Properties

Label 529.4.a.m.1.11
Level $529$
Weight $4$
Character 529.1
Self dual yes
Analytic conductor $31.212$
Analytic rank $1$
Dimension $25$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [529,4,Mod(1,529)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(529, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0])) N = Newforms(chi, 4, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("529.1"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Level: \( N \) \(=\) \( 529 = 23^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 529.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [25,0,-1,80,-51] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(31.2120103930\)
Analytic rank: \(1\)
Dimension: \(25\)
Twist minimal: no (minimal twist has level 23)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.11
Character \(\chi\) \(=\) 529.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-0.741592 q^{2} -1.75597 q^{3} -7.45004 q^{4} -4.00517 q^{5} +1.30221 q^{6} +2.72150 q^{7} +11.4576 q^{8} -23.9166 q^{9} +2.97020 q^{10} +36.6170 q^{11} +13.0820 q^{12} +9.08078 q^{13} -2.01825 q^{14} +7.03294 q^{15} +51.1034 q^{16} +4.70374 q^{17} +17.7364 q^{18} +84.9667 q^{19} +29.8387 q^{20} -4.77887 q^{21} -27.1549 q^{22} -20.1192 q^{24} -108.959 q^{25} -6.73423 q^{26} +89.4078 q^{27} -20.2753 q^{28} +39.1774 q^{29} -5.21557 q^{30} +87.0080 q^{31} -129.559 q^{32} -64.2981 q^{33} -3.48826 q^{34} -10.9001 q^{35} +178.180 q^{36} -147.335 q^{37} -63.0107 q^{38} -15.9455 q^{39} -45.8898 q^{40} -353.555 q^{41} +3.54397 q^{42} +349.828 q^{43} -272.798 q^{44} +95.7900 q^{45} +321.926 q^{47} -89.7359 q^{48} -335.593 q^{49} +80.8029 q^{50} -8.25960 q^{51} -67.6522 q^{52} -415.006 q^{53} -66.3041 q^{54} -146.657 q^{55} +31.1820 q^{56} -149.199 q^{57} -29.0536 q^{58} +595.589 q^{59} -52.3957 q^{60} -852.821 q^{61} -64.5244 q^{62} -65.0891 q^{63} -312.748 q^{64} -36.3701 q^{65} +47.6830 q^{66} -1006.39 q^{67} -35.0430 q^{68} +8.08342 q^{70} -390.513 q^{71} -274.027 q^{72} +799.770 q^{73} +109.262 q^{74} +191.328 q^{75} -633.006 q^{76} +99.6532 q^{77} +11.8251 q^{78} -655.439 q^{79} -204.678 q^{80} +488.751 q^{81} +262.194 q^{82} -847.681 q^{83} +35.6028 q^{84} -18.8393 q^{85} -259.429 q^{86} -68.7941 q^{87} +419.544 q^{88} +903.021 q^{89} -71.0371 q^{90} +24.7134 q^{91} -152.783 q^{93} -238.738 q^{94} -340.306 q^{95} +227.501 q^{96} -1076.73 q^{97} +248.873 q^{98} -875.753 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 25 q - q^{3} + 80 q^{4} - 51 q^{5} + 86 q^{6} - 73 q^{7} + 3 q^{8} + 166 q^{9} - 139 q^{10} - 221 q^{11} - 191 q^{12} - 27 q^{13} - 372 q^{14} - 310 q^{15} + 152 q^{16} - 365 q^{17} - 538 q^{18} - 405 q^{19}+ \cdots - 7317 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.741592 −0.262192 −0.131096 0.991370i \(-0.541850\pi\)
−0.131096 + 0.991370i \(0.541850\pi\)
\(3\) −1.75597 −0.337936 −0.168968 0.985622i \(-0.554043\pi\)
−0.168968 + 0.985622i \(0.554043\pi\)
\(4\) −7.45004 −0.931255
\(5\) −4.00517 −0.358233 −0.179117 0.983828i \(-0.557324\pi\)
−0.179117 + 0.983828i \(0.557324\pi\)
\(6\) 1.30221 0.0886042
\(7\) 2.72150 0.146947 0.0734737 0.997297i \(-0.476591\pi\)
0.0734737 + 0.997297i \(0.476591\pi\)
\(8\) 11.4576 0.506360
\(9\) −23.9166 −0.885799
\(10\) 2.97020 0.0939261
\(11\) 36.6170 1.00368 0.501838 0.864962i \(-0.332657\pi\)
0.501838 + 0.864962i \(0.332657\pi\)
\(12\) 13.0820 0.314704
\(13\) 9.08078 0.193735 0.0968675 0.995297i \(-0.469118\pi\)
0.0968675 + 0.995297i \(0.469118\pi\)
\(14\) −2.01825 −0.0385285
\(15\) 7.03294 0.121060
\(16\) 51.1034 0.798491
\(17\) 4.70374 0.0671073 0.0335537 0.999437i \(-0.489318\pi\)
0.0335537 + 0.999437i \(0.489318\pi\)
\(18\) 17.7364 0.232250
\(19\) 84.9667 1.02593 0.512966 0.858409i \(-0.328547\pi\)
0.512966 + 0.858409i \(0.328547\pi\)
\(20\) 29.8387 0.333607
\(21\) −4.77887 −0.0496588
\(22\) −27.1549 −0.263156
\(23\) 0 0
\(24\) −20.1192 −0.171117
\(25\) −108.959 −0.871669
\(26\) −6.73423 −0.0507958
\(27\) 89.4078 0.637279
\(28\) −20.2753 −0.136846
\(29\) 39.1774 0.250864 0.125432 0.992102i \(-0.459968\pi\)
0.125432 + 0.992102i \(0.459968\pi\)
\(30\) −5.21557 −0.0317410
\(31\) 87.0080 0.504100 0.252050 0.967714i \(-0.418895\pi\)
0.252050 + 0.967714i \(0.418895\pi\)
\(32\) −129.559 −0.715719
\(33\) −64.2981 −0.339178
\(34\) −3.48826 −0.0175950
\(35\) −10.9001 −0.0526415
\(36\) 178.180 0.824905
\(37\) −147.335 −0.654640 −0.327320 0.944914i \(-0.606145\pi\)
−0.327320 + 0.944914i \(0.606145\pi\)
\(38\) −63.0107 −0.268992
\(39\) −15.9455 −0.0654700
\(40\) −45.8898 −0.181395
\(41\) −353.555 −1.34673 −0.673367 0.739309i \(-0.735152\pi\)
−0.673367 + 0.739309i \(0.735152\pi\)
\(42\) 3.54397 0.0130202
\(43\) 349.828 1.24066 0.620328 0.784343i \(-0.287000\pi\)
0.620328 + 0.784343i \(0.287000\pi\)
\(44\) −272.798 −0.934678
\(45\) 95.7900 0.317323
\(46\) 0 0
\(47\) 321.926 0.999100 0.499550 0.866285i \(-0.333499\pi\)
0.499550 + 0.866285i \(0.333499\pi\)
\(48\) −89.7359 −0.269839
\(49\) −335.593 −0.978406
\(50\) 80.8029 0.228545
\(51\) −8.25960 −0.0226780
\(52\) −67.6522 −0.180417
\(53\) −415.006 −1.07557 −0.537787 0.843081i \(-0.680740\pi\)
−0.537787 + 0.843081i \(0.680740\pi\)
\(54\) −66.3041 −0.167090
