Properties

Label 529.4.a.m.1.10
Level $529$
Weight $4$
Character 529.1
Self dual yes
Analytic conductor $31.212$
Analytic rank $1$
Dimension $25$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [529,4,Mod(1,529)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(529, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0])) N = Newforms(chi, 4, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("529.1"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Level: \( N \) \(=\) \( 529 = 23^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 529.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [25,0,-1,80,-51] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(31.2120103930\)
Analytic rank: \(1\)
Dimension: \(25\)
Twist minimal: no (minimal twist has level 23)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.10
Character \(\chi\) \(=\) 529.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.48270 q^{2} -6.79236 q^{3} -5.80160 q^{4} -11.4888 q^{5} +10.0710 q^{6} -21.1377 q^{7} +20.4636 q^{8} +19.1361 q^{9} +17.0345 q^{10} -42.5331 q^{11} +39.4066 q^{12} +64.5461 q^{13} +31.3409 q^{14} +78.0363 q^{15} +16.0714 q^{16} -40.8811 q^{17} -28.3731 q^{18} +102.053 q^{19} +66.6536 q^{20} +143.575 q^{21} +63.0638 q^{22} -138.996 q^{24} +6.99328 q^{25} -95.7024 q^{26} +53.4143 q^{27} +122.633 q^{28} -89.8353 q^{29} -115.704 q^{30} +232.577 q^{31} -187.538 q^{32} +288.900 q^{33} +60.6144 q^{34} +242.848 q^{35} -111.020 q^{36} -91.0258 q^{37} -151.314 q^{38} -438.420 q^{39} -235.103 q^{40} +84.5316 q^{41} -212.878 q^{42} +44.7549 q^{43} +246.760 q^{44} -219.852 q^{45} +326.961 q^{47} -109.163 q^{48} +103.803 q^{49} -10.3689 q^{50} +277.679 q^{51} -374.471 q^{52} +11.1283 q^{53} -79.1973 q^{54} +488.656 q^{55} -432.554 q^{56} -693.180 q^{57} +133.199 q^{58} -768.657 q^{59} -452.735 q^{60} +772.539 q^{61} -344.841 q^{62} -404.494 q^{63} +149.491 q^{64} -741.559 q^{65} -428.352 q^{66} -1079.57 q^{67} +237.176 q^{68} -360.070 q^{70} +226.701 q^{71} +391.595 q^{72} +698.538 q^{73} +134.964 q^{74} -47.5009 q^{75} -592.070 q^{76} +899.053 q^{77} +650.045 q^{78} -355.189 q^{79} -184.642 q^{80} -879.484 q^{81} -125.335 q^{82} +281.255 q^{83} -832.965 q^{84} +469.676 q^{85} -66.3581 q^{86} +610.193 q^{87} -870.382 q^{88} -256.835 q^{89} +325.974 q^{90} -1364.36 q^{91} -1579.74 q^{93} -484.785 q^{94} -1172.47 q^{95} +1273.83 q^{96} +1057.05 q^{97} -153.909 q^{98} -813.919 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 25 q - q^{3} + 80 q^{4} - 51 q^{5} + 86 q^{6} - 73 q^{7} + 3 q^{8} + 166 q^{9} - 139 q^{10} - 221 q^{11} - 191 q^{12} - 27 q^{13} - 372 q^{14} - 310 q^{15} + 152 q^{16} - 365 q^{17} - 538 q^{18} - 405 q^{19}+ \cdots - 7317 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.48270 −0.524213 −0.262107 0.965039i \(-0.584417\pi\)
−0.262107 + 0.965039i \(0.584417\pi\)
\(3\) −6.79236 −1.30719 −0.653595 0.756845i \(-0.726740\pi\)
−0.653595 + 0.756845i \(0.726740\pi\)
\(4\) −5.80160 −0.725200
\(5\) −11.4888 −1.02759 −0.513796 0.857912i \(-0.671761\pi\)
−0.513796 + 0.857912i \(0.671761\pi\)
\(6\) 10.0710 0.685247
\(7\) −21.1377 −1.14133 −0.570665 0.821183i \(-0.693314\pi\)
−0.570665 + 0.821183i \(0.693314\pi\)
\(8\) 20.4636 0.904373
\(9\) 19.1361 0.708745
\(10\) 17.0345 0.538678
\(11\) −42.5331 −1.16584 −0.582919 0.812530i \(-0.698089\pi\)
−0.582919 + 0.812530i \(0.698089\pi\)
\(12\) 39.4066 0.947974
\(13\) 64.5461 1.37707 0.688533 0.725205i \(-0.258255\pi\)
0.688533 + 0.725205i \(0.258255\pi\)
\(14\) 31.3409 0.598300
\(15\) 78.0363 1.34326
\(16\) 16.0714 0.251116
\(17\) −40.8811 −0.583243 −0.291621 0.956534i \(-0.594195\pi\)
−0.291621 + 0.956534i \(0.594195\pi\)
\(18\) −28.3731 −0.371534
\(19\) 102.053 1.23224 0.616120 0.787653i \(-0.288704\pi\)
0.616120 + 0.787653i \(0.288704\pi\)
\(20\) 66.6536 0.745210
\(21\) 143.575 1.49193
\(22\) 63.0638 0.611148
\(23\) 0 0
\(24\) −138.996 −1.18219
\(25\) 6.99328 0.0559462
\(26\) −95.7024 −0.721877
\(27\) 53.4143 0.380725
\(28\) 122.633 0.827692
\(29\) −89.8353 −0.575241 −0.287621 0.957744i \(-0.592864\pi\)
−0.287621 + 0.957744i \(0.592864\pi\)
\(30\) −115.704 −0.704154
\(31\) 232.577 1.34748 0.673742 0.738967i \(-0.264686\pi\)
0.673742 + 0.738967i \(0.264686\pi\)
\(32\) −187.538 −1.03601
\(33\) 288.900 1.52397
\(34\) 60.6144 0.305744
\(35\) 242.848 1.17282
\(36\) −111.020 −0.513982
\(37\) −91.0258 −0.404447 −0.202224 0.979339i \(-0.564817\pi\)
−0.202224 + 0.979339i \(0.564817\pi\)
\(38\) −151.314 −0.645956
\(39\) −438.420 −1.80009
\(40\) −235.103 −0.929327
\(41\) 84.5316 0.321991 0.160995 0.986955i \(-0.448530\pi\)
0.160995 + 0.986955i \(0.448530\pi\)
\(42\) −212.878 −0.782092
