667.140 q^{73} +137.727 q^{74} +282.344 q^{75} +149.733 q^{76} -106.724 q^{77} +208.571 q^{78} -826.993 q^{79} +762.451 q^{80} -809.174 q^{81} -60.6553 q^{82} +822.468 q^{83} +342.449 q^{84} -1502.02 q^{85} +185.619 q^{86} -424.917 q^{87} +109.744 q^{88} -562.870 q^{89} -23.7152 q^{90} +578.454 q^{91} +1324.41 q^{93} -202.650 q^{94} -257.351 q^{95} -531.305 q^{96} -21.3397 q^{97} +146.385 q^{98} +45.0765 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 25 q - q^{3} + 80 q^{4} - 51 q^{5} + 86 q^{6} - 73 q^{7} + 3 q^{8} + 166 q^{9} - 139 q^{10} - 221 q^{11} - 191 q^{12} - 27 q^{13} - 372 q^{14} - 310 q^{15} + 152 q^{16} - 365 q^{17} - 538 q^{18} - 405 q^{19}+ \cdots - 7317 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.525953 −0.185952 −0.0929762 0.995668i \(-0.529638\pi\)
−0.0929762 + 0.995668i \(0.529638\pi\)
\(3\) 5.51332 1.06104 0.530520 0.847673i \(-0.321997\pi\)
0.530520 + 0.847673i \(0.321997\pi\)
\(4\) −7.72337 −0.965422
\(5\) 13.2745 1.18730 0.593652 0.804722i \(-0.297686\pi\)
0.593652 + 0.804722i \(0.297686\pi\)
\(6\) −2.89975 −0.197303
\(7\) −8.04220 −0.434238 −0.217119 0.976145i \(-0.569666\pi\)
−0.217119 + 0.976145i \(0.569666\pi\)
\(8\) 8.26975 0.365475
\(9\) 3.39674 0.125805
\(10\) −6.98174 −0.220782
\(11\) 13.2705 0.363746 0.181873 0.983322i \(-0.441784\pi\)
0.181873 + 0.983322i \(0.441784\pi\)
\(12\) −42.5815 −1.02435
\(13\) −71.9274 −1.53454 −0.767272 0.641322i \(-0.778386\pi\)
−0.767272 + 0.641322i \(0.778386\pi\)
\(14\) 4.22982 0.0807476
\(15\) 73.1864 1.25978
\(16\) 57.4375 0.897461
\(17\) −113.151 −1.61430 −0.807152 0.590344i \(-0.798992\pi\)
−0.807152 + 0.590344i \(0.798992\pi\)
\(18\) −1.78653 −0.0233938
\(19\) −19.3870 −0.234088 −0.117044 0.993127i \(-0.537342\pi\)
−0.117044 + 0.993127i \(0.537342\pi\)
\(20\) −102.524 −1.14625
\(21\) −44.3393 −0.460744
\(22\) −6.97966 −0.0676395
\(23\) 0 0
\(24\) 45.5938 0.387783
\(25\) 51.2112 0.409689
\(26\) 37.8304 0.285352
\(27\) −130.132 −0.927555
\(28\) 62.1129 0.419223
\(29\) −77.0710 −0.493508 −0.246754 0.969078i \(-0.579364\pi\)
−0.246754 + 0.969078i \(0.579364\pi\)
\(30\) −38.4926 −0.234258
\(31\) 240.220 1.39177 0.695884 0.718154i \(-0.255013\pi\)
0.695884 + 0.718154i \(0.255013\pi\)
\(32\) −96.3674 −0.532360
\(33\) 73.1646 0.385949
\(34\) 59.5121 0.300184
\(35\) −106.756 −0.515572
\(36\) −26.2343 −0.121455
\(37\) −261.861 −1.16351 −0.581753 0.813366i \(-0.697633\pi\)
−0.581753 + 0.813366i \(0.697633\pi\)
\(38\) 10.1966 0.0435293
\(39\) −396.559 −1.62821
\(40\) 109.776 0.433930
\(41\) 115.325 0.439285 0.219642 0.975580i \(-0.429511\pi\)
0.219642 + 0.975580i \(0.429511\pi\)
\(42\) 23.3204 0.0856764
\(43\) −352.920 −1.25162 −0.625812 0.779974i \(-0.715232\pi\)
−0.625812 + 0.779974i \(0.715232\pi\)
\(44\) −102.493 −0.351168
\(45\) 45.0899 0.149369
\(46\) 0 0
\(47\) 385.301 1.19579 0.597893 0.801576i \(-0.296005\pi\)
0.597893 + 0.801576i \(0.296005\pi\)
\(48\) 316.671 0.952241
\(49\) −278.323 −0.811437
\(50\) −26.9347 −0.0761827
\(51\) −623.838 −1.71284
\(52\) 555.522 1.48148
\(53\) 279.112 0.723377 0.361688 0.932299i \(-0.382200\pi\)
0.361688 + 0.932299i \(0.382200\pi\)
\(54\) 68.4435 0.172481
\(55\) 176.159 0.431877
\(56\) −66.5070 −0.158703
\(57\) −106.887 −0.248377
\(58\) 40.5357 0.0917689
\(59\) 503.910 1.11192 0.555962 0.831208i \(-0.312350\pi\)
0.555962 + 0.831208i \(0.312350\pi\)
\(60\) −565.246 −1.21622
\(61\) −643.723 −1.35115 −0.675576 0.737290i \(-0.736105\pi\)
−0.675576 + 0.737290i \(0.736105\pi\)
\(62\) −126.344 −0.258803
\(63\) −27.3173 −0.0546294
\(64\) −408.815 −0.798467
\(65\) −954.797 −1.82197
\(66\) −38.4811 −0.0717681
\(67\) −472.252 −0.861116 −0.430558 0.902563i \(-0.641683\pi\)
−0.430558 + 0.902563i \(0.641683\pi\)
\(68\) 873.908 1.55848
\(69\) 0 0
\(70\) 56.1486 0.0958719
\(71\) 168.643 0.281890 0.140945 0.990017i \(-0.454986\pi\)
0.140945 + 0.990017i \(0.454986\pi\)
\(72\) 28.0902 0.0459787
\(73\) −667.140 −1.06963 −0.534814 0.844970i \(-0.679618\pi\)
−0.534814 + 0.844970i \(0.679618\pi\)
\(74\) 137.727 0.216357
\(75\) 282.344 0.434697
\(76\) 149.733 0.225994
\(77\) −106.724 −0.157952
\(78\) 208.571 0.302770
\(79\) −826.993 −1.17777 −0.588886 0.808216i \(-0.700433\pi\)
−0.588886 + 0.808216i \(0.700433\pi\)
\(80\) 762.451 1.06556
\(81\) −809.174 −1.10998
\(82\) −60.6553 −0.0816860
\(83\) 822.468 1.08768 0.543841 0.839188i \(-0.316969\pi\)
0.543841 + 0.839188i \(0.316969\pi\)
\(84\) 342.449 0.444812
\(85\) −1502.02 −1.91667
\(86\) 185.619 0.232743
\(87\) −424.917 −0.523631
\(88\) 109.744 0.132940
\(89\) −562.870 −0.670383 −0.335191 0.942150i \(-0.608801\pi\)
−0.335191 + 0.942150i \(0.608801\pi\)
\(90\) −23.7152 −0.0277755
\(91\) 578.454 0.666357
\(92\) 0 0
\(93\) 1324.41 1.47672
\(94\) −202.650 −0.222359
\(95\) −257.351 −0.277934
\(96\) −531.305 −0.564855
\(97\) −21.3397 −0.0223374 −0.0111687 0.999938i \(-0.503555\pi\)
−0.0111687 + 0.999938i \(0.503555\pi\)