\(55\) −146.657 −0.359550
\(56\) 31.1820 0.0744084
\(57\) −149.199 −0.346699
\(58\) −29.0536 −0.0657746
\(59\) 595.589 1.31422 0.657111 0.753794i \(-0.271778\pi\)
0.657111 + 0.753794i \(0.271778\pi\)
\(60\) −52.3957 −0.112738
\(61\) −852.821 −1.79004 −0.895021 0.446024i \(-0.852840\pi\)
−0.895021 + 0.446024i \(0.852840\pi\)
\(62\) −64.5244 −0.132171
\(63\) −65.0891 −0.130166
\(64\) −312.748 −0.610835
\(65\) −36.3701 −0.0694023
\(66\) 47.6830 0.0889298
\(67\) −1006.39 −1.83507 −0.917536 0.397652i \(-0.869825\pi\)
−0.917536 + 0.397652i \(0.869825\pi\)
\(68\) −35.0430 −0.0624940
\(69\) 0 0
\(70\) 8.08342 0.0138022
\(71\) −390.513 −0.652751 −0.326376 0.945240i \(-0.605827\pi\)
−0.326376 + 0.945240i \(0.605827\pi\)
\(72\) −274.027 −0.448534
\(73\) 799.770 1.28227 0.641137 0.767426i \(-0.278463\pi\)
0.641137 + 0.767426i \(0.278463\pi\)
\(74\) 109.262 0.171642
\(75\) 191.328 0.294568
\(76\) −633.006 −0.955404
\(77\) 99.6532 0.147488
\(78\) 11.8251 0.0171657
\(79\) −655.439 −0.933451 −0.466726 0.884402i \(-0.654566\pi\)
−0.466726 + 0.884402i \(0.654566\pi\)
\(80\) −204.678 −0.286046
\(81\) 488.751 0.670440
\(82\) 262.194 0.353103
\(83\) −847.681 −1.12103 −0.560513 0.828146i \(-0.689396\pi\)
−0.560513 + 0.828146i \(0.689396\pi\)
\(84\) 35.6028 0.0462450
\(85\) −18.8393 −0.0240401
\(86\) −259.429 −0.325291
\(87\) −68.7941 −0.0847759
\(88\) 419.544 0.508222
\(89\) 903.021 1.07551 0.537753 0.843102i \(-0.319273\pi\)
0.537753 + 0.843102i \(0.319273\pi\)
\(90\) −71.0371 −0.0831997
\(91\) 24.7134 0.0284689
\(92\) 0 0
\(93\) −152.783 −0.170353
\(94\) −238.738 −0.261956
\(95\) −340.306 −0.367523
\(96\) 227.501 0.241867
\(97\) −1076.73 −1.12707 −0.563533 0.826093i \(-0.690558\pi\)
−0.563533 + 0.826093i \(0.690558\pi\)
\(98\) 248.873 0.256531
\(99\) −875.753 −0.889055
\(100\) 811.746 0.811746
\(101\) −1535.18 −1.51244 −0.756219 0.654319i \(-0.772955\pi\)
−0.756219 + 0.654319i \(0.772955\pi\)
\(102\) 6.12526 0.00594599
\(103\) 948.606 0.907465 0.453733 0.891138i \(-0.350092\pi\)
0.453733 + 0.891138i \(0.350092\pi\)
\(104\) 104.044 0.0980997
\(105\) 19.1402 0.0177894
\(106\) 307.765 0.282008
\(107\) −948.183 −0.856676 −0.428338 0.903619i \(-0.640901\pi\)
−0.428338 + 0.903619i \(0.640901\pi\)
\(108\) −666.092 −0.593469
\(109\) 54.2671 0.0476866 0.0238433 0.999716i \(-0.492410\pi\)
0.0238433 + 0.999716i \(0.492410\pi\)
\(110\) 108.760 0.0942713
\(111\) 258.715 0.221226
\(112\) 139.078 0.117336
\(113\) −21.7821 −0.0181335 −0.00906674 0.999959i \(-0.502886\pi\)
−0.00906674 + 0.999959i \(0.502886\pi\)
\(114\) 110.645 0.0909019
\(115\) 0 0
\(116\) −291.873 −0.233618
\(117\) −217.181 −0.171610
\(118\) −441.684 −0.344579
\(119\) 12.8012 0.00986125
\(120\) 80.5808 0.0612999
\(121\) 9.80202 0.00736441
\(122\) 632.445 0.469335
\(123\) 620.831 0.455109
\(124\) −648.213 −0.469446
\(125\) 937.044 0.670494
\(126\) 48.2696 0.0341285
\(127\) 774.719 0.541301 0.270650 0.962678i \(-0.412761\pi\)
0.270650 + 0.962678i \(0.412761\pi\)
\(128\) 1268.40 0.875875
\(129\) −614.285 −0.419262
\(130\) 26.9718 0.0181968
\(131\) 1381.24 0.921217 0.460608 0.887604i \(-0.347631\pi\)
0.460608 + 0.887604i \(0.347631\pi\)
\(132\) 479.024 0.315861
\(133\) 231.237 0.150758
\(134\) 746.329 0.481142
\(135\) −358.093 −0.228295
\(136\) 53.8937 0.0339805
\(137\) −1874.32 −1.16886 −0.584432 0.811443i \(-0.698682\pi\)
−0.584432 + 0.811443i \(0.698682\pi\)
\(138\) 0 0
\(139\) 371.056 0.226421 0.113211 0.993571i \(-0.463886\pi\)
0.113211 + 0.993571i \(0.463886\pi\)
\(140\) 81.2061 0.0490226
\(141\) −565.291 −0.337632
\(142\) 289.601 0.171146
\(143\) 332.510 0.194447
\(144\) −1222.22 −0.707303
\(145\) −156.912 −0.0898678
\(146\) −593.103 −0.336203
\(147\) 589.290 0.330638
\(148\) 1097.65 0.609636
\(149\) 422.491 0.232294 0.116147 0.993232i \(-0.462946\pi\)
0.116147 + 0.993232i \(0.462946\pi\)
\(150\) −141.887 −0.0772335
\(151\) −1634.86 −0.881080 −0.440540 0.897733i \(-0.645213\pi\)
−0.440540 + 0.897733i \(0.645213\pi\)
\(152\) 973.517 0.519491
\(153\) −112.497 −0.0594436
\(154\) −73.9021 −0.0386701
\(155\) −348.482 −0.180585
\(156\) 118.795 0.0609692
\(157\) −2129.97 −1.08274 −0.541370 0.840785i \(-0.682094\pi\)
−0.541370 + 0.840785i \(0.682094\pi\)
\(158\) 486.069 0.244744
\(159\) 728.736 0.363475
\(160\) 518.906 0.256394
\(161\) 0 0
\(162\) −362.454 −0.175784
\(163\) 412.952 0.198435 0.0992175 0.995066i \(-0.468366\pi\)
0.0992175 + 0.995066i \(0.468366\pi\)
\(164\) 2634.00 1.25415
\(165\) 257.525 0.121505
\(166\) 628.634 0.293924
\(167\) 1553.19 0.719698 0.359849 0.933010i \(-0.382828\pi\)
0.359849 + 0.933010i \(0.382828\pi\)
\(168\) −54.7545 −0.0251452
\(169\) −2114.54 −0.962467
\(170\) 13.9711 0.00630313
\(171\) −2032.11 −0.908770
\(172\) −2606.23 −1.15537
\(173\) −3965.00 −1.74250 −0.871252 0.490835i \(-0.836692\pi\)
−0.871252 + 0.490835i \(0.836692\pi\)
\(174\) 51.0172 0.0222276
\(175\) −296.531 −0.128090
\(176\) 1871.25 0.801426
\(177\) −1045.83 −0.444122
\(178\) −669.673 −0.281990
\(179\) −1321.31 −0.551727 −0.275863 0.961197i \(-0.588964\pi\)
−0.275863 + 0.961197i \(0.588964\pi\)
\(180\) −713.639 −0.295509
\(181\) −1245.72 −0.511566 −0.255783 0.966734i \(-0.582333\pi\)