\(43\) 44.7549 0.158722 0.0793611 0.996846i \(-0.474712\pi\)
0.0793611 + 0.996846i \(0.474712\pi\)
\(44\) 246.760 0.845466
\(45\) −219.852 −0.728301
\(46\) 0 0
\(47\) 326.961 1.01473 0.507363 0.861732i \(-0.330620\pi\)
0.507363 + 0.861732i \(0.330620\pi\)
\(48\) −109.163 −0.328256
\(49\) 103.803 0.302633
\(50\) −10.3689 −0.0293278
\(51\) 277.679 0.762409
\(52\) −374.471 −0.998649
\(53\) 11.1283 0.0288413 0.0144206 0.999896i \(-0.495410\pi\)
0.0144206 + 0.999896i \(0.495410\pi\)
\(54\) −79.1973 −0.199581
\(55\) 488.656 1.19801
\(56\) −432.554 −1.03219
\(57\) −693.180 −1.61077
\(58\) 133.199 0.301549
\(59\) −768.657 −1.69611 −0.848056 0.529906i \(-0.822227\pi\)
−0.848056 + 0.529906i \(0.822227\pi\)
\(60\) −452.735 −0.974131
\(61\) 772.539 1.62153 0.810767 0.585370i \(-0.199051\pi\)
0.810767 + 0.585370i \(0.199051\pi\)
\(62\) −344.841 −0.706369
\(63\) −404.494 −0.808912
\(64\) 149.491 0.291975
\(65\) −741.559 −1.41506
\(66\) −428.352 −0.798886
\(67\) −1079.57 −1.96852 −0.984260 0.176727i \(-0.943449\pi\)
−0.984260 + 0.176727i \(0.943449\pi\)
\(68\) 237.176 0.422968
\(69\) 0 0
\(70\) −360.070 −0.614809
\(71\) 226.701 0.378936 0.189468 0.981887i \(-0.439324\pi\)
0.189468 + 0.981887i \(0.439324\pi\)
\(72\) 391.595 0.640970
\(73\) 698.538 1.11997 0.559984 0.828504i \(-0.310807\pi\)
0.559984 + 0.828504i \(0.310807\pi\)
\(74\) 134.964 0.212017
\(75\) −47.5009 −0.0731324
\(76\) −592.070 −0.893620
\(77\) 899.053 1.33061
\(78\) 650.045 0.943630
\(79\) −355.189 −0.505847 −0.252923 0.967486i \(-0.581392\pi\)
−0.252923 + 0.967486i \(0.581392\pi\)
\(80\) −184.642 −0.258045
\(81\) −879.484 −1.20643
\(82\) −125.335 −0.168792
\(83\) 281.255 0.371949 0.185974 0.982555i \(-0.440456\pi\)
0.185974 + 0.982555i \(0.440456\pi\)
\(84\) −832.965 −1.08195
\(85\) 469.676 0.599336
\(86\) −66.3581 −0.0832044
\(87\) 610.193 0.751949
\(88\) −870.382 −1.05435
\(89\) −256.835 −0.305893 −0.152947 0.988234i \(-0.548876\pi\)
−0.152947 + 0.988234i \(0.548876\pi\)
\(90\) 325.974 0.381785
\(91\) −1364.36 −1.57169
\(92\) 0 0
\(93\) −1579.74 −1.76142
\(94\) −484.785 −0.531933
\(95\) −1172.47 −1.26624
\(96\) 1273.83 1.35426
\(97\) 1057.05 1.10647 0.553234 0.833026i \(-0.313393\pi\)
0.553234 + 0.833026i \(0.313393\pi\)
\(98\) −153.909 −0.158644
\(99\) −813.919 −0.826282
\(100\) −40.5722 −0.0405722
\(101\) 1204.26 1.18642 0.593210 0.805048i \(-0.297860\pi\)
0.593210 + 0.805048i \(0.297860\pi\)
\(102\) −411.715 −0.399665
\(103\) −1099.53 −1.05184 −0.525922 0.850533i \(-0.676280\pi\)
−0.525922 + 0.850533i \(0.676280\pi\)
\(104\) 1320.85 1.24538
\(105\) −1649.51 −1.53310
\(106\) −16.4999 −0.0151190
\(107\) −329.237 −0.297463 −0.148732 0.988878i \(-0.547519\pi\)
−0.148732 + 0.988878i \(0.547519\pi\)
\(108\) −309.888 −0.276102
\(109\) −88.7134 −0.0779560 −0.0389780 0.999240i \(-0.512410\pi\)
−0.0389780 + 0.999240i \(0.512410\pi\)
\(110\) −724.530 −0.628011
\(111\) 618.280 0.528689
\(112\) −339.713 −0.286606
\(113\) 877.208 0.730272 0.365136 0.930954i \(-0.381022\pi\)
0.365136 + 0.930954i \(0.381022\pi\)
\(114\) 1027.78 0.844387
\(115\) 0 0
\(116\) 521.189 0.417165
\(117\) 1235.16 0.975989
\(118\) 1139.69 0.889125
\(119\) 864.134 0.665672
\(120\) 1596.91 1.21481
\(121\) 478.066 0.359178
\(122\) −1145.44 −0.850029
\(123\) −574.169 −0.420903
\(124\) −1349.32 −0.977196
\(125\) 1355.76 0.970103
\(126\) 599.743 0.424043
\(127\) −379.149 −0.264914 −0.132457 0.991189i \(-0.542287\pi\)
−0.132457 + 0.991189i \(0.542287\pi\)
\(128\) 1278.65 0.882954
\(129\) −303.991 −0.207480
\(130\) 1099.51 0.741795
\(131\) −1267.37 −0.845270 −0.422635 0.906300i \(-0.638895\pi\)
−0.422635 + 0.906300i \(0.638895\pi\)
\(132\) −1676.08 −1.10518
\(133\) −2157.17 −1.40639
\(134\) 1600.68 1.03192
\(135\) −613.667 −0.391230
\(136\) −836.576 −0.527469
\(137\) 886.918 0.553099 0.276549 0.961000i \(-0.410809\pi\)
0.276549 + 0.961000i \(0.410809\pi\)
\(138\) 0 0
\(139\) 813.922 0.496662 0.248331 0.968675i \(-0.420118\pi\)
0.248331 + 0.968675i \(0.420118\pi\)
\(140\) −1408.91 −0.850530
\(141\) −2220.83 −1.32644
\(142\) −336.129 −0.198643
\(143\) −2745.35 −1.60544
\(144\) 307.544 0.177977
\(145\) 1032.10 0.591114
\(146\) −1035.72 −0.587102
\(147\) −705.068 −0.395599
\(148\) 528.095 0.293305
\(149\) −342.372 −0.188243 −0.0941214 0.995561i \(-0.530004\pi\)
−0.0941214 + 0.995561i \(0.530004\pi\)
\(150\) 70.4295 0.0383370
\(151\) 1346.73 0.725799 0.362900 0.931828i \(-0.381787\pi\)
0.362900 + 0.931828i \(0.381787\pi\)
\(152\) 2088.37 1.11440
\(153\) −782.306 −0.413371
\(154\) −1333.03 −0.697521
\(155\) −2672.03 −1.38466
\(156\) 2543.54 1.30542
\(157\) −907.636 −0.461384 −0.230692 0.973027i \(-0.574099\pi\)
−0.230692 + 0.973027i \(0.574099\pi\)