\(98\) 146.385 0.150889
\(99\) 45.0765 0.0457612
\(100\) −395.523 −0.395523
\(101\) 1528.03 1.50539 0.752696 0.658368i \(-0.228753\pi\)
0.752696 + 0.658368i \(0.228753\pi\)
\(102\) 328.110 0.318507
\(103\) 1063.46 1.01734 0.508668 0.860963i \(-0.330138\pi\)
0.508668 + 0.860963i \(0.330138\pi\)
\(104\) −594.822 −0.560837
\(105\) −588.580 −0.547043
\(106\) −146.800 −0.134514
\(107\) 214.676 0.193958 0.0969789 0.995286i \(-0.469082\pi\)
0.0969789 + 0.995286i \(0.469082\pi\)
\(108\) 1005.06 0.895482
\(109\) −1445.44 −1.27016 −0.635081 0.772446i \(-0.719033\pi\)
−0.635081 + 0.772446i \(0.719033\pi\)
\(110\) −92.6512 −0.0803086
\(111\) −1443.73 −1.23453
\(112\) −461.924 −0.389712
\(113\) −541.575 −0.450860 −0.225430 0.974259i \(-0.572379\pi\)
−0.225430 + 0.974259i \(0.572379\pi\)
\(114\) 56.2173 0.0461863
\(115\) 0 0
\(116\) 595.248 0.476443
\(117\) −244.319 −0.193054
\(118\) −265.033 −0.206765
\(119\) 909.984 0.700992
\(120\) 605.233 0.460417
\(121\) −1154.89 −0.867689
\(122\) 338.568 0.251250
\(123\) 635.821 0.466098
\(124\) −1855.31 −1.34364
\(125\) −979.506 −0.700878
\(126\) 14.3676 0.0101585
\(127\) 518.539 0.362306 0.181153 0.983455i \(-0.442017\pi\)
0.181153 + 0.983455i \(0.442017\pi\)
\(128\) 985.957 0.680837
\(129\) −1945.76 −1.32802
\(130\) 502.178 0.338799
\(131\) −854.590 −0.569969 −0.284984 0.958532i \(-0.591988\pi\)
−0.284984 + 0.958532i \(0.591988\pi\)
\(132\) −565.077 −0.372603
\(133\) 155.914 0.101650
\(134\) 248.382 0.160127
\(135\) −1727.44 −1.10129
\(136\) −935.731 −0.589988
\(137\) −77.0997 −0.0480808 −0.0240404 0.999711i \(-0.507653\pi\)
−0.0240404 + 0.999711i \(0.507653\pi\)
\(138\) 0 0
\(139\) −396.171 −0.241747 −0.120873 0.992668i \(-0.538570\pi\)
−0.120873 + 0.992668i \(0.538570\pi\)
\(140\) 824.515 0.497745
\(141\) 2124.29 1.26878
\(142\) −88.6981 −0.0524181
\(143\) −954.512 −0.558184
\(144\) 195.100 0.112905
\(145\) −1023.08 −0.585943
\(146\) 350.884 0.198900
\(147\) −1534.48 −0.860967
\(148\) 2022.45 1.12327
\(149\) −2573.73 −1.41509 −0.707544 0.706669i \(-0.750197\pi\)
−0.707544 + 0.706669i \(0.750197\pi\)
\(150\) −148.500 −0.0808329
\(151\) −2431.61 −1.31048 −0.655238 0.755422i \(-0.727432\pi\)
−0.655238 + 0.755422i \(0.727432\pi\)
\(152\) −160.325 −0.0855534
\(153\) −384.345 −0.203088
\(154\) 56.1318 0.0293716
\(155\) 3188.79 1.65245
\(156\) 3062.77 1.57191
\(157\) 3218.49 1.63607 0.818037 0.575166i \(-0.195063\pi\)
0.818037 + 0.575166i \(0.195063\pi\)
\(158\) 434.960 0.219010
\(159\) 1538.83 0.767531
\(160\) −1279.23 −0.632073
\(161\) 0 0
\(162\) 425.587 0.206403
\(163\) 563.274 0.270669 0.135334 0.990800i \(-0.456789\pi\)
0.135334 + 0.990800i \(0.456789\pi\)
\(164\) −890.694 −0.424095
\(165\) 971.220 0.458239
\(166\) −432.580 −0.202257
\(167\) 234.737 0.108770 0.0543848 0.998520i \(-0.482680\pi\)
0.0543848 + 0.998520i \(0.482680\pi\)
\(168\) −366.675 −0.168390
\(169\) 2976.55 1.35482
\(170\) 789.991 0.356409
\(171\) −65.8525 −0.0294495
\(172\) 2725.74 1.20835
\(173\) 2291.27 1.00695 0.503475 0.864010i \(-0.332055\pi\)
0.503475 + 0.864010i \(0.332055\pi\)
\(174\) 223.486 0.0973705
\(175\) −411.851 −0.177903
\(176\) 762.224 0.326448
\(177\) 2778.22 1.17980
\(178\) 296.043 0.124659
\(179\) −2111.14 −0.881531 −0.440766 0.897622i \(-0.645293\pi\)
−0.440766 + 0.897622i \(0.645293\pi\)
\(180\) −348.246 −0.144204
\(181\) 809.218 0.332313 0.166157 0.986099i \(-0.446864\pi\)
0.166157 + 0.986099i \(0.446864\pi\)
\(182\) −304.240 −0.123911
\(183\) −3549.06 −1.43363
\(184\) 0 0
\(185\) −3476.06 −1.38143
\(186\) −696.578 −0.274600
\(187\) −1501.57 −0.587197
\(188\) −2975.83 −1.15444
\(189\) 1046.55 0.402780
\(190\) 135.355 0.0516824
\(191\) 49.6795 0.0188203 0.00941017 0.999956i \(-0.497005\pi\)
0.00941017 + 0.999956i \(0.497005\pi\)
\(192\) −2253.93 −0.847205
\(193\) 171.160 0.0638360 0.0319180 0.999490i \(-0.489838\pi\)
0.0319180 + 0.999490i \(0.489838\pi\)
\(194\) 11.2237 0.00415368
\(195\) −5264.10 −1.93318
\(196\) 2149.59 0.783379
\(197\) 2835.30 1.02541 0.512707 0.858564i \(-0.328643\pi\)
0.512707 + 0.858564i \(0.328643\pi\)
\(198\) −23.7081 −0.00850940
\(199\) −958.983 −0.341611 −0.170805 0.985305i \(-0.554637\pi\)
−0.170805 + 0.985305i \(0.554637\pi\)
\(200\) 423.504 0.149731
\(201\) −2603.68 −0.913678
\(202\) −803.671 −0.279931
\(203\) 619.820 0.214300
\(204\) 4818.14 1.65361
\(205\) 1530.87 0.521564
\(206\) −559.328 −0.189176
\(207\) 0 0
\(208\) −4131.33 −1.37719
\(209\) −257.275 −0.0851486
\(210\) 309.565 0.101724
\(211\) 1906.86 0.622149 0.311074 0.950386i \(-0.399311\pi\)
0.311074 + 0.950386i \(0.399311\pi\)
\(212\) −2155.69 −0.698364
\(213\) 929.781 0.299097
\(214\) −112.909 −0.0360669
\(215\) −4684.83 −1.48606
\(216\) −1076.16 −0.338998
\(217\) −1931.90 −0.604359
\(218\) 760.231 0.236190
\(219\) −3678.16 −1.13492
\(220\) −1360.54 −0.416943
\(221\) 8138.66 2.47722
\(222\) 759.332 0.229563
\(223\) 2767.85 0.831160 0.415580 0.909557i \(-0.363579\pi\)