−0.255783 + 0.966734i \(0.582333\pi\)
\(182\) −18.3272 −0.00746432
\(183\) 1497.52 0.604919
\(184\) 0 0
\(185\) 590.100 0.234514
\(186\) 113.303 0.0446654
\(187\) 172.237 0.0673540
\(188\) −2398.36 −0.930417
\(189\) 243.324 0.0936465
\(190\) 252.368 0.0963617
\(191\) 3466.14 1.31309 0.656547 0.754285i \(-0.272016\pi\)
0.656547 + 0.754285i \(0.272016\pi\)
\(192\) 549.174 0.206423
\(193\) 4372.78 1.63088 0.815439 0.578843i \(-0.196496\pi\)
0.815439 + 0.578843i \(0.196496\pi\)
\(194\) 798.495 0.295508
\(195\) 63.8646 0.0234535
\(196\) 2500.18 0.911146
\(197\) −3058.10 −1.10599 −0.552997 0.833183i \(-0.686516\pi\)
−0.552997 + 0.833183i \(0.686516\pi\)
\(198\) 649.451 0.233104
\(199\) 1673.77 0.596234 0.298117 0.954529i \(-0.403641\pi\)
0.298117 + 0.954529i \(0.403641\pi\)
\(200\) −1248.41 −0.441379
\(201\) 1767.18 0.620137
\(202\) 1138.48 0.396550
\(203\) 106.621 0.0368638
\(204\) 61.5344 0.0211190
\(205\) 1416.05 0.482445
\(206\) −703.479 −0.237931
\(207\) 0 0
\(208\) 464.059 0.154696
\(209\) 3111.22 1.02970
\(210\) −14.1942 −0.00466426
\(211\) −2096.29 −0.683956 −0.341978 0.939708i \(-0.611097\pi\)
−0.341978 + 0.939708i \(0.611097\pi\)
\(212\) 3091.81 1.00163
\(213\) 685.727 0.220588
\(214\) 703.165 0.224614
\(215\) −1401.12 −0.444444
\(216\) 1024.40 0.322693
\(217\) 236.793 0.0740762
\(218\) −40.2440 −0.0125031
\(219\) −1404.37 −0.433326
\(220\) 1092.60 0.334833
\(221\) 42.7136 0.0130010
\(222\) −191.861 −0.0580038
\(223\) 1693.93 0.508672 0.254336 0.967116i \(-0.418143\pi\)
0.254336 + 0.967116i \(0.418143\pi\)
\(224\) −352.595 −0.105173
\(225\) 2605.92 0.772124
\(226\) 16.1534 0.00475446
\(227\) −5852.77 −1.71129 −0.855643 0.517566i \(-0.826838\pi\)
−0.855643 + 0.517566i \(0.826838\pi\)
\(228\) 1111.54 0.322865
\(229\) 3640.38 1.05049 0.525247 0.850950i \(-0.323973\pi\)
0.525247 + 0.850950i \(0.323973\pi\)
\(230\) 0 0
\(231\) −174.988 −0.0498413
\(232\) 448.880 0.127028
\(233\) 2740.90 0.770654 0.385327 0.922780i \(-0.374089\pi\)
0.385327 + 0.922780i \(0.374089\pi\)
\(234\) 161.060 0.0449949
\(235\) −1289.37 −0.357911
\(236\) −4437.16 −1.22388
\(237\) 1150.93 0.315447
\(238\) −9.49331 −0.00258554
\(239\) 3024.85 0.818666 0.409333 0.912385i \(-0.365761\pi\)
0.409333 + 0.912385i \(0.365761\pi\)
\(240\) 359.407 0.0966652
\(241\) 2953.32 0.789377 0.394688 0.918815i \(-0.370853\pi\)
0.394688 + 0.918815i \(0.370853\pi\)
\(242\) −7.26910 −0.00193089
\(243\) −3272.24 −0.863845
\(244\) 6353.55 1.66699
\(245\) 1344.11 0.350498
\(246\) −460.403 −0.119326
\(247\) 771.564 0.198759
\(248\) 996.905 0.255256
\(249\) 1488.50 0.378835
\(250\) −694.905 −0.175798
\(251\) 4148.67 1.04328 0.521638 0.853167i \(-0.325321\pi\)
0.521638 + 0.853167i \(0.325321\pi\)
\(252\) 484.916 0.121218
\(253\) 0 0
\(254\) −574.525 −0.141925
\(255\) 33.0811 0.00812400
\(256\) 1561.34 0.381187
\(257\) −4656.71 −1.13026 −0.565131 0.825001i \(-0.691174\pi\)
−0.565131 + 0.825001i \(0.691174\pi\)
\(258\) 455.549 0.109927
\(259\) −400.972 −0.0961976
\(260\) 270.958 0.0646313
\(261\) −936.989 −0.222215
\(262\) −1024.32 −0.241536
\(263\) −921.832 −0.216132 −0.108066 0.994144i \(-0.534466\pi\)
−0.108066 + 0.994144i \(0.534466\pi\)
\(264\) −736.704 −0.171746
\(265\) 1662.17 0.385307
\(266\) −171.484 −0.0395276
\(267\) −1585.67 −0.363452
\(268\) 7497.63 1.70892
\(269\) 5822.95 1.31982 0.659910 0.751344i \(-0.270594\pi\)
0.659910 + 0.751344i \(0.270594\pi\)
\(270\) 265.559 0.0598571
\(271\) 2958.45 0.663148 0.331574 0.943429i \(-0.392420\pi\)
0.331574 + 0.943429i \(0.392420\pi\)
\(272\) 240.377 0.0535846
\(273\) −43.3958 −0.00962064
\(274\) 1389.98 0.306467
\(275\) −3989.73 −0.874873
\(276\) 0 0
\(277\) −4874.56 −1.05734 −0.528671 0.848827i \(-0.677310\pi\)
−0.528671 + 0.848827i \(0.677310\pi\)
\(278\) −275.172 −0.0593660
\(279\) −2080.93 −0.446531
\(280\) −124.889 −0.0266556
\(281\) −6836.92 −1.45145 −0.725723 0.687987i \(-0.758495\pi\)
−0.725723 + 0.687987i \(0.758495\pi\)
\(282\) 419.215 0.0885245
\(283\) 4353.26 0.914397 0.457199 0.889365i \(-0.348853\pi\)
0.457199 + 0.889365i \(0.348853\pi\)
\(284\) 2909.34 0.607878
\(285\) 597.566 0.124199
\(286\) −246.587 −0.0509825
\(287\) −962.202 −0.197899
\(288\) 3098.61 0.633983
\(289\) −4890.87 −0.995497
\(290\) 116.365 0.0235627
\(291\) 1890.70 0.380876
\(292\) −5958.32 −1.19412
\(293\) −4220.39 −0.841495 −0.420748 0.907178i \(-0.638232\pi\)
−0.420748 + 0.907178i \(0.638232\pi\)
\(294\) −437.013 −0.0866909
\(295\) −2385.44 −0.470798
\(296\) −1688.11 −0.331484
\(297\) 3273.84 0.639621
\(298\) −313.316 −0.0609058
\(299\) 0 0
\(300\) −1425.40 −0.274318
\(301\) 952.057 0.182311
\(302\) 1212.40 0.231013
\(303\) 2695.72 0.511107
\(304\) 4342.09 0.819198
\(305\) 3415.69 0.641253
\(306\) 83.4272 0.0155857
\(307\) −745.191 −0.138535 −0.0692676 0.997598i \(-0.522066\pi\)
−0.0692676 + 0.997598i \(0.522066\pi\)
\(308\) −742.421 −0.137349
\(309\) −1665.72 −0.306665
\(310\) 258.431 0.0473481
\(311\) −5869.95 −1.07027 −0.535135 0.844766i \(-0.679739\pi\)
−0.535135 + 0.844766i \(0.679739\pi\)
\(312\) −182.698 −0.0331514
\(313\) 2370.87 0.428146 0.214073 0.976818i \(-0.431327\pi\)
0.214073 + 0.976818i \(0.431327\pi\)
\(314\) 1579.57 0.283886
\(315\) 260.693 0.0466298
\(316\) 4883.05 0.869281