\(158\) 526.639 0.265172
\(159\) −75.5873 −0.0377010
\(160\) 2154.59 1.06460
\(161\) 0 0
\(162\) 1304.01 0.632424
\(163\) 2240.47 1.07661 0.538305 0.842750i \(-0.319065\pi\)
0.538305 + 0.842750i \(0.319065\pi\)
\(164\) −490.419 −0.233508
\(165\) −3319.13 −1.56602
\(166\) −417.017 −0.194981
\(167\) −1738.20 −0.805425 −0.402713 0.915326i \(-0.631933\pi\)
−0.402713 + 0.915326i \(0.631933\pi\)
\(168\) 2938.06 1.34927
\(169\) 1969.20 0.896311
\(170\) −696.389 −0.314180
\(171\) 1952.90 0.873344
\(172\) −259.650 −0.115105
\(173\) 1954.02 0.858735 0.429367 0.903130i \(-0.358737\pi\)
0.429367 + 0.903130i \(0.358737\pi\)
\(174\) −904.734 −0.394182
\(175\) −147.822 −0.0638531
\(176\) −683.567 −0.292760
\(177\) 5221.00 2.21714
\(178\) 380.810 0.160353
\(179\) −1185.02 −0.494821 −0.247410 0.968911i \(-0.579580\pi\)
−0.247410 + 0.968911i \(0.579580\pi\)
\(180\) 1275.49 0.528164
\(181\) 3012.46 1.23709 0.618547 0.785747i \(-0.287721\pi\)
0.618547 + 0.785747i \(0.287721\pi\)
\(182\) 2022.93 0.823899
\(183\) −5247.36 −2.11965
\(184\) 0 0
\(185\) 1045.78 0.415607
\(186\) 2342.29 0.923359
\(187\) 1738.80 0.679967
\(188\) −1896.90 −0.735880
\(189\) −1129.06 −0.434533
\(190\) 1738.42 0.663780
\(191\) −806.508 −0.305533 −0.152767 0.988262i \(-0.548818\pi\)
−0.152767 + 0.988262i \(0.548818\pi\)
\(192\) −1015.40 −0.381667
\(193\) −1948.52 −0.726723 −0.363362 0.931648i \(-0.618371\pi\)
−0.363362 + 0.931648i \(0.618371\pi\)
\(194\) −1567.29 −0.580026
\(195\) 5036.93 1.84976
\(196\) −602.224 −0.219469
\(197\) 4261.51 1.54122 0.770610 0.637308i \(-0.219952\pi\)
0.770610 + 0.637308i \(0.219952\pi\)
\(198\) 1206.80 0.433148
\(199\) 1388.50 0.494613 0.247307 0.968937i \(-0.420454\pi\)
0.247307 + 0.968937i \(0.420454\pi\)
\(200\) 143.108 0.0505963
\(201\) 7332.85 2.57323
\(202\) −1785.56 −0.621938
\(203\) 1898.91 0.656540
\(204\) −1610.98 −0.552899
\(205\) −971.170 −0.330875
\(206\) 1630.27 0.551390
\(207\) 0 0
\(208\) 1037.35 0.345803
\(209\) −4340.63 −1.43659
\(210\) 2445.73 0.803672
\(211\) −221.359 −0.0722227 −0.0361113 0.999348i \(-0.511497\pi\)
−0.0361113 + 0.999348i \(0.511497\pi\)
\(212\) −64.5619 −0.0209157
\(213\) −1539.83 −0.495341
\(214\) 488.160 0.155934
\(215\) −514.182 −0.163102
\(216\) 1093.05 0.344318
\(217\) −4916.14 −1.53792
\(218\) 131.535 0.0408656
\(219\) −4744.72 −1.46401
\(220\) −2834.99 −0.868794
\(221\) −2638.72 −0.803164
\(222\) −916.723 −0.277146
\(223\) −237.114 −0.0712033 −0.0356017 0.999366i \(-0.511335\pi\)
−0.0356017 + 0.999366i \(0.511335\pi\)
\(224\) 3964.13 1.18243
\(225\) 133.824 0.0396516
\(226\) −1300.64 −0.382819
\(227\) −102.378 −0.0299343 −0.0149671 0.999888i \(-0.504764\pi\)
−0.0149671 + 0.999888i \(0.504764\pi\)
\(228\) 4021.55 1.16813
\(229\) 96.6498 0.0278899 0.0139450 0.999903i \(-0.495561\pi\)
0.0139450 + 0.999903i \(0.495561\pi\)
\(230\) 0 0
\(231\) −6106.69 −1.73935
\(232\) −1838.36 −0.520233
\(233\) 2275.30 0.639743 0.319871 0.947461i \(-0.396360\pi\)
0.319871 + 0.947461i \(0.396360\pi\)
\(234\) −1831.37 −0.511627
\(235\) −3756.40 −1.04273
\(236\) 4459.44 1.23002
\(237\) 2412.57 0.661238
\(238\) −1281.25 −0.348954
\(239\) −3590.77 −0.971830 −0.485915 0.874006i \(-0.661514\pi\)
−0.485915 + 0.874006i \(0.661514\pi\)
\(240\) 1254.15 0.337313
\(241\) −1068.50 −0.285595 −0.142798 0.989752i \(-0.545610\pi\)
−0.142798 + 0.989752i \(0.545610\pi\)
\(242\) −708.828 −0.188286
\(243\) 4531.59 1.19630
\(244\) −4481.97 −1.17594
\(245\) −1192.58 −0.310983
\(246\) 851.320 0.220643
\(247\) 6587.11 1.69687
\(248\) 4759.36 1.21863
\(249\) −1910.38 −0.486208
\(250\) −2010.18 −0.508541
\(251\) −6890.36 −1.73273 −0.866366 0.499410i \(-0.833550\pi\)
−0.866366 + 0.499410i \(0.833550\pi\)
\(252\) 2346.71 0.586623
\(253\) 0 0
\(254\) 562.165 0.138871
\(255\) −3190.21 −0.783446
\(256\) −3091.79 −0.754832
\(257\) −191.135 −0.0463918 −0.0231959 0.999731i \(-0.507384\pi\)
−0.0231959 + 0.999731i \(0.507384\pi\)
\(258\) 450.728 0.108764
\(259\) 1924.08 0.461608
\(260\) 4302.23 1.02620
\(261\) −1719.10 −0.407700
\(262\) 1879.12 0.443102
\(263\) −3224.98 −0.756124 −0.378062 0.925780i \(-0.623409\pi\)
−0.378062 + 0.925780i \(0.623409\pi\)
\(264\) 5911.95 1.37824
\(265\) −127.851 −0.0296371
\(266\) 3198.43 0.737249
\(267\) 1744.52 0.399860
\(268\) 6263.25 1.42757
\(269\) 3715.85 0.842228 0.421114 0.907008i \(-0.361639\pi\)
0.421114 + 0.907008i \(0.361639\pi\)
\(270\) 909.884 0.205088
\(271\) 6279.24 1.40752 0.703758 0.710440i \(-0.251504\pi\)
0.703758 + 0.710440i \(0.251504\pi\)
\(272\) −657.017 −0.146461
\(273\) 9267.20 2.05449
\(274\) −1315.03 −0.289942
\(275\) −297.446 −0.0652242
\(276\) 0 0
\(277\) 9201.41 1.99588 0.997941 0.0641377i \(-0.0204297\pi\)