0.415580 + 0.909557i \(0.363579\pi\)
\(224\) 775.006 0.231171
\(225\) 173.951 0.0515411
\(226\) 284.843 0.0838384
\(227\) 4644.75 1.35808 0.679038 0.734103i \(-0.262397\pi\)
0.679038 + 0.734103i \(0.262397\pi\)
\(228\) 825.525 0.239788
\(229\) 1988.68 0.573868 0.286934 0.957950i \(-0.407364\pi\)
0.286934 + 0.957950i \(0.407364\pi\)
\(230\) 0 0
\(231\) −588.404 −0.167594
\(232\) −637.358 −0.180365
\(233\) −406.618 −0.114328 −0.0571640 0.998365i \(-0.518206\pi\)
−0.0571640 + 0.998365i \(0.518206\pi\)
\(234\) 128.500 0.0358988
\(235\) 5114.67 1.41976
\(236\) −3891.88 −1.07348
\(237\) −4559.48 −1.24966
\(238\) −478.609 −0.130351
\(239\) 3556.38 0.962523 0.481262 0.876577i \(-0.340179\pi\)
0.481262 + 0.876577i \(0.340179\pi\)
\(240\) 4203.64 1.13060
\(241\) 5.01372 0.00134009 0.000670046 1.00000i \(-0.499787\pi\)
0.000670046 1.00000i \(0.499787\pi\)
\(242\) 607.420 0.161349
\(243\) −947.664 −0.250176
\(244\) 4971.72 1.30443
\(245\) −3694.59 −0.963422
\(246\) −334.412 −0.0866721
\(247\) 1394.45 0.359218
\(248\) 1986.56 0.508656
\(249\) 4534.53 1.15407
\(250\) 515.174 0.130330
\(251\) 6847.71 1.72201 0.861003 0.508599i \(-0.169836\pi\)
0.861003 + 0.508599i \(0.169836\pi\)
\(252\) 210.982 0.0527404
\(253\) 0 0
\(254\) −272.727 −0.0673717
\(255\) −8281.12 −2.03366
\(256\) 2751.95 0.671864
\(257\) 7842.78 1.90358 0.951789 0.306755i \(-0.0992432\pi\)
0.951789 + 0.306755i \(0.0992432\pi\)
\(258\) 1023.38 0.246949
\(259\) 2105.94 0.505239
\(260\) 7374.25 1.75897
\(261\) −261.790 −0.0620858
\(262\) 449.474 0.105987
\(263\) −1276.75 −0.299344 −0.149672 0.988736i \(-0.547822\pi\)
−0.149672 + 0.988736i \(0.547822\pi\)
\(264\) 605.053 0.141055
\(265\) 3705.06 0.858868
\(266\) −82.0034 −0.0189021
\(267\) −3103.28 −0.711303
\(268\) 3647.38 0.831340
\(269\) −207.570 −0.0470475 −0.0235237 0.999723i \(-0.507489\pi\)
−0.0235237 + 0.999723i \(0.507489\pi\)
\(270\) 908.550 0.204787
\(271\) −2881.93 −0.645996 −0.322998 0.946400i \(-0.604691\pi\)
−0.322998 + 0.946400i \(0.604691\pi\)
\(272\) −6499.11 −1.44877
\(273\) 3189.21 0.707031
\(274\) 40.5508 0.00894075
\(275\) 679.598 0.149023
\(276\) 0 0
\(277\) 722.581 0.156735 0.0783676 0.996925i \(-0.475029\pi\)
0.0783676 + 0.996925i \(0.475029\pi\)
\(278\) 208.367 0.0449534
\(279\) 815.965 0.175092
\(280\) −882.845 −0.188429
\(281\) 4966.45 1.05435 0.527177 0.849756i \(-0.323251\pi\)
0.527177 + 0.849756i \(0.323251\pi\)
\(282\) −1117.28 −0.235932
\(283\) 1267.55 0.266248 0.133124 0.991099i \(-0.457499\pi\)
0.133124 + 0.991099i \(0.457499\pi\)
\(284\) −1302.49 −0.272143
\(285\) −1418.86 −0.294899
\(286\) 502.028 0.103796
\(287\) −927.463 −0.190754
\(288\) −327.335 −0.0669737
\(289\) 7890.16 1.60598
\(290\) 538.089 0.108958
\(291\) −117.653 −0.0237008
\(292\) 5152.57 1.03264
\(293\) −2043.84 −0.407517 −0.203758 0.979021i \(-0.565316\pi\)
−0.203758 + 0.979021i \(0.565316\pi\)
\(294\) 807.067 0.160099
\(295\) 6689.13 1.32019
\(296\) −2165.53 −0.425232
\(297\) −1726.92 −0.337395
\(298\) 1353.66 0.263139
\(299\) 0 0
\(300\) −2180.65 −0.419666
\(301\) 2838.26 0.543503
\(302\) 1278.91 0.243686
\(303\) 8424.52 1.59728
\(304\) −1113.54 −0.210085
\(305\) −8545.08 −1.60423
\(306\) 202.147 0.0377647
\(307\) −3436.97 −0.638951 −0.319476 0.947594i \(-0.603507\pi\)
−0.319476 + 0.947594i \(0.603507\pi\)
\(308\) 824.270 0.152491
\(309\) 5863.18 1.07943
\(310\) −1677.15 −0.307277
\(311\) 884.496 0.161271 0.0806353 0.996744i \(-0.474305\pi\)
0.0806353 + 0.996744i \(0.474305\pi\)
\(312\) −3279.44 −0.595070
\(313\) −2367.43 −0.427524 −0.213762 0.976886i \(-0.568572\pi\)
−0.213762 + 0.976886i \(0.568572\pi\)
\(314\) −1692.77 −0.304232
\(315\) −362.622 −0.0648617
\(316\) 6387.18 1.13705
\(317\) −208.007 −0.0368544 −0.0184272 0.999830i \(-0.505866\pi\)
−0.0184272 + 0.999830i \(0.505866\pi\)
\(318\) −809.354 −0.142724
\(319\) −1022.77 −0.179511
\(320\) −5426.80 −0.948023
\(321\) 1183.58 0.205797
\(322\) 0 0
\(323\) 2193.66 0.377889
\(324\) 6249.55 1.07160
\(325\) −3683.48 −0.628686
\(326\) −296.256 −0.0503315
\(327\) −7969.15 −1.34769
\(328\) 953.705 0.160547
\(329\) −3098.67 −0.519256
\(330\) −510.816 −0.0852106
\(331\) −8595.84 −1.42740 −0.713701 0.700451i \(-0.752982\pi\)
−0.713701 + 0.700451i \(0.752982\pi\)
\(332\) −6352.23 −1.05007
\(333\) −889.475 −0.146375
\(334\) −123.461 −0.0202260
\(335\) −6268.89 −1.02241
\(336\) −2546.74 −0.413500
\(337\) 1404.45 0.227018 0.113509 0.993537i \(-0.463791\pi\)
0.113509 + 0.993537i \(0.463791\pi\)
\(338\) −1565.52 −0.251933
\(339\) −2985.88 −0.478380
\(340\) 11600.7 1.85039
\(341\) 3187.84 0.506250
\(342\) 34.6353 0.00547621
\(343\) 4996.81 0.786595
\(344\) −2918.56 −0.457437
\(345\) 0 0
\(346\) −1205.10 −0.187245
\(347\) −2840.44 −0.439431 −0.219716 0.975564i \(-0.570513\pi\)
−0.219716 + 0.975564i \(0.570513\pi\)
\(348\) 3281.79 0.505525
\(349\) −7353.34 −1.12784 −0.563919 0.825830i \(-0.690707\pi\)
−0.563919 + 0.825830i \(0.690707\pi\)