\(317\) −907.948 −0.160869 −0.0804344 0.996760i \(-0.525631\pi\)
−0.0804344 + 0.996760i \(0.525631\pi\)
\(318\) −540.425 −0.0953004
\(319\) 1434.56 0.251786
\(320\) 1252.61 0.218822
\(321\) 1664.98 0.289501
\(322\) 0 0
\(323\) 399.661 0.0688475
\(324\) −3641.21 −0.624351
\(325\) −989.429 −0.168873
\(326\) −306.242 −0.0520282
\(327\) −95.2911 −0.0161150
\(328\) −4050.91 −0.681932
\(329\) 876.123 0.146815
\(330\) −190.978 −0.0318576
\(331\) −411.500 −0.0683325 −0.0341663 0.999416i \(-0.510878\pi\)
−0.0341663 + 0.999416i \(0.510878\pi\)
\(332\) 6315.26 1.04396
\(333\) 3523.74 0.579879
\(334\) −1151.84 −0.188699
\(335\) 4030.76 0.657384
\(336\) −244.217 −0.0396521
\(337\) −9483.13 −1.53288 −0.766438 0.642319i \(-0.777973\pi\)
−0.766438 + 0.642319i \(0.777973\pi\)
\(338\) 1568.13 0.252351
\(339\) 38.2485 0.00612795
\(340\) 140.353 0.0223874
\(341\) 3185.97 0.505953
\(342\) 1507.00 0.238273
\(343\) −1846.80 −0.290722
\(344\) 4008.19 0.628219
\(345\) 0 0
\(346\) 2940.41 0.456872
\(347\) 6807.76 1.05320 0.526599 0.850114i \(-0.323467\pi\)
0.526599 + 0.850114i \(0.323467\pi\)
\(348\) 512.519 0.0789480
\(349\) 854.063 0.130994 0.0654971 0.997853i \(-0.479137\pi\)
0.0654971 + 0.997853i \(0.479137\pi\)
\(350\) 219.905 0.0335841
\(351\) 811.892 0.123463
\(352\) −4744.06 −0.718349
\(353\) −4539.41 −0.684444 −0.342222 0.939619i \(-0.611179\pi\)
−0.342222 + 0.939619i \(0.611179\pi\)
\(354\) 775.582 0.116446
\(355\) 1564.07 0.233837
\(356\) −6727.54 −1.00157
\(357\) −22.4786 −0.00333247
\(358\) 979.870 0.144659
\(359\) −6717.89 −0.987623 −0.493811 0.869569i \(-0.664397\pi\)
−0.493811 + 0.869569i \(0.664397\pi\)
\(360\) 1097.53 0.160680
\(361\) 360.346 0.0525362
\(362\) 923.815 0.134129
\(363\) −17.2120 −0.00248870
\(364\) −184.116 −0.0265118
\(365\) −3203.22 −0.459353
\(366\) −1110.55 −0.158605
\(367\) −9040.49 −1.28586 −0.642929 0.765926i \(-0.722281\pi\)
−0.642929 + 0.765926i \(0.722281\pi\)
\(368\) 0 0
\(369\) 8455.84 1.19294
\(370\) −437.614 −0.0614877
\(371\) −1129.44 −0.158053
\(372\) 1138.24 0.158642
\(373\) 4412.50 0.612522 0.306261 0.951948i \(-0.400922\pi\)
0.306261 + 0.951948i \(0.400922\pi\)
\(374\) −127.729 −0.0176597
\(375\) −1645.42 −0.226584
\(376\) 3688.51 0.505905
\(377\) 355.761 0.0486011
\(378\) −180.447 −0.0245534
\(379\) 2123.66 0.287824 0.143912 0.989591i \(-0.454032\pi\)
0.143912 + 0.989591i \(0.454032\pi\)
\(380\) 2535.30 0.342258
\(381\) −1360.38 −0.182925
\(382\) −2570.46 −0.344283
\(383\) −11834.9 −1.57894 −0.789472 0.613787i \(-0.789646\pi\)
−0.789472 + 0.613787i \(0.789646\pi\)
\(384\) −2227.27 −0.295990
\(385\) −399.128 −0.0528350
\(386\) −3242.82 −0.427604
\(387\) −8366.68 −1.09897
\(388\) 8021.69 1.04959
\(389\) −13115.2 −1.70942 −0.854711 0.519104i \(-0.826266\pi\)
−0.854711 + 0.519104i \(0.826266\pi\)
\(390\) −47.3615 −0.00614934
\(391\) 0 0
\(392\) −3845.10 −0.495426
\(393\) −2425.41 −0.311312
\(394\) 2267.86 0.289983
\(395\) 2625.15 0.334393
\(396\) 6524.39 0.827937
\(397\) 8243.95 1.04220 0.521098 0.853497i \(-0.325522\pi\)
0.521098 + 0.853497i \(0.325522\pi\)
\(398\) −1241.26 −0.156328
\(399\) −406.045 −0.0509465
\(400\) −5568.16 −0.696020
\(401\) −3690.32 −0.459566 −0.229783 0.973242i \(-0.573802\pi\)
−0.229783 + 0.973242i \(0.573802\pi\)
\(402\) −1310.53 −0.162595
\(403\) 790.100 0.0976618
\(404\) 11437.2 1.40846
\(405\) −1957.53 −0.240174
\(406\) −79.0696 −0.00966541
\(407\) −5394.95 −0.657046
\(408\) −94.6355 −0.0114832
\(409\) −9251.36 −1.11846 −0.559230 0.829012i \(-0.688903\pi\)
−0.559230 + 0.829012i \(0.688903\pi\)
\(410\) −1050.13 −0.126493
\(411\) 3291.25 0.395001
\(412\) −7067.15 −0.845082
\(413\) 1620.90 0.193122
\(414\) 0 0
\(415\) 3395.11 0.401589
\(416\) −1176.50 −0.138660
\(417\) −651.562 −0.0765159
\(418\) −2307.26 −0.269980
\(419\) −11288.2 −1.31615 −0.658074 0.752953i \(-0.728629\pi\)
−0.658074 + 0.752953i \(0.728629\pi\)
\(420\) −142.595 −0.0165665
\(421\) −7080.81 −0.819710 −0.409855 0.912151i \(-0.634421\pi\)
−0.409855 + 0.912151i \(0.634421\pi\)
\(422\) 1554.59 0.179328
\(423\) −7699.37 −0.885002
\(424\) −4754.98 −0.544628
\(425\) −512.513 −0.0584954
\(426\) −508.530 −0.0578365
\(427\) −2320.96 −0.263042
\(428\) 7064.00 0.797784
\(429\) −583.877 −0.0657106
\(430\) 1039.06 0.116530
\(431\) −13722.2 −1.53358 −0.766790 0.641898i \(-0.778147\pi\)
−0.766790 + 0.641898i \(0.778147\pi\)
\(432\) 4569.04 0.508862
\(433\) 6168.82 0.684652 0.342326 0.939581i \(-0.388785\pi\)
0.342326 + 0.939581i \(0.388785\pi\)
\(434\) −175.604 −0.0194222
\(435\) 275.532 0.0303695
\(436\) −404.292 −0.0444084
\(437\) 0 0
\(438\) 1041.47 0.113615
\(439\) −11472.1 −1.24723 −0.623616 0.781731i \(-0.714337\pi\)
−0.623616 + 0.781731i \(0.714337\pi\)
\(440\) −1680.34 −0.182062
\(441\) 8026.25 0.866672
\(442\) −31.6761 −0.00340877
\(443\) 1483.42 0.159096 0.0795481 0.996831i \(-0.474652\pi\)
0.0795481 + 0.996831i \(0.474652\pi\)
\(444\) −1927.43 −0.206018
\(445\) −3616.75 −0.385282
\(446\) −1256.20 −0.133370
\(447\) −741.880 −0.0785005
\(448\) −851.144 −0.0897607
\(449\) −818.488 −0.0860286 −0.0430143 0.999074i \(-0.513696\pi\)
−0.0430143 + 0.999074i \(0.513696\pi\)
\(450\) −1932.53 −0.202445
\(451\) −12946.1 −1.35168