0.997941 + 0.0641377i \(0.0204297\pi\)
\(278\) −1206.80 −0.260357
\(279\) 4450.62 0.955023
\(280\) 4969.55 1.06067
\(281\) −3286.35 −0.697676 −0.348838 0.937183i \(-0.613424\pi\)
−0.348838 + 0.937183i \(0.613424\pi\)
\(282\) 3292.83 0.695338
\(283\) −375.525 −0.0788786 −0.0394393 0.999222i \(-0.512557\pi\)
−0.0394393 + 0.999222i \(0.512557\pi\)
\(284\) −1315.23 −0.274804
\(285\) 7963.83 1.65522
\(286\) 4070.52 0.841591
\(287\) −1786.81 −0.367498
\(288\) −3588.75 −0.734268
\(289\) −3241.73 −0.659828
\(290\) −1530.30 −0.309870
\(291\) −7179.88 −1.44636
\(292\) −4052.64 −0.812201
\(293\) −4233.28 −0.844065 −0.422033 0.906581i \(-0.638683\pi\)
−0.422033 + 0.906581i \(0.638683\pi\)
\(294\) 1045.40 0.207378
\(295\) 8830.97 1.74291
\(296\) −1862.72 −0.365771
\(297\) −2271.87 −0.443864
\(298\) 507.634 0.0986794
\(299\) 0 0
\(300\) 275.581 0.0530356
\(301\) −946.016 −0.181154
\(302\) −1996.80 −0.380474
\(303\) −8179.77 −1.55088
\(304\) 1640.13 0.309435
\(305\) −8875.57 −1.66628
\(306\) 1159.93 0.216694
\(307\) −8610.54 −1.60075 −0.800373 0.599502i \(-0.795365\pi\)
−0.800373 + 0.599502i \(0.795365\pi\)
\(308\) −5215.95 −0.964955
\(309\) 7468.40 1.37496
\(310\) 3961.82 0.725860
\(311\) 1941.34 0.353966 0.176983 0.984214i \(-0.443366\pi\)
0.176983 + 0.984214i \(0.443366\pi\)
\(312\) −8971.66 −1.62795
\(313\) 6580.67 1.18838 0.594188 0.804326i \(-0.297474\pi\)
0.594188 + 0.804326i \(0.297474\pi\)
\(314\) 1345.75 0.241863
\(315\) 4647.16 0.831232
\(316\) 2060.67 0.366840
\(317\) −10509.1 −1.86198 −0.930992 0.365039i \(-0.881056\pi\)
−0.930992 + 0.365039i \(0.881056\pi\)
\(318\) 112.073 0.0197634
\(319\) 3820.97 0.670638
\(320\) −1717.48 −0.300032
\(321\) 2236.30 0.388841
\(322\) 0 0
\(323\) −4172.04 −0.718695
\(324\) 5102.42 0.874900
\(325\) 451.389 0.0770417
\(326\) −3321.95 −0.564373
\(327\) 602.573 0.101903
\(328\) 1729.82 0.291200
\(329\) −6911.20 −1.15814
\(330\) 4921.27 0.820930
\(331\) 1026.94 0.170530 0.0852651 0.996358i \(-0.472826\pi\)
0.0852651 + 0.996358i \(0.472826\pi\)
\(332\) −1631.73 −0.269737
\(333\) −1741.88 −0.286650
\(334\) 2577.23 0.422215
\(335\) 12403.0 2.02284
\(336\) 2307.45 0.374648
\(337\) 1301.47 0.210373 0.105187 0.994452i \(-0.466456\pi\)
0.105187 + 0.994452i \(0.466456\pi\)
\(338\) −2919.72 −0.469858
\(339\) −5958.31 −0.954605
\(340\) −2724.88 −0.434639
\(341\) −9892.21 −1.57095
\(342\) −2895.56 −0.457819
\(343\) 5056.08 0.795926
\(344\) 915.848 0.143544
\(345\) 0 0
\(346\) −2897.22 −0.450160
\(347\) 8170.38 1.26400 0.632002 0.774967i \(-0.282234\pi\)
0.632002 + 0.774967i \(0.282234\pi\)
\(348\) −3540.10 −0.545314
\(349\) −670.620 −0.102858 −0.0514290 0.998677i \(-0.516378\pi\)
−0.0514290 + 0.998677i \(0.516378\pi\)
\(350\) 219.176 0.0334726
\(351\) 3447.68 0.524284
\(352\) 7976.58 1.20782
\(353\) −1920.40 −0.289554 −0.144777 0.989464i \(-0.546247\pi\)
−0.144777 + 0.989464i \(0.546247\pi\)
\(354\) −7741.17 −1.16226
\(355\) −2604.53 −0.389392
\(356\) 1490.06 0.221834
\(357\) −5869.50 −0.870160
\(358\) 1757.04 0.259392
\(359\) −5193.57 −0.763528 −0.381764 0.924260i \(-0.624683\pi\)
−0.381764 + 0.924260i \(0.624683\pi\)
\(360\) −4498.96 −0.658656
\(361\) 3555.79 0.518413
\(362\) −4466.57 −0.648502
\(363\) −3247.19 −0.469514
\(364\) 7915.45 1.13979
\(365\) −8025.38 −1.15087
\(366\) 7780.26 1.11115
\(367\) −8650.86 −1.23044 −0.615220 0.788356i \(-0.710933\pi\)
−0.615220 + 0.788356i \(0.710933\pi\)
\(368\) 0 0
\(369\) 1617.61 0.228209
\(370\) −1550.58 −0.217867
\(371\) −235.226 −0.0329174
\(372\) 9165.05 1.27738
\(373\) 48.8560 0.00678195 0.00339097 0.999994i \(-0.498921\pi\)
0.00339097 + 0.999994i \(0.498921\pi\)
\(374\) −2578.12 −0.356448
\(375\) −9208.80 −1.26811
\(376\) 6690.80 0.917691
\(377\) −5798.51 −0.792145
\(378\) 1674.05 0.227788
\(379\) −7525.40 −1.01993 −0.509965 0.860195i \(-0.670342\pi\)
−0.509965 + 0.860195i \(0.670342\pi\)
\(380\) 6802.20 0.918277
\(381\) 2575.32 0.346293
\(382\) 1195.81 0.160165
\(383\) −2129.37 −0.284088 −0.142044 0.989860i \(-0.545367\pi\)
−0.142044 + 0.989860i \(0.545367\pi\)
\(384\) −8685.07 −1.15419
\(385\) −10329.1 −1.36732
\(386\) 2889.07 0.380958
\(387\) 856.435 0.112494
\(388\) −6132.60 −0.802411
\(389\) 1177.79 0.153512 0.0767561 0.997050i \(-0.475544\pi\)
0.0767561 + 0.997050i \(0.475544\pi\)
\(390\) −7468.26 −0.969667
\(391\) 0 0
\(392\) 2124.19 0.273693
\(393\) 8608.41 1.10493
\(394\) −6318.54 −0.807928
\(395\) 4080.71 0.519804
\(396\) 4722.03 0.599220
\(397\) −9806.95 −1.23979 −0.619895 0.784685i \(-0.712825\pi\)
−0.619895 + 0.784685i \(0.712825\pi\)
\(398\) −2058.73 −0.259283
\(399\) 14652.2 1.83842
\(400\) 112.392 0.0140490
\(401\) −9728.33 −1.21149 −0.605747 0.795657i \(-0.707126\pi\)