\(350\) 216.614 0.0330814
\(351\) 9360.08 1.42337
\(352\) −1278.84 −0.193644
\(353\) 12156.5 1.83293 0.916466 0.400112i \(-0.131029\pi\)
0.916466 + 0.400112i \(0.131029\pi\)
\(354\) −1461.21 −0.219386
\(355\) 2238.64 0.334689
\(356\) 4347.25 0.647202
\(357\) 5017.04 0.743781
\(358\) 1110.36 0.163923
\(359\) −852.313 −0.125302 −0.0626509 0.998035i \(-0.519955\pi\)
−0.0626509 + 0.998035i \(0.519955\pi\)
\(360\) 372.882 0.0545906
\(361\) −6483.15 −0.945203
\(362\) −425.611 −0.0617945
\(363\) −6367.30 −0.920652
\(364\) −4467.62 −0.643316
\(365\) −8855.92 −1.26997
\(366\) 1866.64 0.266586
\(367\) −13521.3 −1.92318 −0.961591 0.274485i \(-0.911493\pi\)
−0.961591 + 0.274485i \(0.911493\pi\)
\(368\) 0 0
\(369\) 391.728 0.0552643
\(370\) 1828.25 0.256881
\(371\) −2244.67 −0.314118
\(372\) −10228.9 −1.42566
\(373\) 2211.99 0.307058 0.153529 0.988144i \(-0.450936\pi\)
0.153529 + 0.988144i \(0.450936\pi\)
\(374\) 789.756 0.109191
\(375\) −5400.34 −0.743659
\(376\) 3186.35 0.437030
\(377\) 5543.51 0.757309
\(378\) −550.437 −0.0748979
\(379\) −952.236 −0.129058 −0.0645291 0.997916i \(-0.520555\pi\)
−0.0645291 + 0.997916i \(0.520555\pi\)
\(380\) 1987.62 0.268323
\(381\) 2858.87 0.384421
\(382\) −26.1291 −0.00349969
\(383\) 3882.00 0.517913 0.258957 0.965889i \(-0.416621\pi\)
0.258957 + 0.965889i \(0.416621\pi\)
\(384\) 5435.90 0.722395
\(385\) −1416.70 −0.187537
\(386\) −90.0220 −0.0118705
\(387\) −1198.78 −0.157461
\(388\) 164.815 0.0215650
\(389\) −8820.82 −1.14970 −0.574850 0.818259i \(-0.694940\pi\)
−0.574850 + 0.818259i \(0.694940\pi\)
\(390\) 2768.67 0.359480
\(391\) 0 0
\(392\) −2301.66 −0.296560
\(393\) −4711.63 −0.604759
\(394\) −1491.23 −0.190678
\(395\) −10977.9 −1.39837
\(396\) −348.142 −0.0441788
\(397\) −2109.41 −0.266671 −0.133336 0.991071i \(-0.542569\pi\)
−0.133336 + 0.991071i \(0.542569\pi\)
\(398\) 504.380 0.0635233
\(399\) 859.604 0.107855
\(400\) 2941.44 0.367680
\(401\) −5935.80 −0.739202 −0.369601 0.929191i \(-0.620506\pi\)
−0.369601 + 0.929191i \(0.620506\pi\)
\(402\) 1369.41 0.169901
\(403\) −17278.4 −2.13573
\(404\) −11801.5 −1.45334
\(405\) −10741.3 −1.31788
\(406\) −325.996 −0.0398496
\(407\) −3475.03 −0.423221
\(408\) −5158.99 −0.626000
\(409\) −7541.71 −0.911769 −0.455884 0.890039i \(-0.650677\pi\)
−0.455884 + 0.890039i \(0.650677\pi\)
\(410\) −805.166 −0.0969861
\(411\) −425.076 −0.0510157
\(412\) −8213.48 −0.982158
\(413\) −4052.55 −0.482840
\(414\) 0 0
\(415\) 10917.8 1.29141
\(416\) 6931.46 0.816929
\(417\) −2184.22 −0.256503
\(418\) 135.314 0.0158336
\(419\) −13311.0 −1.55200 −0.775998 0.630736i \(-0.782753\pi\)
−0.775998 + 0.630736i \(0.782753\pi\)
\(420\) 4545.82 0.528127
\(421\) −12336.5 −1.42813 −0.714065 0.700080i \(-0.753148\pi\)
−0.714065 + 0.700080i \(0.753148\pi\)
\(422\) −1002.92 −0.115690
\(423\) 1308.77 0.150436
\(424\) 2308.19 0.264376
\(425\) −5794.60 −0.661363
\(426\) −489.021 −0.0556177
\(427\) 5176.95 0.586722
\(428\) −1658.02 −0.187251
\(429\) −5262.53 −0.592255
\(430\) 2464.00 0.276336
\(431\) −2767.60 −0.309306 −0.154653 0.987969i \(-0.549426\pi\)
−0.154653 + 0.987969i \(0.549426\pi\)
\(432\) −7474.48 −0.832445
\(433\) −3315.68 −0.367994 −0.183997 0.982927i \(-0.558904\pi\)
−0.183997 + 0.982927i \(0.558904\pi\)
\(434\) 1016.09 0.112382
\(435\) −5640.55 −0.621709
\(436\) 11163.6 1.22624
\(437\) 0 0
\(438\) 1934.54 0.211041
\(439\) 7003.61 0.761421 0.380711 0.924694i \(-0.375679\pi\)
0.380711 + 0.924694i \(0.375679\pi\)
\(440\) 1456.79 0.157840
\(441\) −945.391 −0.102083
\(442\) −4280.55 −0.460645
\(443\) 4437.22 0.475888 0.237944 0.971279i \(-0.423526\pi\)
0.237944 + 0.971279i \(0.423526\pi\)
\(444\) 11150.4 1.19184
\(445\) −7471.79 −0.795948
\(446\) −1455.76 −0.154556
\(447\) −14189.8 −1.50147
\(448\) 3287.77 0.346725
\(449\) −3830.58 −0.402620 −0.201310 0.979528i \(-0.564520\pi\)
−0.201310 + 0.979528i \(0.564520\pi\)
\(450\) −91.4901 −0.00958419
\(451\) 1530.41 0.159788
\(452\) 4182.79 0.435270
\(453\) −13406.3 −1.39047
\(454\) −2442.92 −0.252537
\(455\) 7678.67 0.791168
\(456\) −883.926 −0.0907755
\(457\) −15001.0 −1.53549 −0.767745 0.640755i \(-0.778621\pi\)
−0.767745 + 0.640755i \(0.778621\pi\)
\(458\) −1045.95 −0.106712
\(459\) 14724.6 1.49736
\(460\) 0 0
\(461\) 2747.37 0.277566 0.138783 0.990323i \(-0.455681\pi\)
0.138783 + 0.990323i \(0.455681\pi\)
\(462\) 309.473 0.0311645
\(463\) −4823.85 −0.484198 −0.242099 0.970252i \(-0.577836\pi\)
−0.242099 + 0.970252i \(0.577836\pi\)
\(464\) −4426.76 −0.442904
\(465\) 17580.8 1.75332
\(466\) 213.862 0.0212596
\(467\) 13563.8 1.34403 0.672013 0.740539i \(-0.265430\pi\)
0.672013 + 0.740539i \(0.265430\pi\)
\(468\) 1886.96 0.186378
\(469\) 3797.94 0.373929
\(470\) −2690.07 −0.264008
\(471\) 17744.6 1.73594
\(472\) 4167.21 0.406380
\(473\) −4683.43 −0.455273
\(474\) 2398.07 0.232378
\(475\) −992.829 −0.0959034
\(476\) −7028.14 −0.676753
\(477\) 948.071 0.0910046