\(452\) 162.277 0.0168869
\(453\) 2870.76 0.297749
\(454\) 4340.37 0.448686
\(455\) −98.9813 −0.0101985
\(456\) −1709.46 −0.175555
\(457\) 17048.6 1.74508 0.872538 0.488547i \(-0.162473\pi\)
0.872538 + 0.488547i \(0.162473\pi\)
\(458\) −2699.68 −0.275432
\(459\) 420.551 0.0427661
\(460\) 0 0
\(461\) −7689.82 −0.776900 −0.388450 0.921470i \(-0.626989\pi\)
−0.388450 + 0.921470i \(0.626989\pi\)
\(462\) 129.769 0.0130680
\(463\) −13412.8 −1.34632 −0.673161 0.739496i \(-0.735064\pi\)
−0.673161 + 0.739496i \(0.735064\pi\)
\(464\) 2002.10 0.200313
\(465\) 611.922 0.0610262
\(466\) −2032.63 −0.202060
\(467\) −11264.5 −1.11619 −0.558095 0.829777i \(-0.688468\pi\)
−0.558095 + 0.829777i \(0.688468\pi\)
\(468\) 1618.01 0.159813
\(469\) −2738.89 −0.269659
\(470\) 956.185 0.0938415
\(471\) 3740.15 0.365896
\(472\) 6824.04 0.665470
\(473\) 12809.6 1.24522
\(474\) −853.520 −0.0827077
\(475\) −9257.86 −0.894273
\(476\) −95.3698 −0.00918334
\(477\) 9925.53 0.952743
\(478\) −2243.20 −0.214648
\(479\) 17196.4 1.64034 0.820169 0.572121i \(-0.193879\pi\)
0.820169 + 0.572121i \(0.193879\pi\)
\(480\) −911.180 −0.0866448
\(481\) −1337.91 −0.126827
\(482\) −2190.16 −0.206969
\(483\) 0 0
\(484\) −73.0255 −0.00685814
\(485\) 4312.49 0.403753
\(486\) 2426.67 0.226494
\(487\) 15265.1 1.42039 0.710193 0.704007i \(-0.248608\pi\)
0.710193 + 0.704007i \(0.248608\pi\)
\(488\) −9771.31 −0.906406
\(489\) −725.130 −0.0670583
\(490\) −996.781 −0.0918979
\(491\) 17294.5 1.58959 0.794794 0.606879i \(-0.207579\pi\)
0.794794 + 0.606879i \(0.207579\pi\)
\(492\) −4625.22 −0.423823
\(493\) 184.280 0.0168348
\(494\) −572.186 −0.0521131
\(495\) 3507.54 0.318489
\(496\) 4446.41 0.402519
\(497\) −1062.78 −0.0959201
\(498\) −1103.86 −0.0993275
\(499\) 5456.38 0.489501 0.244750 0.969586i \(-0.421294\pi\)
0.244750 + 0.969586i \(0.421294\pi\)
\(500\) −6981.02 −0.624401
\(501\) −2727.35 −0.243212
\(502\) −3076.62 −0.273539
\(503\) −14248.8 −1.26307 −0.631534 0.775348i \(-0.717574\pi\)
−0.631534 + 0.775348i \(0.717574\pi\)
\(504\) −745.767 −0.0659109
\(505\) 6148.66 0.541805
\(506\) 0 0
\(507\) 3713.06 0.325252
\(508\) −5771.69 −0.504089
\(509\) −14728.8 −1.28260 −0.641300 0.767290i \(-0.721605\pi\)
−0.641300 + 0.767290i \(0.721605\pi\)
\(510\) −24.5327 −0.00213005
\(511\) 2176.58 0.188427
\(512\) −11305.1 −0.975820
\(513\) 7596.69 0.653805
\(514\) 3453.38 0.296346
\(515\) −3799.33 −0.325084
\(516\) 4576.45 0.390440
\(517\) 11787.9 1.00277
\(518\) 297.358 0.0252223
\(519\) 6962.40 0.588855
\(520\) −416.715 −0.0351426
\(521\) −2101.04 −0.176676 −0.0883379 0.996091i \(-0.528156\pi\)
−0.0883379 + 0.996091i \(0.528156\pi\)
\(522\) 694.863 0.0582631
\(523\) 8046.74 0.672771 0.336386 0.941724i \(-0.390795\pi\)
0.336386 + 0.941724i \(0.390795\pi\)
\(524\) −10290.3 −0.857888
\(525\) 520.699 0.0432860
\(526\) 683.623 0.0566681
\(527\) 409.263 0.0338288
\(528\) −3285.86 −0.270830
\(529\) 0 0
\(530\) −1232.65 −0.101024
\(531\) −14244.5 −1.16414
\(532\) −1722.73 −0.140394
\(533\) −3210.56 −0.260909
\(534\) 1175.92 0.0952944
\(535\) 3797.63 0.306890
\(536\) −11530.8 −0.929208
\(537\) 2320.17 0.186448
\(538\) −4318.26 −0.346047
\(539\) −12288.4 −0.982003
\(540\) 2667.81 0.212601
\(541\) 2510.71 0.199526 0.0997631 0.995011i \(-0.468191\pi\)
0.0997631 + 0.995011i \(0.468191\pi\)
\(542\) −2193.96 −0.173872
\(543\) 2187.44 0.172877
\(544\) −609.411 −0.0480300
\(545\) −217.349 −0.0170829
\(546\) 32.1820 0.00252246
\(547\) 8405.57 0.657032 0.328516 0.944498i \(-0.393452\pi\)
0.328516 + 0.944498i \(0.393452\pi\)
\(548\) 13963.8 1.08851
\(549\) 20396.6 1.58562
\(550\) 2958.76 0.229385
\(551\) 3328.77 0.257369
\(552\) 0 0
\(553\) −1783.78 −0.137168
\(554\) 3614.93 0.277227
\(555\) −1036.20 −0.0792506
\(556\) −2764.38 −0.210856
\(557\) −21385.6 −1.62682 −0.813410 0.581691i \(-0.802391\pi\)
−0.813410 + 0.581691i \(0.802391\pi\)
\(558\) 1543.20 0.117077
\(559\) 3176.71 0.240358
\(560\) −557.032 −0.0420338
\(561\) −302.442 −0.0227613
\(562\) 5070.21 0.380558
\(563\) −12789.0 −0.957360 −0.478680 0.877990i \(-0.658885\pi\)
−0.478680 + 0.877990i \(0.658885\pi\)
\(564\) 4211.44 0.314421
\(565\) 87.2409 0.00649602
\(566\) −3228.34 −0.239748
\(567\) 1330.14 0.0985195
\(568\) −4474.35 −0.330527
\(569\) −9822.12 −0.723664 −0.361832 0.932243i \(-0.617849\pi\)
−0.361832 + 0.932243i \(0.617849\pi\)
\(570\) −443.150 −0.0325641
\(571\) −13539.4 −0.992308 −0.496154 0.868234i \(-0.665255\pi\)
−0.496154 + 0.868234i \(0.665255\pi\)
\(572\) −2477.22 −0.181080
\(573\) −6086.42 −0.443741
\(574\) 713.562 0.0518876
\(575\) 0 0
\(576\) 7479.85 0.541077
\(577\) 4757.01 0.343218 0.171609 0.985165i \(-0.445103\pi\)
0.171609 + 0.985165i \(0.445103\pi\)
\(578\) 3627.03 0.261012
\(579\) −7678.45 −0.551132
\(580\) 1169.00 0.0836899
\(581\) −2306.97 −0.164732
\(582\) −1402.13 −0.0998628
\(583\) −15196.3 −1.07953
\(584\) 9163.47 0.649293
\(585\) 869.848 0.0614765
\(586\) 3129.81 0.220634
\(587\) −7255.01 −0.510130 −0.255065 0.966924i \(-0.582097\pi\)
−0.255065 + 0.966924i \(0.582097\pi\)
\(588\) −4390.24 −0.307909
\(589\) 7392.78 0.517172
\(590\) 1769.02 0.123440
\(591\) 5369.92 0.373755
\(592\) −7529.31 −0.522724
\(593\) −10378.4 −0.718702 −0.359351 0.933202i \(-0.617002\pi\)