−0.605747 + 0.795657i \(0.707126\pi\)
\(402\) −10872.4 −1.34892
\(403\) 15011.9 1.85557
\(404\) −6986.65 −0.860393
\(405\) 10104.2 1.23971
\(406\) −2815.52 −0.344167
\(407\) 3871.61 0.471520
\(408\) 5682.32 0.689502
\(409\) −13301.7 −1.60814 −0.804070 0.594535i \(-0.797336\pi\)
−0.804070 + 0.594535i \(0.797336\pi\)
\(410\) 1439.95 0.173449
\(411\) −6024.27 −0.723005
\(412\) 6379.03 0.762797
\(413\) 16247.7 1.93582
\(414\) 0 0
\(415\) −3231.29 −0.382212
\(416\) −12104.8 −1.42666
\(417\) −5528.45 −0.649231
\(418\) 6435.85 0.753080
\(419\) −4699.29 −0.547913 −0.273956 0.961742i \(-0.588332\pi\)
−0.273956 + 0.961742i \(0.588332\pi\)
\(420\) 9569.79 1.11180
\(421\) 882.553 0.102169 0.0510843 0.998694i \(-0.483732\pi\)
0.0510843 + 0.998694i \(0.483732\pi\)
\(422\) 328.209 0.0378601
\(423\) 6256.76 0.719183
\(424\) 227.725 0.0260833
\(425\) −285.893 −0.0326302
\(426\) 2283.11 0.259665
\(427\) −16329.7 −1.85070
\(428\) 1910.10 0.215720
\(429\) 18647.4 2.09861
\(430\) 762.377 0.0855002
\(431\) −15289.6 −1.70876 −0.854380 0.519649i \(-0.826063\pi\)
−0.854380 + 0.519649i \(0.826063\pi\)
\(432\) 858.442 0.0956060
\(433\) 866.255 0.0961422 0.0480711 0.998844i \(-0.484693\pi\)
0.0480711 + 0.998844i \(0.484693\pi\)
\(434\) 7289.16 0.806200
\(435\) −7010.41 −0.772698
\(436\) 514.680 0.0565337
\(437\) 0 0
\(438\) 7034.99 0.767454
\(439\) 4428.81 0.481493 0.240747 0.970588i \(-0.422608\pi\)
0.240747 + 0.970588i \(0.422608\pi\)
\(440\) 9999.67 1.08344
\(441\) 1986.39 0.214490
\(442\) 3912.42 0.421029
\(443\) 6870.93 0.736902 0.368451 0.929647i \(-0.379888\pi\)
0.368451 + 0.929647i \(0.379888\pi\)
\(444\) −3587.01 −0.383406
\(445\) 2950.74 0.314333
\(446\) 351.569 0.0373257
\(447\) 2325.51 0.246069
\(448\) −3159.91 −0.333240
\(449\) −2866.38 −0.301275 −0.150638 0.988589i \(-0.548133\pi\)
−0.150638 + 0.988589i \(0.548133\pi\)
\(450\) −198.421 −0.0207859
\(451\) −3595.39 −0.375389
\(452\) −5089.21 −0.529594
\(453\) −9147.50 −0.948758
\(454\) 151.796 0.0156920
\(455\) 15674.9 1.61505
\(456\) −14185.0 −1.45674
\(457\) 2000.32 0.204751 0.102375 0.994746i \(-0.467356\pi\)
0.102375 + 0.994746i \(0.467356\pi\)
\(458\) −143.303 −0.0146203
\(459\) −2183.63 −0.222055
\(460\) 0 0
\(461\) −11097.1 −1.12113 −0.560565 0.828110i \(-0.689416\pi\)
−0.560565 + 0.828110i \(0.689416\pi\)
\(462\) 9054.39 0.911792
\(463\) −5167.62 −0.518704 −0.259352 0.965783i \(-0.583509\pi\)
−0.259352 + 0.965783i \(0.583509\pi\)
\(464\) −1443.78 −0.144452
\(465\) 18149.4 1.81002
\(466\) −3373.59 −0.335362
\(467\) −11215.4 −1.11132 −0.555658 0.831411i \(-0.687534\pi\)
−0.555658 + 0.831411i \(0.687534\pi\)
\(468\) −7165.92 −0.707788
\(469\) 22819.7 2.24673
\(470\) 5569.61 0.546610
\(471\) 6164.99 0.603116
\(472\) −15729.5 −1.53392
\(473\) −1903.57 −0.185044
\(474\) −3577.12 −0.346630
\(475\) 713.684 0.0689391
\(476\) −5013.36 −0.482746
\(477\) 212.952 0.0204411
\(478\) 5324.03 0.509446
\(479\) −19839.8 −1.89249 −0.946247 0.323446i \(-0.895159\pi\)
−0.946247 + 0.323446i \(0.895159\pi\)
\(480\) −14634.8 −1.39163
\(481\) −5875.36 −0.556951
\(482\) 1584.27 0.149713
\(483\) 0 0
\(484\) −2773.55 −0.260476
\(485\) −12144.3 −1.13700
\(486\) −6718.98 −0.627118
\(487\) 6617.36 0.615732 0.307866 0.951430i \(-0.400385\pi\)
0.307866 + 0.951430i \(0.400385\pi\)
\(488\) 15809.0 1.46647
\(489\) −15218.1 −1.40733
\(490\) 1768.23 0.163022
\(491\) −8401.39 −0.772198 −0.386099 0.922457i \(-0.626178\pi\)
−0.386099 + 0.922457i \(0.626178\pi\)
\(492\) 3331.10 0.305239
\(493\) 3672.57 0.335505
\(494\) −9766.71 −0.889524
\(495\) 9350.98 0.849081
\(496\) 3737.83 0.338374
\(497\) −4791.94 −0.432491
\(498\) 2832.53 0.254877
\(499\) −9509.55 −0.853118 −0.426559 0.904460i \(-0.640274\pi\)
−0.426559 + 0.904460i \(0.640274\pi\)
\(500\) −7865.58 −0.703519
\(501\) 11806.5 1.05284
\(502\) 10216.3 0.908321
\(503\) 8840.16 0.783625 0.391812 0.920045i \(-0.371848\pi\)
0.391812 + 0.920045i \(0.371848\pi\)
\(504\) −8277.42 −0.731558
\(505\) −13835.6 −1.21916
\(506\) 0 0
\(507\) −13375.5 −1.17165
\(508\) 2199.67 0.192116
\(509\) 12875.1 1.12117 0.560587 0.828096i \(-0.310576\pi\)
0.560587 + 0.828096i \(0.310576\pi\)
\(510\) 4730.12 0.410693
\(511\) −14765.5 −1.27825
\(512\) −5645.03 −0.487261
\(513\) 5451.08 0.469144
\(514\) 283.396 0.0243192
\(515\) 12632.3 1.08087
\(516\) 1763.64 0.150465
\(517\) −13906.7 −1.18301
\(518\) −2852.83 −0.241981
\(519\) −13272.4 −1.12253
\(520\) −15175.0 −1.27974
\(521\) −20433.6 −1.71826 −0.859128 0.511760i \(-0.828994\pi\)
−0.859128 + 0.511760i \(0.828994\pi\)
\(522\) 2548.91 0.213722
\(523\) 16628.7 1.39029 0.695144 0.718870i \(-0.255341\pi\)
0.695144 + 0.718870i \(0.255341\pi\)
\(524\) 7352.76 0.612990