\(478\) −1870.49 −0.178984
\(479\) −16542.5 −1.57797 −0.788983 0.614415i \(-0.789392\pi\)
−0.788983 + 0.614415i \(0.789392\pi\)
\(480\) −7052.78 −0.670654
\(481\) 18835.0 1.78545
\(482\) −2.63698 −0.000249193 0
\(483\) 0 0
\(484\) 8919.68 0.837686
\(485\) −283.274 −0.0265212
\(486\) 498.427 0.0465208
\(487\) 19230.5 1.78936 0.894681 0.446705i \(-0.147403\pi\)
0.894681 + 0.446705i \(0.147403\pi\)
\(488\) −5323.43 −0.493812
\(489\) 3105.51 0.287190
\(490\) 1943.18 0.179151
\(491\) 15572.7 1.43134 0.715670 0.698439i \(-0.246122\pi\)
0.715670 + 0.698439i \(0.246122\pi\)
\(492\) −4910.69 −0.449981
\(493\) 8720.66 0.796671
\(494\) −733.417 −0.0667975
\(495\) 598.365 0.0543324
\(496\) 13797.6 1.24906
\(497\) −1356.26 −0.122407
\(498\) −2384.95 −0.214603
\(499\) −4494.97 −0.403251 −0.201626 0.979463i \(-0.564622\pi\)
−0.201626 + 0.979463i \(0.564622\pi\)
\(500\) 7565.09 0.676643
\(501\) 1294.18 0.115409
\(502\) −3601.57 −0.320211
\(503\) −3972.18 −0.352109 −0.176055 0.984380i \(-0.556334\pi\)
−0.176055 + 0.984380i \(0.556334\pi\)
\(504\) −225.907 −0.0199657
\(505\) 20283.8 1.78736
\(506\) 0 0
\(507\) 16410.7 1.43752
\(508\) −4004.87 −0.349778
\(509\) 12507.6 1.08917 0.544586 0.838705i \(-0.316687\pi\)
0.544586 + 0.838705i \(0.316687\pi\)
\(510\) 4355.48 0.378164
\(511\) 5365.28 0.464473
\(512\) −9335.05 −0.805772
\(513\) 2522.87 0.217130
\(514\) −4124.93 −0.353975
\(515\) 14116.8 1.20789
\(516\) 15027.9 1.28210
\(517\) 5113.14 0.434963
\(518\) −1107.63 −0.0939503
\(519\) 12632.5 1.06841
\(520\) −7895.93 −0.665884
\(521\) −15846.0 −1.33249 −0.666245 0.745733i \(-0.732099\pi\)
−0.666245 + 0.745733i \(0.732099\pi\)
\(522\) 137.689 0.0115450
\(523\) 6140.30 0.513377 0.256689 0.966494i \(-0.417368\pi\)
0.256689 + 0.966494i \(0.417368\pi\)
\(524\) 6600.32 0.550260
\(525\) −2270.67 −0.188762
\(526\) 671.508 0.0556638
\(527\) −27181.2 −2.24674
\(528\) 4202.39 0.346374
\(529\) 0 0
\(530\) −1948.69 −0.159709
\(531\) 1711.65 0.139886
\(532\) −1204.18 −0.0981351
\(533\) −8294.99 −0.674101
\(534\) 1632.18 0.132268
\(535\) 2849.70 0.230287
\(536\) −3905.41 −0.314716
\(537\) −11639.4 −0.935340
\(538\) 109.172 0.00874859
\(539\) −3693.48 −0.295157
\(540\) 13341.6 1.06321
\(541\) −8637.61 −0.686432 −0.343216 0.939257i \(-0.611516\pi\)
−0.343216 + 0.939257i \(0.611516\pi\)
\(542\) 1515.76 0.120125
\(543\) 4461.48 0.352598
\(544\) 10904.1 0.859391
\(545\) −19187.4 −1.50807
\(546\) −1677.37 −0.131474
\(547\) −11081.5 −0.866197 −0.433098 0.901347i \(-0.642580\pi\)
−0.433098 + 0.901347i \(0.642580\pi\)
\(548\) 595.470 0.0464183
\(549\) −2186.56 −0.169982
\(550\) −357.436 −0.0277112
\(551\) 1494.17 0.115524
\(552\) 0 0
\(553\) 6650.85 0.511434
\(554\) −380.043 −0.0291453
\(555\) −19164.7 −1.46576
\(556\) 3059.78 0.233388
\(557\) −20212.8 −1.53760 −0.768800 0.639490i \(-0.779146\pi\)
−0.768800 + 0.639490i \(0.779146\pi\)
\(558\) −429.159 −0.0325587
\(559\) 25384.6 1.92067
\(560\) −6131.79 −0.462706
\(561\) −8278.65 −0.623039
\(562\) −2612.12 −0.196060
\(563\) −23081.6 −1.72784 −0.863921 0.503628i \(-0.831998\pi\)
−0.863921 + 0.503628i \(0.831998\pi\)
\(564\) −16406.7 −1.22491
\(565\) −7189.12 −0.535307
\(566\) −666.673 −0.0495095
\(567\) 6507.54 0.481995
\(568\) 1394.63 0.103024
\(569\) −7342.08 −0.540942 −0.270471 0.962728i \(-0.587179\pi\)
−0.270471 + 0.962728i \(0.587179\pi\)
\(570\) 746.254 0.0548371
\(571\) 8612.40 0.631204 0.315602 0.948892i \(-0.397794\pi\)
0.315602 + 0.948892i \(0.397794\pi\)
\(572\) 7372.05 0.538883
\(573\) 273.899 0.0199691
\(574\) 487.802 0.0354712
\(575\) 0 0
\(576\) −1388.64 −0.100451
\(577\) −2681.66 −0.193482 −0.0967409 0.995310i \(-0.530842\pi\)
−0.0967409 + 0.995310i \(0.530842\pi\)
\(578\) −4149.85 −0.298635
\(579\) 943.660 0.0677326
\(580\) 7901.59 0.565682
\(581\) −6614.46 −0.472313
\(582\) 61.8799 0.00440722
\(583\) 3703.95 0.263125
\(584\) −5517.08 −0.390922
\(585\) −3243.20 −0.229213
\(586\) 1074.96 0.0757787
\(587\) 11195.6 0.787212 0.393606 0.919279i \(-0.371227\pi\)
0.393606 + 0.919279i \(0.371227\pi\)
\(588\) 11851.4 0.831196
\(589\) −4657.14 −0.325796
\(590\) −3518.17 −0.245493
\(591\) 15631.9 1.08800
\(592\) −15040.6 −1.04420
\(593\) 1586.06 0.109835 0.0549173 0.998491i \(-0.482510\pi\)
0.0549173 + 0.998491i \(0.482510\pi\)
\(594\) 908.280 0.0627393
\(595\) 12079.5 0.832290
\(596\) 19877.9 1.36616
\(597\) −5287.19 −0.362463
\(598\) 0 0
\(599\) −15953.8 −1.08824 −0.544118 0.839009i \(-0.683136\pi\)
−0.544118 + 0.839009i \(0.683136\pi\)
\(600\) 2334.91 0.158871
\(601\) 26086.6 1.77054 0.885271 0.465076i \(-0.153973\pi\)
0.885271 + 0.465076i \(0.153973\pi\)
\(602\) −1492.79 −0.101066
\(603\) −1604.12 −0.108333
\(604\) 18780.3 1.26516
\(605\) −15330.6 −1.03021
\(606\) −4430.90 −0.297018
\(607\) 6777.03 0.453165 0.226583 0.973992i \(-0.427245\pi\)
0.226583 + 0.973992i \(0.427245\pi\)
\(608\) 1868.27 0.124619
\(609\) 3417.27 0.227381
\(610\) 4494.31 0.298310