−0.359351 + 0.933202i \(0.617002\pi\)
\(594\) −2427.85 −0.167704
\(595\) −51.2712 −0.00353263
\(596\) −3147.58 −0.216325
\(597\) −2939.09 −0.201489
\(598\) 0 0
\(599\) −4106.92 −0.280140 −0.140070 0.990142i \(-0.544733\pi\)
−0.140070 + 0.990142i \(0.544733\pi\)
\(600\) 2192.16 0.149158
\(601\) 10749.1 0.729561 0.364781 0.931093i \(-0.381144\pi\)
0.364781 + 0.931093i \(0.381144\pi\)
\(602\) −706.038 −0.0478006
\(603\) 24069.4 1.62551
\(604\) 12179.8 0.820511
\(605\) −39.2588 −0.00263818
\(606\) −1999.13 −0.134008
\(607\) −3402.20 −0.227498 −0.113749 0.993510i \(-0.536286\pi\)
−0.113749 + 0.993510i \(0.536286\pi\)
\(608\) −11008.2 −0.734279
\(609\) −187.223 −0.0124576
\(610\) −2533.05 −0.168132
\(611\) 2923.34 0.193561
\(612\) 838.110 0.0553572
\(613\) 13278.3 0.874884 0.437442 0.899247i \(-0.355885\pi\)
0.437442 + 0.899247i \(0.355885\pi\)
\(614\) 552.628 0.0363229
\(615\) −2486.53 −0.163035
\(616\) 1141.79 0.0746819
\(617\) −1819.38 −0.118712 −0.0593560 0.998237i \(-0.518905\pi\)
−0.0593560 + 0.998237i \(0.518905\pi\)
\(618\) 1235.28 0.0804052
\(619\) −2360.88 −0.153299 −0.0766493 0.997058i \(-0.524422\pi\)
−0.0766493 + 0.997058i \(0.524422\pi\)
\(620\) 2596.20 0.168171
\(621\) 0 0
\(622\) 4353.11 0.280617
\(623\) 2457.58 0.158043
\(624\) −814.871 −0.0522772
\(625\) 9866.80 0.631476
\(626\) −1758.22 −0.112257
\(627\) −5463.20 −0.347973
\(628\) 15868.4 1.00831
\(629\) −693.024 −0.0439311
\(630\) −193.328 −0.0122260
\(631\) −6548.20 −0.413121 −0.206561 0.978434i \(-0.566227\pi\)
−0.206561 + 0.978434i \(0.566227\pi\)
\(632\) −7509.78 −0.472663
\(633\) 3681.02 0.231133
\(634\) 673.327 0.0421786
\(635\) −3102.88 −0.193912
\(636\) −5429.11 −0.338488
\(637\) −3047.45 −0.189552
\(638\) −1063.86 −0.0660164
\(639\) 9339.73 0.578207
\(640\) −5080.17 −0.313768
\(641\) −17248.1 −1.06281 −0.531405 0.847118i \(-0.678336\pi\)
−0.531405 + 0.847118i \(0.678336\pi\)
\(642\) −1234.73 −0.0759051
\(643\) 3783.93 0.232074 0.116037 0.993245i \(-0.462981\pi\)
0.116037 + 0.993245i \(0.462981\pi\)
\(644\) 0 0
\(645\) 2460.32 0.150194
\(646\) −296.386 −0.0180513
\(647\) 20517.1 1.24669 0.623347 0.781945i \(-0.285772\pi\)
0.623347 + 0.781945i \(0.285772\pi\)
\(648\) 5599.93 0.339484
\(649\) 21808.7 1.31905
\(650\) 733.753 0.0442771
\(651\) −415.800 −0.0250330
\(652\) −3076.51 −0.184794
\(653\) 25300.4 1.51621 0.758103 0.652135i \(-0.226127\pi\)
0.758103 + 0.652135i \(0.226127\pi\)
\(654\) 70.6671 0.00422523
\(655\) −5532.10 −0.330010
\(656\) −18067.9 −1.07535
\(657\) −19127.8 −1.13584
\(658\) −649.726 −0.0384938
\(659\) 4321.40 0.255445 0.127722 0.991810i \(-0.459233\pi\)
0.127722 + 0.991810i \(0.459233\pi\)
\(660\) −1918.57 −0.113152
\(661\) 18535.1 1.09067 0.545334 0.838219i \(-0.316403\pi\)
0.545334 + 0.838219i \(0.316403\pi\)
\(662\) 305.165 0.0179163
\(663\) −75.0036 −0.00439351
\(664\) −9712.42 −0.567643
\(665\) −926.145 −0.0540066
\(666\) −2613.18 −0.152040
\(667\) 0 0
\(668\) −11571.3 −0.670223
\(669\) −2974.48 −0.171898
\(670\) −2989.18 −0.172361
\(671\) −31227.7 −1.79662
\(672\) 619.145 0.0355417
\(673\) 5535.04 0.317029 0.158514 0.987357i \(-0.449330\pi\)
0.158514 + 0.987357i \(0.449330\pi\)
\(674\) 7032.61 0.401908
\(675\) −9741.75 −0.555496
\(676\) 15753.4 0.896302
\(677\) 34912.4 1.98197 0.990984 0.133982i \(-0.0427766\pi\)
0.990984 + 0.133982i \(0.0427766\pi\)
\(678\) −28.3648 −0.00160670
\(679\) −2930.33 −0.165620
\(680\) −215.853 −0.0121729
\(681\) 10277.3 0.578305
\(682\) −2362.69 −0.132657
\(683\) −5641.39 −0.316049 −0.158025 0.987435i \(-0.550513\pi\)
−0.158025 + 0.987435i \(0.550513\pi\)
\(684\) 15139.3 0.846297
\(685\) 7506.99 0.418726
\(686\) 1369.57 0.0762250
\(687\) −6392.39 −0.355000
\(688\) 17877.4 0.990653
\(689\) −3768.58 −0.208376
\(690\) 0 0
\(691\) 28439.7 1.56570 0.782849 0.622212i \(-0.213766\pi\)
0.782849 + 0.622212i \(0.213766\pi\)
\(692\) 29539.4 1.62272
\(693\) −2383.37 −0.130644
\(694\) −5048.58 −0.276140
\(695\) −1486.14 −0.0811117
\(696\) −788.217 −0.0429272
\(697\) −1663.03 −0.0903756
\(698\) −633.367 −0.0343457
\(699\) −4812.93 −0.260432
\(700\) 2209.17 0.119284
\(701\) −8459.63 −0.455800 −0.227900 0.973685i \(-0.573186\pi\)
−0.227900 + 0.973685i \(0.573186\pi\)
\(702\) −602.093 −0.0323711
\(703\) −12518.5 −0.671616
\(704\) −11451.9 −0.613080
\(705\) 2264.09 0.120951
\(706\) 3366.39 0.179456
\(707\) −4178.00 −0.222249
\(708\) 7791.50 0.413591
\(709\) −12310.8 −0.652106 −0.326053 0.945351i \(-0.605719\pi\)
−0.326053 + 0.945351i \(0.605719\pi\)
\(710\) −1159.90 −0.0613103
\(711\) 15675.9 0.826851
\(712\) 10346.5 0.544594
\(713\) 0 0
\(714\) 16.6699 0.000873748 0
\(715\) −1331.76 −0.0696574
\(716\) 9843.78 0.513798
\(717\) −5311.53 −0.276656
\(718\) 4981.93 0.258947
\(719\) −11733.7 −0.608613 −0.304306 0.952574i \(-0.598425\pi\)
−0.304306 + 0.952574i \(0.598425\pi\)
\(720\) 4895.20 0.253380
\(721\) 2581.64 0.133350
\(722\) −267.230 −0.0137746
\(723\) −5185.92 −0.266759
\(724\) 9280.65 0.476399
\(725\) −4268.71 −0.218670
\(726\) 12.7643 0.000652517 0
\(727\) 13472.9 0.687321 0.343660 0.939094i \(-0.388333\pi\)
0.343660 + 0.939094i \(0.388333\pi\)
\(728\) 283.157 0.0144155
\(729\) −7450.33 −0.378516