\(525\) 1004.06 0.0834681
\(526\) 4781.67 0.396370
\(527\) −9508.00 −0.785910
\(528\) 4643.03 0.382693
\(529\) 0 0
\(530\) 189.565 0.0155361
\(531\) −14709.1 −1.20211
\(532\) 12515.0 1.01991
\(533\) 5456.18 0.443403
\(534\) −2586.59 −0.209612
\(535\) 3782.55 0.305671
\(536\) −22092.0 −1.78028
\(537\) 8049.11 0.646825
\(538\) −5509.49 −0.441507
\(539\) −4415.07 −0.352821
\(540\) 3560.25 0.283720
\(541\) −22741.6 −1.80728 −0.903638 0.428297i \(-0.859114\pi\)
−0.903638 + 0.428297i \(0.859114\pi\)
\(542\) −9310.23 −0.737839
\(543\) −20461.7 −1.61712
\(544\) 7666.77 0.604246
\(545\) 1019.21 0.0801070
\(546\) −13740.5 −1.07699
\(547\) −16801.9 −1.31334 −0.656669 0.754179i \(-0.728035\pi\)
−0.656669 + 0.754179i \(0.728035\pi\)
\(548\) −5145.55 −0.401107
\(549\) 14783.4 1.14925
\(550\) 441.023 0.0341914
\(551\) −9167.95 −0.708835
\(552\) 0 0
\(553\) 7507.88 0.577338
\(554\) −13642.9 −1.04627
\(555\) −7103.31 −0.543277
\(556\) −4722.05 −0.360179
\(557\) 17050.7 1.29706 0.648529 0.761190i \(-0.275385\pi\)
0.648529 + 0.761190i \(0.275385\pi\)
\(558\) −6598.93 −0.500636
\(559\) 2888.75 0.218571
\(560\) 3902.90 0.294514
\(561\) −11810.6 −0.888846
\(562\) 4872.66 0.365731
\(563\) 15829.9 1.18499 0.592495 0.805574i \(-0.298143\pi\)
0.592495 + 0.805574i \(0.298143\pi\)
\(564\) 12884.4 0.961935
\(565\) −10078.1 −0.750422
\(566\) 556.791 0.0413492
\(567\) 18590.3 1.37693
\(568\) 4639.12 0.342699
\(569\) 21303.6 1.56958 0.784792 0.619760i \(-0.212770\pi\)
0.784792 + 0.619760i \(0.212770\pi\)
\(570\) −11808.0 −0.867686
\(571\) −14200.8 −1.04078 −0.520389 0.853929i \(-0.674213\pi\)
−0.520389 + 0.853929i \(0.674213\pi\)
\(572\) 15927.4 1.16426
\(573\) 5478.09 0.399390
\(574\) 2649.30 0.192647
\(575\) 0 0
\(576\) 2860.69 0.206936
\(577\) 15169.6 1.09449 0.547243 0.836974i \(-0.315677\pi\)
0.547243 + 0.836974i \(0.315677\pi\)
\(578\) 4806.52 0.345891
\(579\) 13235.0 0.949965
\(580\) −5987.85 −0.428676
\(581\) −5945.09 −0.424516
\(582\) 10645.6 0.758204
\(583\) −473.320 −0.0336242
\(584\) 14294.6 1.01287
\(585\) −14190.6 −1.00292
\(586\) 6276.69 0.442470
\(587\) 17033.7 1.19771 0.598854 0.800858i \(-0.295623\pi\)
0.598854 + 0.800858i \(0.295623\pi\)
\(588\) 4090.52 0.286888
\(589\) 23735.1 1.66042
\(590\) −13093.7 −0.913658
\(591\) −28945.7 −2.01467
\(592\) −1462.91 −0.101563
\(593\) 1166.55 0.0807830 0.0403915 0.999184i \(-0.487139\pi\)
0.0403915 + 0.999184i \(0.487139\pi\)
\(594\) 3368.51 0.232679
\(595\) −9927.89 −0.684040
\(596\) 1986.30 0.136514
\(597\) −9431.18 −0.646554
\(598\) 0 0
\(599\) −551.079 −0.0375901 −0.0187951 0.999823i \(-0.505983\pi\)
−0.0187951 + 0.999823i \(0.505983\pi\)
\(600\) −972.040 −0.0661389
\(601\) −7765.67 −0.527069 −0.263534 0.964650i \(-0.584888\pi\)
−0.263534 + 0.964650i \(0.584888\pi\)
\(602\) 1402.66 0.0949636
\(603\) −20658.8 −1.39518
\(604\) −7813.22 −0.526350
\(605\) −5492.42 −0.369089
\(606\) 12128.1 0.812991
\(607\) −13926.9 −0.931259 −0.465629 0.884980i \(-0.654172\pi\)
−0.465629 + 0.884980i \(0.654172\pi\)
\(608\) −19138.8 −1.27661
\(609\) −12898.1 −0.858222
\(610\) 13159.8 0.873484
\(611\) 21104.0 1.39735
\(612\) 4538.63 0.299777
\(613\) 16900.1 1.11352 0.556761 0.830673i \(-0.312044\pi\)
0.556761 + 0.830673i \(0.312044\pi\)
\(614\) 12766.8 0.839133
\(615\) 6596.53 0.432517
\(616\) 18397.9 1.20336
\(617\) 25518.0 1.66502 0.832508 0.554013i \(-0.186904\pi\)
0.832508 + 0.554013i \(0.186904\pi\)
\(618\) −11073.4 −0.720772
\(619\) 19612.9 1.27352 0.636759 0.771063i \(-0.280275\pi\)
0.636759 + 0.771063i \(0.280275\pi\)
\(620\) 15502.1 1.00416
\(621\) 0 0
\(622\) −2878.43 −0.185554
\(623\) 5428.91 0.349125
\(624\) −7046.02 −0.452030
\(625\) −16450.3 −1.05282
\(626\) −9757.16 −0.622962
\(627\) 29483.1 1.87790
\(628\) 5265.74 0.334595
\(629\) 3721.24 0.235891
\(630\) −6890.35 −0.435743
\(631\) 21726.8 1.37073 0.685366 0.728199i \(-0.259642\pi\)
0.685366 + 0.728199i \(0.259642\pi\)
\(632\) −7268.46 −0.457474
\(633\) 1503.55 0.0944088
\(634\) 15581.8 0.976077
\(635\) 4355.98 0.272223
\(636\) 438.527 0.0273408
\(637\) 6700.08 0.416745
\(638\) −5665.36 −0.351557
\(639\) 4338.18 0.268569
\(640\) −14690.2 −0.907317
\(641\) −27013.6 −1.66455 −0.832273 0.554366i \(-0.812961\pi\)
−0.832273 + 0.554366i \(0.812961\pi\)
\(642\) −3315.76 −0.203836
\(643\) 9797.00 0.600864 0.300432 0.953803i \(-0.402869\pi\)
0.300432 + 0.953803i \(0.402869\pi\)
\(644\) 0 0
\(645\) 3492.51 0.213205
\(646\) 6185.88 0.376749
\(647\) 5927.66 0.360186 0.180093 0.983650i \(-0.442360\pi\)
0.180093 + 0.983650i \(0.442360\pi\)
\(648\) −17997.4 −1.09106
\(649\) 32693.4 1.97739
\(650\) −669.274 −0.0403863
\(651\) 33392.2 2.01036
\(652\) −12998.3 −0.780757