\(611\) −27713.7 −1.83499
\(612\) 2968.44 0.196065
\(613\) −4054.63 −0.267154 −0.133577 0.991038i \(-0.542646\pi\)
−0.133577 + 0.991038i \(0.542646\pi\)
\(614\) 1807.68 0.118815
\(615\) 8440.18 0.553400
\(616\) −882.582 −0.0577276
\(617\) −24978.8 −1.62984 −0.814919 0.579575i \(-0.803218\pi\)
−0.814919 + 0.579575i \(0.803218\pi\)
\(618\) −3083.76 −0.200723
\(619\) 9933.57 0.645014 0.322507 0.946567i \(-0.395474\pi\)
0.322507 + 0.946567i \(0.395474\pi\)
\(620\) −24628.2 −1.59531
\(621\) 0 0
\(622\) −465.203 −0.0299886
\(623\) 4526.71 0.291106
\(624\) −22777.3 −1.46126
\(625\) −19403.8 −1.24184
\(626\) 1245.16 0.0794992
\(627\) −1418.44 −0.0903461
\(628\) −24857.6 −1.57950
\(629\) 29629.9 1.87825
\(630\) 190.722 0.0120612
\(631\) −7605.27 −0.479811 −0.239906 0.970796i \(-0.577117\pi\)
−0.239906 + 0.970796i \(0.577117\pi\)
\(632\) −6839.03 −0.430446
\(633\) 10513.1 0.660124
\(634\) 109.402 0.00685316
\(635\) 6883.32 0.430167
\(636\) −11885.0 −0.740991
\(637\) 20019.0 1.24519
\(638\) 537.929 0.0333806
\(639\) 572.835 0.0354632
\(640\) 13088.0 0.808360
\(641\) −3860.63 −0.237887 −0.118944 0.992901i \(-0.537951\pi\)
−0.118944 + 0.992901i \(0.537951\pi\)
\(642\) −622.506 −0.0382684
\(643\) −10167.9 −0.623612 −0.311806 0.950146i \(-0.600934\pi\)
−0.311806 + 0.950146i \(0.600934\pi\)
\(644\) 0 0
\(645\) −25829.0 −1.57677
\(646\) −1153.76 −0.0702694
\(647\) 9334.86 0.567220 0.283610 0.958940i \(-0.408468\pi\)
0.283610 + 0.958940i \(0.408468\pi\)
\(648\) −6691.67 −0.405669
\(649\) 6687.14 0.404458
\(650\) 1937.34 0.116906
\(651\) −10651.2 −0.641248
\(652\) −4350.38 −0.261310
\(653\) 14456.3 0.866337 0.433169 0.901313i \(-0.357395\pi\)
0.433169 + 0.901313i \(0.357395\pi\)
\(654\) 4191.40 0.250607
\(655\) −11344.2 −0.676726
\(656\) 6623.95 0.394241
\(657\) −2266.10 −0.134565
\(658\) 1629.76 0.0965570
\(659\) 16757.3 0.990548 0.495274 0.868737i \(-0.335068\pi\)
0.495274 + 0.868737i \(0.335068\pi\)
\(660\) −7501.09 −0.442393
\(661\) 8857.65 0.521214 0.260607 0.965445i \(-0.416077\pi\)
0.260607 + 0.965445i \(0.416077\pi\)
\(662\) 4521.00 0.265429
\(663\) 44871.1 2.62843
\(664\) 6801.61 0.397521
\(665\) 2069.67 0.120689
\(666\) 467.822 0.0272188
\(667\) 0 0
\(668\) −1812.96 −0.105009
\(669\) 15260.0 0.881894
\(670\) 3297.14 0.190119
\(671\) −8542.53 −0.491476
\(672\) 4272.86 0.245282
\(673\) 4643.19 0.265946 0.132973 0.991120i \(-0.457548\pi\)
0.132973 + 0.991120i \(0.457548\pi\)
\(674\) −738.673 −0.0422145
\(675\) −6664.23 −0.380010
\(676\) −22989.0 −1.30798
\(677\) −5056.01 −0.287028 −0.143514 0.989648i \(-0.545840\pi\)
−0.143514 + 0.989648i \(0.545840\pi\)
\(678\) 1570.43 0.0889559
\(679\) 171.619 0.00969973
\(680\) −12421.3 −0.700494
\(681\) 25608.0 1.44097
\(682\) −1676.65 −0.0941384
\(683\) 20822.5 1.16655 0.583274 0.812276i \(-0.301771\pi\)
0.583274 + 0.812276i \(0.301771\pi\)
\(684\) 508.604 0.0284312
\(685\) −1023.46 −0.0570865
\(686\) −2628.08 −0.146269
\(687\) 10964.2 0.608897
\(688\) −20270.9 −1.12328
\(689\) −20075.8 −1.11005
\(690\) 0 0
\(691\) −14920.6 −0.821429 −0.410715 0.911764i \(-0.634721\pi\)
−0.410715 + 0.911764i \(0.634721\pi\)
\(692\) −17696.4 −0.972132
\(693\) −362.514 −0.0198712
\(694\) 1493.94 0.0817133
\(695\) −5258.96 −0.287027
\(696\) −3513.96 −0.191374
\(697\) −13049.1 −0.709139
\(698\) 3867.51 0.209724
\(699\) −2241.82 −0.121307
\(700\) 3180.88 0.171751
\(701\) −20379.9 −1.09806 −0.549030 0.835803i \(-0.685003\pi\)
−0.549030 + 0.835803i \(0.685003\pi\)
\(702\) −4922.96 −0.264680
\(703\) 5076.69 0.272363
\(704\) −5425.18 −0.290439
\(705\) 28198.8 1.50642
\(706\) −6393.75 −0.340838
\(707\) −12288.7 −0.653698
\(708\) −21457.2 −1.13900
\(709\) 6321.71 0.334861 0.167431 0.985884i \(-0.446453\pi\)
0.167431 + 0.985884i \(0.446453\pi\)
\(710\) −1177.42 −0.0622362
\(711\) −2809.08 −0.148170
\(712\) −4654.79 −0.245008
\(713\) 0 0
\(714\) −2638.72 −0.138308
\(715\) −12670.6 −0.662734
\(716\) 16305.1 0.851049
\(717\) 19607.5 1.02128
\(718\) 448.277 0.0233002
\(719\) −30340.8 −1.57374 −0.786872 0.617117i \(-0.788301\pi\)
−0.786872 + 0.617117i \(0.788301\pi\)
\(720\) 2589.85 0.134053
\(721\) −8552.54 −0.441766
\(722\) 3409.83 0.175763
\(723\) 27.6423 0.00142189
\(724\) −6249.89 −0.320822
\(725\) −3946.90 −0.202185
\(726\) 3348.90 0.171198
\(727\) −36267.5 −1.85019 −0.925093 0.379740i \(-0.876013\pi\)
−0.925093 + 0.379740i \(0.876013\pi\)
\(728\) 4783.68 0.243537
\(729\) 16622.9 0.844532
\(730\) 4657.80 0.236155
\(731\) 39933.3 2.02050
\(732\) 27410.7 1.38405
\(733\) 29209.9 1.47189 0.735943 0.677044i \(-0.236739\pi\)
0.735943 + 0.677044i \(0.236739\pi\)
\(734\) 7111.59 0.357620
\(735\) −20369.5 −1.02223
\(736\) 0 0
\(737\) −6267.02 −0.313227
\(738\) −206.030 −0.0102765
\(739\) −31867.0 −1.58626 −0.793130 0.609053i \(-0.791550\pi\)
−0.793130 + 0.609053i \(0.791550\pi\)
\(740\) 26846.9 1.33367
\(741\) 7688.07 0.381145
\(742\) 1180.59 0.0584110
\(743\) 32890.4 1.62400 0.812000 0.583658i \(-0.198379\pi\)