\(730\) 2375.48 0.120439
\(731\) 1645.50 0.0832571
\(732\) −11156.6 −0.563334
\(733\) 3294.83 0.166026 0.0830131 0.996548i \(-0.473546\pi\)
0.0830131 + 0.996548i \(0.473546\pi\)
\(734\) 6704.36 0.337142
\(735\) −2360.21 −0.118446
\(736\) 0 0
\(737\) −36850.9 −1.84182
\(738\) −6270.78 −0.312779
\(739\) 10078.2 0.501670 0.250835 0.968030i \(-0.419295\pi\)
0.250835 + 0.968030i \(0.419295\pi\)
\(740\) −4396.27 −0.218392
\(741\) −1354.84 −0.0671677
\(742\) 837.584 0.0414403
\(743\) 28558.7 1.41011 0.705057 0.709150i \(-0.250921\pi\)
0.705057 + 0.709150i \(0.250921\pi\)
\(744\) −1750.53 −0.0862602
\(745\) −1692.15 −0.0832155
\(746\) −3272.28 −0.160599
\(747\) 20273.6 0.993004
\(748\) −1283.17 −0.0627237
\(749\) −2580.48 −0.125886
\(750\) 1220.23 0.0594086
\(751\) 35515.7 1.72568 0.862840 0.505477i \(-0.168683\pi\)
0.862840 + 0.505477i \(0.168683\pi\)
\(752\) 16451.5 0.797773
\(753\) −7284.93 −0.352560
\(754\) −263.829 −0.0127428
\(755\) 6547.90 0.315632
\(756\) −1812.77 −0.0872088
\(757\) 25682.4 1.23308 0.616541 0.787322i \(-0.288533\pi\)
0.616541 + 0.787322i \(0.288533\pi\)
\(758\) −1574.89 −0.0754652
\(759\) 0 0
\(760\) −3899.10 −0.186099
\(761\) 36391.1 1.73348 0.866738 0.498763i \(-0.166212\pi\)
0.866738 + 0.498763i \(0.166212\pi\)
\(762\) 1008.85 0.0479615
\(763\) 147.688 0.00700743
\(764\) −25822.9 −1.22283
\(765\) 450.571 0.0212947
\(766\) 8776.68 0.413987
\(767\) 5408.41 0.254611
\(768\) −2741.67 −0.128817
\(769\) 15114.2 0.708756 0.354378 0.935102i \(-0.384693\pi\)
0.354378 + 0.935102i \(0.384693\pi\)
\(770\) 295.990 0.0138529
\(771\) 8177.02 0.381956
\(772\) −32577.4 −1.51876
\(773\) 33573.4 1.56216 0.781082 0.624428i \(-0.214668\pi\)
0.781082 + 0.624428i \(0.214668\pi\)
\(774\) 6204.66 0.288142
\(775\) −9480.27 −0.439408
\(776\) −12336.8 −0.570702
\(777\) 704.093 0.0325086
\(778\) 9726.11 0.448198
\(779\) −30040.4 −1.38166
\(780\) −475.794 −0.0218412
\(781\) −14299.4 −0.655150
\(782\) 0 0
\(783\) 3502.76 0.159870
\(784\) −17150.0 −0.781249
\(785\) 8530.89 0.387873
\(786\) 1798.66 0.0816236
\(787\) 1770.30 0.0801835 0.0400917 0.999196i \(-0.487235\pi\)
0.0400917 + 0.999196i \(0.487235\pi\)
\(788\) 22783.0 1.02996
\(789\) 1618.71 0.0730386
\(790\) −1946.79 −0.0876754
\(791\) −59.2800 −0.00266467
\(792\) −10034.1 −0.450182
\(793\) −7744.28 −0.346794
\(794\) −6113.65 −0.273256
\(795\) −2918.71 −0.130209
\(796\) −12469.7 −0.555246
\(797\) 12409.6 0.551530 0.275765 0.961225i \(-0.411069\pi\)
0.275765 + 0.961225i \(0.411069\pi\)
\(798\) 301.120 0.0133578
\(799\) 1514.25 0.0670469
\(800\) 14116.6 0.623870
\(801\) −21597.2 −0.952683
\(802\) 2736.72 0.120495
\(803\) 29285.1 1.28699
\(804\) −13165.6 −0.577505
\(805\) 0 0
\(806\) −585.932 −0.0256062
\(807\) −10224.9 −0.446014
\(808\) −17589.5 −0.765838
\(809\) −14206.3 −0.617387 −0.308694 0.951161i \(-0.599892\pi\)
−0.308694 + 0.951161i \(0.599892\pi\)
\(810\) 1451.69 0.0629718
\(811\) −42073.0 −1.82168 −0.910841 0.412758i \(-0.864565\pi\)
−0.910841 + 0.412758i \(0.864565\pi\)
\(812\) −794.334 −0.0343296
\(813\) −5194.94 −0.224101
\(814\) 4000.85 0.172272
\(815\) −1653.94 −0.0710860
\(816\) −422.094 −0.0181082
\(817\) 29723.7 1.27283
\(818\) 6860.74 0.293252
\(819\) −591.060 −0.0252177
\(820\) −10549.6 −0.449279
\(821\) −4969.80 −0.211264 −0.105632 0.994405i \(-0.533686\pi\)
−0.105632 + 0.994405i \(0.533686\pi\)
\(822\) −2440.76 −0.103566
\(823\) 46516.8 1.97020 0.985100 0.171985i \(-0.0550180\pi\)
0.985100 + 0.171985i \(0.0550180\pi\)
\(824\) 10868.8 0.459505
\(825\) 7005.83 0.295651
\(826\) −1202.05 −0.0506350
\(827\) −4847.99 −0.203847 −0.101923 0.994792i \(-0.532500\pi\)
−0.101923 + 0.994792i \(0.532500\pi\)
\(828\) 0 0
\(829\) −22572.9 −0.945703 −0.472851 0.881142i \(-0.656775\pi\)
−0.472851 + 0.881142i \(0.656775\pi\)
\(830\) −2517.79 −0.105293
\(831\) 8559.56 0.357314
\(832\) −2839.99 −0.118340
\(833\) −1578.54 −0.0656582
\(834\) 483.193 0.0200619
\(835\) −6220.80 −0.257820
\(836\) −23178.7 −0.958916
\(837\) 7779.19 0.321252
\(838\) 8371.27 0.345084
\(839\) −22380.9 −0.920945 −0.460473 0.887674i \(-0.652320\pi\)
−0.460473 + 0.887674i \(0.652320\pi\)
\(840\) 219.301 0.00900787
\(841\) −22854.1 −0.937067
\(842\) 5251.08 0.214922
\(843\) 12005.4 0.490495
\(844\) 15617.5 0.636938
\(845\) 8469.09 0.344788
\(846\) 5709.79 0.232041
\(847\) 26.6763 0.00108218
\(848\) −21208.2 −0.858837
\(849\) −7644.17 −0.309007
\(850\) 380.076 0.0153370
\(851\) 0 0
\(852\) −5108.69 −0.205424
\(853\) 9107.41 0.365571 0.182785 0.983153i \(-0.441489\pi\)
0.182785 + 0.983153i \(0.441489\pi\)
\(854\) 1721.20 0.0689676
\(855\) 8138.96 0.325552
\(856\) −10863.9 −0.433787
\(857\) 6972.23 0.277908 0.138954 0.990299i \(-0.455626\pi\)
0.138954 + 0.990299i \(0.455626\pi\)
\(858\) 432.999 0.0172288
\(859\) 34219.1 1.35918 0.679592 0.733590i \(-0.262157\pi\)
0.679592 + 0.733590i \(0.262157\pi\)
\(860\) 10438.4 0.413891
\(861\) 1689.59 0.0668771
\(862\) 10176.2 0.402093
\(863\) −29004.2 −1.14405 −0.572024 0.820237i \(-0.693842\pi\)
−0.572024 + 0.820237i \(0.693842\pi\)
\(864\) −11583.6 −0.456113
\(865\) 15880.5 0.624223
\(866\) −4574.75 −0.179511
\(867\) 8588.21 0.336414
\(868\) −1764.11 −0.0689838
\(869\) −24000.2 −0.936882
\(870\) −204.332 −0.00796266