\(653\) −12665.0 −0.758988 −0.379494 0.925194i \(-0.623902\pi\)
−0.379494 + 0.925194i \(0.623902\pi\)
\(654\) −893.435 −0.0534191
\(655\) 14560.6 0.868593
\(656\) 1358.54 0.0808569
\(657\) 13367.3 0.793772
\(658\) 10247.2 0.607111
\(659\) −21291.9 −1.25859 −0.629297 0.777165i \(-0.716657\pi\)
−0.629297 + 0.777165i \(0.716657\pi\)
\(660\) 19256.2 1.13568
\(661\) 3828.94 0.225308 0.112654 0.993634i \(-0.464065\pi\)
0.112654 + 0.993634i \(0.464065\pi\)
\(662\) −1522.64 −0.0893942
\(663\) 17923.1 1.04989
\(664\) 5755.50 0.336381
\(665\) 24783.3 1.44520
\(666\) 2582.69 0.150266
\(667\) 0 0
\(668\) 10084.3 0.584095
\(669\) 1610.56 0.0930763
\(670\) −18390.0 −1.06040
\(671\) −32858.5 −1.89044
\(672\) −26925.8 −1.54566
\(673\) 17602.0 1.00818 0.504092 0.863650i \(-0.331827\pi\)
0.504092 + 0.863650i \(0.331827\pi\)
\(674\) −1929.69 −0.110281
\(675\) 373.541 0.0213001
\(676\) −11424.5 −0.650005
\(677\) 14176.1 0.804776 0.402388 0.915469i \(-0.368180\pi\)
0.402388 + 0.915469i \(0.368180\pi\)
\(678\) 8834.38 0.500417
\(679\) −22343.7 −1.26284
\(680\) 9611.28 0.542023
\(681\) 695.390 0.0391298
\(682\) 14667.2 0.823512
\(683\) 22748.4 1.27444 0.637222 0.770681i \(-0.280084\pi\)
0.637222 + 0.770681i \(0.280084\pi\)
\(684\) −11329.9 −0.633349
\(685\) −10189.7 −0.568360
\(686\) −7496.64 −0.417235
\(687\) −656.480 −0.0364574
\(688\) 719.274 0.0398577
\(689\) 718.287 0.0397163
\(690\) 0 0
\(691\) −2782.86 −0.153206 −0.0766028 0.997062i \(-0.524407\pi\)
−0.0766028 + 0.997062i \(0.524407\pi\)
\(692\) −11336.4 −0.622755
\(693\) 17204.4 0.943060
\(694\) −12114.2 −0.662608
\(695\) −9351.01 −0.510366
\(696\) 12486.8 0.680043
\(697\) −3455.75 −0.187799
\(698\) 994.328 0.0539196
\(699\) −15454.7 −0.836265
\(700\) 857.604 0.0463063
\(701\) 13828.9 0.745095 0.372547 0.928013i \(-0.378484\pi\)
0.372547 + 0.928013i \(0.378484\pi\)
\(702\) −5111.87 −0.274837
\(703\) −9289.45 −0.498376
\(704\) −6358.34 −0.340396
\(705\) 25514.8 1.36304
\(706\) 2847.38 0.151788
\(707\) −25455.3 −1.35410
\(708\) −30290.1 −1.60787
\(709\) 34922.2 1.84983 0.924917 0.380170i \(-0.124134\pi\)
0.924917 + 0.380170i \(0.124134\pi\)
\(710\) 3861.73 0.204124
\(711\) −6796.94 −0.358516
\(712\) −5255.78 −0.276641
\(713\) 0 0
\(714\) 8702.71 0.456150
\(715\) 31540.8 1.64973
\(716\) 6875.04 0.358844
\(717\) 24389.8 1.27037
\(718\) 7700.51 0.400251
\(719\) −21920.6 −1.13699 −0.568497 0.822685i \(-0.692475\pi\)
−0.568497 + 0.822685i \(0.692475\pi\)
\(720\) −3533.33 −0.182888
\(721\) 23241.5 1.20050
\(722\) −5272.17 −0.271759
\(723\) 7257.66 0.373327
\(724\) −17477.1 −0.897142
\(725\) −628.243 −0.0321826
\(726\) 4814.61 0.246125
\(727\) 5336.14 0.272223 0.136112 0.990694i \(-0.456539\pi\)
0.136112 + 0.990694i \(0.456539\pi\)
\(728\) −27919.7 −1.42139
\(729\) −7034.08 −0.357368
\(730\) 11899.2 0.603302
\(731\) −1829.63 −0.0925736
\(732\) 30443.1 1.53717
\(733\) 19764.9 0.995950 0.497975 0.867191i \(-0.334077\pi\)
0.497975 + 0.867191i \(0.334077\pi\)
\(734\) 12826.6 0.645013
\(735\) 8100.40 0.406514
\(736\) 0 0
\(737\) 45917.6 2.29497
\(738\) −2398.43 −0.119630
\(739\) −10677.2 −0.531485 −0.265742 0.964044i \(-0.585617\pi\)
−0.265742 + 0.964044i \(0.585617\pi\)
\(740\) −6067.20 −0.301398
\(741\) −44742.0 −2.21814
\(742\) 348.770 0.0172557
\(743\) 3198.09 0.157909 0.0789546 0.996878i \(-0.474842\pi\)
0.0789546 + 0.996878i \(0.474842\pi\)
\(744\) −32327.3 −1.59298
\(745\) 3933.45 0.193437
\(746\) −72.4387 −0.00355519
\(747\) 5382.13 0.263617
\(748\) −10087.8 −0.493112
\(749\) 6959.32 0.339503
\(750\) 13653.9 0.664759
\(751\) −38442.0 −1.86787 −0.933935 0.357443i \(-0.883649\pi\)
−0.933935 + 0.357443i \(0.883649\pi\)
\(752\) 5254.72 0.254814
\(753\) 46801.8 2.26501
\(754\) 8597.46 0.415253
\(755\) −15472.4 −0.745826
\(756\) 6550.33 0.315123
\(757\) −10785.4 −0.517837 −0.258919 0.965899i \(-0.583366\pi\)
−0.258919 + 0.965899i \(0.583366\pi\)
\(758\) 11157.9 0.534661
\(759\) 0 0
\(760\) −23993.0 −1.14515
\(761\) −919.996 −0.0438237 −0.0219119 0.999760i \(-0.506975\pi\)
−0.0219119 + 0.999760i \(0.506975\pi\)
\(762\) −3818.42 −0.181531
\(763\) 1875.20 0.0889734
\(764\) 4679.04 0.221573
\(765\) 8987.79 0.424777
\(766\) 3157.21 0.148923
\(767\) −49613.8 −2.33566
\(768\) 21000.6 0.986708
\(769\) 2962.98 0.138944 0.0694719 0.997584i \(-0.477869\pi\)
0.0694719 + 0.997584i \(0.477869\pi\)
\(770\) 15314.9 0.716767
\(771\) 1298.26 0.0606429
\(772\) 11304.5 0.527020
\(773\) 18980.0 0.883135 0.441568 0.897228i \(-0.354423\pi\)
0.441568 + 0.897228i \(0.354423\pi\)
\(774\) −1269.84 −0.0589707
\(775\) 1626.47 0.0753867
\(776\) 21631.1 1.00066
\(777\) −13069.0 −0.603409
\(778\) −1746.31 −0.0804731
\(779\) 8626.70 0.396770
\(780\) −29222.3 −1.34144