0.812000 + 0.583658i \(0.198379\pi\)
\(744\) 10952.6 0.539704
\(745\) −34164.9 −1.68014
\(746\) −1163.40 −0.0570982
\(747\) 2793.71 0.136836
\(748\) 11597.2 0.566892
\(749\) −1726.47 −0.0842239
\(750\) 2840.32 0.138285
\(751\) −24756.8 −1.20292 −0.601458 0.798904i \(-0.705413\pi\)
−0.601458 + 0.798904i \(0.705413\pi\)
\(752\) 22130.7 1.07317
\(753\) 37753.7 1.82712
\(754\) −2915.63 −0.140823
\(755\) −32278.4 −1.55593
\(756\) −8082.91 −0.388852
\(757\) 14933.4 0.716992 0.358496 0.933531i \(-0.383290\pi\)
0.358496 + 0.933531i \(0.383290\pi\)
\(758\) 500.831 0.0239987
\(759\) 0 0
\(760\) −2128.23 −0.101578
\(761\) 1953.15 0.0930375 0.0465187 0.998917i \(-0.485187\pi\)
0.0465187 + 0.998917i \(0.485187\pi\)
\(762\) −1503.63 −0.0714840
\(763\) 11624.5 0.551552
\(764\) −383.693 −0.0181696
\(765\) −5101.97 −0.241127
\(766\) −2041.75 −0.0963072
\(767\) −36244.9 −1.70629
\(768\) 15172.4 0.712874
\(769\) 35847.6 1.68101 0.840505 0.541803i \(-0.182258\pi\)
0.840505 + 0.541803i \(0.182258\pi\)
\(770\) 745.119 0.0348730
\(771\) 43239.8 2.01977
\(772\) −1321.93 −0.0616287
\(773\) 31989.4 1.48846 0.744231 0.667923i \(-0.232816\pi\)
0.744231 + 0.667923i \(0.232816\pi\)
\(774\) 630.501 0.0292802
\(775\) 12302.0 0.570192
\(776\) −176.474 −0.00816374
\(777\) 11610.7 0.536078
\(778\) 4639.34 0.213790
\(779\) −2235.79 −0.102831
\(780\) 40656.6 1.86633
\(781\) 2237.97 0.102536
\(782\) 0 0
\(783\) 10029.4 0.457756
\(784\) −15986.2 −0.728233
\(785\) 42723.7 1.94252
\(786\) 2478.10 0.112456
\(787\) −147.774 −0.00669322 −0.00334661 0.999994i \(-0.501065\pi\)
−0.00334661 + 0.999994i \(0.501065\pi\)
\(788\) −21898.0 −0.989956
\(789\) −7039.11 −0.317616
\(790\) 5773.85 0.260031
\(791\) 4355.46 0.195780
\(792\) 372.771 0.0167246
\(793\) 46301.3 2.07340
\(794\) 1109.45 0.0495881
\(795\) 20427.2 0.911293
\(796\) 7406.59 0.329798
\(797\) −9020.44 −0.400904 −0.200452 0.979704i \(-0.564241\pi\)
−0.200452 + 0.979704i \(0.564241\pi\)
\(798\) −452.111 −0.0200558
\(799\) −43597.3 −1.93036
\(800\) −4935.09 −0.218102
\(801\) −1911.92 −0.0843376
\(802\) 3121.95 0.137456
\(803\) −8853.28 −0.389073
\(804\) 20109.2 0.882084
\(805\) 0 0
\(806\) 9087.62 0.397144
\(807\) −1144.40 −0.0499192
\(808\) 12636.4 0.550183
\(809\) 27220.0 1.18295 0.591473 0.806325i \(-0.298547\pi\)
0.591473 + 0.806325i \(0.298547\pi\)
\(810\) 5649.44 0.245063
\(811\) −5041.04 −0.218267 −0.109134 0.994027i \(-0.534808\pi\)
−0.109134 + 0.994027i \(0.534808\pi\)
\(812\) −4787.10 −0.206890
\(813\) −15889.0 −0.685428
\(814\) 1827.70 0.0786989
\(815\) 7477.16 0.321366
\(816\) −35831.7 −1.53721
\(817\) 6842.05 0.292990
\(818\) 3966.58 0.169546
\(819\) 1964.86 0.0838312
\(820\) −11823.5 −0.503529
\(821\) −46345.6 −1.97013 −0.985063 0.172196i \(-0.944914\pi\)
−0.985063 + 0.172196i \(0.944914\pi\)
\(822\) 223.570 0.00948649
\(823\) 18019.6 0.763213 0.381606 0.924325i \(-0.375371\pi\)
0.381606 + 0.924325i \(0.375371\pi\)
\(824\) 8794.53 0.371811
\(825\) 3746.84 0.158119
\(826\) 2131.45 0.0897852
\(827\) 20971.1 0.881783 0.440892 0.897560i \(-0.354662\pi\)
0.440892 + 0.897560i \(0.354662\pi\)
\(828\) 0 0
\(829\) −21672.6 −0.907987 −0.453993 0.891005i \(-0.650001\pi\)
−0.453993 + 0.891005i \(0.650001\pi\)
\(830\) −5742.26 −0.240141
\(831\) 3983.82 0.166302
\(832\) 29405.0 1.22528
\(833\) 31492.5 1.30991
\(834\) 1148.80 0.0476973
\(835\) 3116.01 0.129142
\(836\) 1987.03 0.0822043
\(837\) −31260.4 −1.29094
\(838\) 7000.97 0.288597
\(839\) −10256.1 −0.422028 −0.211014 0.977483i \(-0.567677\pi\)
−0.211014 + 0.977483i \(0.567677\pi\)
\(840\) −4867.41 −0.199930
\(841\) −18449.1 −0.756450
\(842\) 6488.40 0.265564
\(843\) 27381.6 1.11871
\(844\) −14727.4 −0.600636
\(845\) 39512.0 1.60859
\(846\) −688.351 −0.0279740
\(847\) 9287.89 0.376784
\(848\) 16031.5 0.649202
\(849\) 6988.43 0.282500
\(850\) 3047.69 0.122982
\(851\) 0 0
\(852\) −7181.05 −0.288754
\(853\) −31765.3 −1.27506 −0.637528 0.770427i \(-0.720043\pi\)
−0.637528 + 0.770427i \(0.720043\pi\)
\(854\) −2722.83 −0.109102
\(855\) −874.156 −0.0349655
\(856\) 1775.32 0.0708867
\(857\) −8899.70 −0.354735 −0.177368 0.984145i \(-0.556758\pi\)
−0.177368 + 0.984145i \(0.556758\pi\)
\(858\) 2767.84 0.110131
\(859\) −32318.1 −1.28368 −0.641839 0.766839i \(-0.721828\pi\)
−0.641839 + 0.766839i \(0.721828\pi\)
\(860\) 36182.7 1.43467
\(861\) −5113.41 −0.202398
\(862\) 1455.63 0.0575162
\(863\) −36462.4 −1.43823 −0.719116 0.694890i \(-0.755453\pi\)
−0.719116 + 0.694890i \(0.755453\pi\)
\(864\) 12540.5 0.493793
\(865\) 30415.4 1.19556
\(866\) 1743.89 0.0684294
\(867\) 43501.0 1.70400
\(868\) 14920.8 0.583461
\(869\) −10974.6 −0.428410
\(870\) 2966.66 0.115608
\(871\) 33967.8 1.32142
\(872\) −11953.4 −0.464212
\(873\) −72.4856 −0.00281016
\(874\) 0 0
\(875\) 7877.39 0.304348
\(876\) 28407.8 1.09567
\(877\) −34016.2 −1.30975 −0.654873 0.755739i \(-0.727278\pi\)
−0.654873 + 0.755739i \(0.727278\pi\)