\(871\) −9138.78 −0.355518
\(872\) 621.772 0.0241466
\(873\) 25751.7 0.998355
\(874\) 0 0
\(875\) 2550.17 0.0985274
\(876\) 10462.6 0.403537
\(877\) 22693.5 0.873780 0.436890 0.899515i \(-0.356080\pi\)
0.436890 + 0.899515i \(0.356080\pi\)
\(878\) 8507.64 0.327015
\(879\) 7410.87 0.284371
\(880\) −7494.69 −0.287098
\(881\) 3488.66 0.133412 0.0667060 0.997773i \(-0.478751\pi\)
0.0667060 + 0.997773i \(0.478751\pi\)
\(882\) −5952.20 −0.227235
\(883\) 8657.83 0.329965 0.164983 0.986296i \(-0.447243\pi\)
0.164983 + 0.986296i \(0.447243\pi\)
\(884\) −318.218 −0.0121073
\(885\) 4188.74 0.159099
\(886\) −1100.10 −0.0417138
\(887\) 34333.3 1.29966 0.649831 0.760079i \(-0.274840\pi\)
0.649831 + 0.760079i \(0.274840\pi\)
\(888\) 2964.26 0.112020
\(889\) 2108.40 0.0795427
\(890\) 2682.16 0.101018
\(891\) 17896.6 0.672904
\(892\) −12619.8 −0.473703
\(893\) 27353.0 1.02501
\(894\) 550.173 0.0205822
\(895\) 5292.06 0.197647
\(896\) 3451.96 0.128708
\(897\) 0 0
\(898\) 606.985 0.0225561
\(899\) 3408.74 0.126460
\(900\) −19414.2 −0.719044
\(901\) −1952.08 −0.0721789
\(902\) 9600.74 0.354401
\(903\) −1671.78 −0.0616095
\(904\) −249.571 −0.00918208
\(905\) 4989.31 0.183260
\(906\) −2128.93 −0.0780674
\(907\) −22709.1 −0.831361 −0.415681 0.909511i \(-0.636457\pi\)
−0.415681 + 0.909511i \(0.636457\pi\)
\(908\) 43603.4 1.59364
\(909\) 36716.3 1.33972
\(910\) 73.4037 0.00267397
\(911\) −37749.0 −1.37287 −0.686433 0.727193i \(-0.740825\pi\)
−0.686433 + 0.727193i \(0.740825\pi\)
\(912\) −7624.56 −0.276836
\(913\) −31039.5 −1.12515
\(914\) −12643.1 −0.457545
\(915\) −5997.84 −0.216702
\(916\) −27121.0 −0.978278
\(917\) 3759.05 0.135370
\(918\) −311.877 −0.0112129
\(919\) 31267.2 1.12232 0.561158 0.827709i \(-0.310356\pi\)
0.561158 + 0.827709i \(0.310356\pi\)
\(920\) 0 0
\(921\) 1308.53 0.0468160
\(922\) 5702.71 0.203697
\(923\) −3546.16 −0.126461
\(924\) 1303.67 0.0464150
\(925\) 16053.4 0.570629
\(926\) 9946.85 0.352995
\(927\) −22687.4 −0.803832
\(928\) −5075.78 −0.179548
\(929\) −1222.99 −0.0431915 −0.0215958 0.999767i \(-0.506875\pi\)
−0.0215958 + 0.999767i \(0.506875\pi\)
\(930\) −453.797 −0.0160006
\(931\) −28514.3 −1.00378
\(932\) −20419.8 −0.717675
\(933\) 10307.4 0.361683
\(934\) 8353.69 0.292657
\(935\) −689.837 −0.0241284
\(936\) −2488.38 −0.0868967
\(937\) 27057.3 0.943356 0.471678 0.881771i \(-0.343649\pi\)
0.471678 + 0.881771i \(0.343649\pi\)
\(938\) 2031.14 0.0707026
\(939\) −4163.17 −0.144686
\(940\) 9605.84 0.333306
\(941\) −33374.0 −1.15617 −0.578087 0.815975i \(-0.696201\pi\)
−0.578087 + 0.815975i \(0.696201\pi\)
\(942\) −2773.67 −0.0959352
\(943\) 0 0
\(944\) 30436.6 1.04939
\(945\) −974.553 −0.0335473
\(946\) −9499.52 −0.326486
\(947\) −21988.5 −0.754520 −0.377260 0.926107i \(-0.623134\pi\)
−0.377260 + 0.926107i \(0.623134\pi\)
\(948\) −8574.46 −0.293761
\(949\) 7262.53 0.248421
\(950\) 6865.55 0.234472
\(951\) 1594.33 0.0543633
\(952\) 146.672 0.00499335
\(953\) 40478.0 1.37588 0.687939 0.725769i \(-0.258516\pi\)
0.687939 + 0.725769i \(0.258516\pi\)
\(954\) −7360.69 −0.249802
\(955\) −13882.5 −0.470394
\(956\) −22535.2 −0.762387
\(957\) −2519.03 −0.0850875
\(958\) −12752.7 −0.430084
\(959\) −5100.98 −0.171761
\(960\) −2199.54 −0.0739476
\(961\) −22220.6 −0.745883
\(962\) 992.186 0.0332530
\(963\) 22677.3 0.758843
\(964\) −22002.3 −0.735111
\(965\) −17513.7 −0.584235
\(966\) 0 0
\(967\) 27759.5 0.923149 0.461575 0.887101i \(-0.347285\pi\)
0.461575 + 0.887101i \(0.347285\pi\)
\(968\) 112.308 0.00372904
\(969\) −701.792 −0.0232660
\(970\) −3198.11 −0.105861
\(971\) 3437.45 0.113608 0.0568039 0.998385i \(-0.481909\pi\)
0.0568039 + 0.998385i \(0.481909\pi\)
\(972\) 24378.3 0.804460
\(973\) 1009.83 0.0332720
\(974\) −11320.5 −0.372415
\(975\) 1737.40 0.0570681
\(976\) −43582.1 −1.42933
\(977\) −33239.8 −1.08847 −0.544235 0.838933i \(-0.683180\pi\)
−0.544235 + 0.838933i \(0.683180\pi\)
\(978\) 537.751 0.0175822
\(979\) 33065.9 1.07946
\(980\) −10013.7 −0.326403
\(981\) −1297.88 −0.0422408
\(982\) −12825.4 −0.416778
\(983\) −49908.7 −1.61937 −0.809685 0.586865i \(-0.800362\pi\)
−0.809685 + 0.586865i \(0.800362\pi\)
\(984\) 7113.25 0.230449
\(985\) 12248.2 0.396204
\(986\) −136.661 −0.00441396
\(987\) −1538.44 −0.0496141
\(988\) −5748.18 −0.185095
\(989\) 0 0
\(990\) −2601.16 −0.0835055
\(991\) −44694.4 −1.43266 −0.716329 0.697762i \(-0.754179\pi\)
−0.716329 + 0.697762i \(0.754179\pi\)
\(992\) −11272.7 −0.360794
\(993\) 722.579 0.0230920
\(994\) 788.151 0.0251495
\(995\) −6703.74 −0.213591
\(996\) −11089.4 −0.352792
\(997\) −623.501 −0.0198059 −0.00990294 0.999951i \(-0.503152\pi\)
−0.00990294 + 0.999951i \(0.503152\pi\)
\(998\) −4046.41 −0.128343
\(999\) −13172.9 −0.417188
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 529.4.a.m.1.11 25
23.11 odd 22 23.4.c.a.6.3 yes 50
23.21 odd 22 23.4.c.a.4.3 50
23.22 odd 2 529.4.a.n.1.11 25
69.11 even 22 207.4.i.a.190.3 50
69.44 even 22 207.4.i.a.73.3 50
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
23.4.c.a.4.3 50 23.21 odd 22
23.4.c.a.6.3 yes 50 23.11 odd 22
207.4.i.a.73.3 50 69.44 even 22
207.4.i.a.190.3 50 69.11 even 22
529.4.a.m.1.11 25 1.1 even 1 trivial
529.4.a.n.1.11 25 23.22 odd 2