\(878\) −3683.57 −0.141588
\(879\) −11268.4 −0.432392
\(880\) 10118.1 0.387593
\(881\) 15355.4 0.587215 0.293607 0.955926i \(-0.405144\pi\)
0.293607 + 0.955926i \(0.405144\pi\)
\(882\) 497.231 0.0189826
\(883\) 9153.83 0.348868 0.174434 0.984669i \(-0.444190\pi\)
0.174434 + 0.984669i \(0.444190\pi\)
\(884\) −62857.9 −2.39156
\(885\) 36879.3 1.40077
\(886\) −2333.77 −0.0884926
\(887\) 23619.1 0.894083 0.447042 0.894513i \(-0.352478\pi\)
0.447042 + 0.894513i \(0.352478\pi\)
\(888\) −11939.3 −0.451188
\(889\) −4170.19 −0.157327
\(890\) 3929.81 0.148008
\(891\) −10738.1 −0.403750
\(892\) −21377.1 −0.802420
\(893\) −7469.82 −0.279920
\(894\) 7463.17 0.279201
\(895\) −28024.3 −1.04665
\(896\) −7929.27 −0.295645
\(897\) 0 0
\(898\) 2014.70 0.0748681
\(899\) −18514.0 −0.686848
\(900\) −1343.49 −0.0497589
\(901\) −31581.8 −1.16775
\(902\) −804.926 −0.0297130
\(903\) 15648.2 0.576678
\(904\) −4478.70 −0.164778
\(905\) 10741.9 0.394557
\(906\) 7051.07 0.258561
\(907\) 19901.5 0.728575 0.364287 0.931287i \(-0.381313\pi\)
0.364287 + 0.931287i \(0.381313\pi\)
\(908\) −35873.2 −1.31112
\(909\) 5190.32 0.189386
\(910\) −4038.62 −0.147120
\(911\) 15534.2 0.564951 0.282475 0.959275i \(-0.408844\pi\)
0.282475 + 0.959275i \(0.408844\pi\)
\(912\) −6139.30 −0.222908
\(913\) 10914.6 0.395640
\(914\) 7889.84 0.285528
\(915\) −47111.8 −1.70215
\(916\) −15359.3 −0.554025
\(917\) 6872.79 0.247502
\(918\) −7744.46 −0.278437
\(919\) 5021.93 0.180259 0.0901296 0.995930i \(-0.471272\pi\)
0.0901296 + 0.995930i \(0.471272\pi\)
\(920\) 0 0
\(921\) −18949.1 −0.677953
\(922\) −1444.99 −0.0516140
\(923\) −12130.0 −0.432572
\(924\) 4544.47 0.161799
\(925\) −13410.2 −0.476676
\(926\) 2537.12 0.0900377
\(927\) 3612.29 0.127986
\(928\) 7427.13 0.262724
\(929\) 33025.9 1.16635 0.583177 0.812345i \(-0.301809\pi\)
0.583177 + 0.812345i \(0.301809\pi\)
\(930\) −9246.69 −0.326033
\(931\) 5395.84 0.189948
\(932\) 3140.46 0.110375
\(933\) 4876.51 0.171114
\(934\) −7133.94 −0.249925
\(935\) −19932.5 −0.697180
\(936\) −2020.46 −0.0705562
\(937\) −19265.7 −0.671700 −0.335850 0.941916i \(-0.609023\pi\)
−0.335850 + 0.941916i \(0.609023\pi\)
\(938\) −1997.54 −0.0695330
\(939\) −13052.4 −0.453620
\(940\) −39502.5 −1.37067
\(941\) 51333.4 1.77834 0.889172 0.457573i \(-0.151281\pi\)
0.889172 + 0.457573i \(0.151281\pi\)
\(942\) −9332.82 −0.322802
\(943\) 0 0
\(944\) 28943.3 0.997908
\(945\) 13892.4 0.478222
\(946\) 2463.26 0.0846592
\(947\) −39799.6 −1.36570 −0.682848 0.730560i \(-0.739259\pi\)
−0.682848 + 0.730560i \(0.739259\pi\)
\(948\) 35214.6 1.20645
\(949\) 47985.6 1.64139
\(950\) 522.181 0.0178335
\(951\) −1146.81 −0.0391040
\(952\) 7525.34 0.256195
\(953\) 15167.6 0.515559 0.257779 0.966204i \(-0.417009\pi\)
0.257779 + 0.966204i \(0.417009\pi\)
\(954\) −498.641 −0.0169225
\(955\) 659.469 0.0223454
\(956\) −27467.2 −0.929241
\(957\) −5638.86 −0.190469
\(958\) 8700.57 0.293427
\(959\) 620.051 0.0208785
\(960\) −29919.7 −1.00589
\(961\) 27914.7 0.937017
\(962\) −9906.31 −0.332009
\(963\) 729.198 0.0244009
\(964\) −38.7229 −0.00129375
\(965\) 2272.05 0.0757928
\(966\) 0 0
\(967\) −14243.5 −0.473673 −0.236836 0.971550i \(-0.576110\pi\)
−0.236836 + 0.971550i \(0.576110\pi\)
\(968\) −9550.69 −0.317119
\(969\) 12094.3 0.400956
\(970\) 148.989 0.00493168
\(971\) −53306.9 −1.76179 −0.880896 0.473309i \(-0.843059\pi\)
−0.880896 + 0.473309i \(0.843059\pi\)
\(972\) 7319.16 0.241525
\(973\) 3186.09 0.104976
\(974\) −10114.4 −0.332736
\(975\) −20308.2 −0.667061
\(976\) −36973.8 −1.21261
\(977\) 2388.35 0.0782090 0.0391045 0.999235i \(-0.487549\pi\)
0.0391045 + 0.999235i \(0.487549\pi\)
\(978\) −1633.35 −0.0534037
\(979\) −7469.56 −0.243849
\(980\) 28534.7 0.930109
\(981\) −4909.77 −0.159793
\(982\) −8190.53 −0.266161
\(983\) −10132.0 −0.328749 −0.164375 0.986398i \(-0.552561\pi\)
−0.164375 + 0.986398i \(0.552561\pi\)
\(984\) 5258.09 0.170347
\(985\) 37637.0 1.21748
\(986\) −4586.66 −0.148143
\(987\) −17084.0 −0.550951
\(988\) −10769.9 −0.346797
\(989\) 0 0
\(990\) −314.712 −0.0101032
\(991\) 55273.5 1.77177 0.885883 0.463908i \(-0.153553\pi\)
0.885883 + 0.463908i \(0.153553\pi\)
\(992\) −23149.4 −0.740921
\(993\) −47391.6 −1.51453
\(994\) 713.328 0.0227620
\(995\) −12730.0 −0.405596
\(996\) −35021.9 −1.11417
\(997\) 11176.8 0.355037 0.177519 0.984117i \(-0.443193\pi\)
0.177519 + 0.984117i \(0.443193\pi\)
\(998\) 2364.14 0.0749856
\(999\) 34076.6 1.07922
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 529.4.a.m.1.12 25
23.5 odd 22 23.4.c.a.2.3 50
23.14 odd 22 23.4.c.a.12.3 yes 50
23.22 odd 2 529.4.a.n.1.12 25
69.5 even 22 207.4.i.a.163.3 50
69.14 even 22 207.4.i.a.127.3 50
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
23.4.c.a.2.3 50 23.5 odd 22
23.4.c.a.12.3 yes 50 23.14 odd 22
207.4.i.a.127.3 50 69.14 even 22
207.4.i.a.163.3 50 69.5 even 22
529.4.a.m.1.12 25 1.1 even 1 trivial
529.4.a.n.1.12 25 23.22 odd 2