\(781\) −9642.30 −0.441778
\(782\) 0 0
\(783\) −4798.48 −0.219009
\(784\) 1668.26 0.0759958
\(785\) 10427.7 0.474114
\(786\) −12763.7 −0.579218
\(787\) 12763.8 0.578120 0.289060 0.957311i \(-0.406657\pi\)
0.289060 + 0.957311i \(0.406657\pi\)
\(788\) −24723.6 −1.11769
\(789\) 21905.2 0.988397
\(790\) −6050.46 −0.272488
\(791\) −18542.2 −0.833481
\(792\) −16655.7 −0.747267
\(793\) 49864.4 2.23296
\(794\) 14540.8 0.649915
\(795\) 868.409 0.0387413
\(796\) −8055.52 −0.358694
\(797\) −7974.32 −0.354410 −0.177205 0.984174i \(-0.556706\pi\)
−0.177205 + 0.984174i \(0.556706\pi\)
\(798\) −21724.9 −0.963724
\(799\) −13366.5 −0.591832
\(800\) −1311.51 −0.0579609
\(801\) −4914.83 −0.216800
\(802\) 14424.2 0.635082
\(803\) −29711.0 −1.30570
\(804\) −42542.2 −1.86611
\(805\) 0 0
\(806\) −22258.2 −0.972717
\(807\) −25239.4 −1.10095
\(808\) 24643.6 1.07297
\(809\) 26130.7 1.13561 0.567804 0.823164i \(-0.307793\pi\)
0.567804 + 0.823164i \(0.307793\pi\)
\(810\) −14981.6 −0.649875
\(811\) 36406.0 1.57631 0.788155 0.615476i \(-0.211036\pi\)
0.788155 + 0.615476i \(0.211036\pi\)
\(812\) −11016.7 −0.476123
\(813\) −42650.8 −1.83989
\(814\) −5740.44 −0.247177
\(815\) −25740.4 −1.10632
\(816\) 4462.69 0.191453
\(817\) 4567.37 0.195584
\(818\) 19722.5 0.843008
\(819\) −26108.5 −1.11393
\(820\) 5634.34 0.239951
\(821\) 33177.1 1.41034 0.705170 0.709039i \(-0.250871\pi\)
0.705170 + 0.709039i \(0.250871\pi\)
\(822\) 8932.18 0.379009
\(823\) 17968.7 0.761057 0.380529 0.924769i \(-0.375742\pi\)
0.380529 + 0.924769i \(0.375742\pi\)
\(824\) −22500.4 −0.951259
\(825\) 2020.36 0.0852605
\(826\) −24090.4 −1.01478
\(827\) 36483.7 1.53405 0.767026 0.641616i \(-0.221736\pi\)
0.767026 + 0.641616i \(0.221736\pi\)
\(828\) 0 0
\(829\) 4713.58 0.197478 0.0987392 0.995113i \(-0.468519\pi\)
0.0987392 + 0.995113i \(0.468519\pi\)
\(830\) 4791.04 0.200361
\(831\) −62499.3 −2.60900
\(832\) 9649.08 0.402069
\(833\) −4243.59 −0.176508
\(834\) 8197.03 0.340336
\(835\) 19969.9 0.827649
\(836\) 25182.6 1.04182
\(837\) 12422.9 0.513021
\(838\) 6967.64 0.287223
\(839\) −15691.7 −0.645693 −0.322847 0.946451i \(-0.604640\pi\)
−0.322847 + 0.946451i \(0.604640\pi\)
\(840\) −33754.9 −1.38649
\(841\) −16318.6 −0.669098
\(842\) −1308.56 −0.0535582
\(843\) 22322.0 0.911995
\(844\) 1284.24 0.0523759
\(845\) −22623.8 −0.921042
\(846\) −9276.90 −0.377005
\(847\) −10105.2 −0.409940
\(848\) 178.847 0.00724249
\(849\) 2550.70 0.103109
\(850\) 423.894 0.0171052
\(851\) 0 0
\(852\) 8933.50 0.359222
\(853\) −39201.4 −1.57354 −0.786770 0.617246i \(-0.788248\pi\)
−0.786770 + 0.617246i \(0.788248\pi\)
\(854\) 24212.1 0.970164
\(855\) −22436.5 −0.897441
\(856\) −6737.39 −0.269018
\(857\) −19739.5 −0.786803 −0.393401 0.919367i \(-0.628702\pi\)
−0.393401 + 0.919367i \(0.628702\pi\)
\(858\) −27648.4 −1.10012
\(859\) 21802.8 0.866008 0.433004 0.901392i \(-0.357454\pi\)
0.433004 + 0.901392i \(0.357454\pi\)
\(860\) 2983.08 0.118281
\(861\) 12136.6 0.480389
\(862\) 22669.9 0.895755
\(863\) −45446.3 −1.79260 −0.896298 0.443453i \(-0.853753\pi\)
−0.896298 + 0.443453i \(0.853753\pi\)
\(864\) −10017.2 −0.394436
\(865\) −22449.4 −0.882429
\(866\) −1284.40 −0.0503990
\(867\) 22019.0 0.862520
\(868\) 28521.5 1.11530
\(869\) 15107.3 0.589735
\(870\) 10394.3 0.405058
\(871\) −69682.2 −2.71078
\(872\) −1815.40 −0.0705013
\(873\) 20227.9 0.784204
\(874\) 0 0
\(875\) −28657.7 −1.10721
\(876\) 27527.0 1.06170
\(877\) 30533.2 1.17564 0.587819 0.808993i \(-0.299987\pi\)
0.587819 + 0.808993i \(0.299987\pi\)
\(878\) −6566.59 −0.252405
\(879\) 28754.0 1.10335
\(880\) 7853.38 0.300838
\(881\) 23810.1 0.910535 0.455268 0.890355i \(-0.349544\pi\)
0.455268 + 0.890355i \(0.349544\pi\)
\(882\) −2945.22 −0.112438
\(883\) 27588.5 1.05144 0.525722 0.850656i \(-0.323795\pi\)
0.525722 + 0.850656i \(0.323795\pi\)
\(884\) 15308.8 0.582455
\(885\) −59983.1 −2.27832
\(886\) −10187.5 −0.386294
\(887\) −1084.62 −0.0410573 −0.0205287 0.999789i \(-0.506535\pi\)
−0.0205287 + 0.999789i \(0.506535\pi\)
\(888\) 12652.2 0.478133
\(889\) 8014.35 0.302354
\(890\) −4375.06 −0.164778
\(891\) 37407.2 1.40650
\(892\) 1375.64 0.0516367
\(893\) 33367.3 1.25039
\(894\) −3448.03 −0.128993
\(895\) 13614.6 0.508474
\(896\) −27027.8 −1.00774
\(897\) 0 0
\(898\) 4249.97 0.157933
\(899\) −20893.6 −0.775128
\(900\) −776.395 −0.0287554
\(901\) −454.937 −0.0168215
\(902\) 5330.89 0.196784
\(903\) 6425.68 0.236803
\(904\) 17950.9 0.660439
\(905\) −34609.6 −1.27123
\(906\) 13563.0 0.497351
\(907\) −3404.07 −0.124620 −0.0623100 0.998057i \(-0.519847\pi\)
−0.0623100 + 0.998057i \(0.519847\pi\)
\(908\) 593.958 0.0217083
\(909\) 23044.9 0.840870
\(910\) −23241.1 −0.846632
\(911\) 2751.59 0.100070 0.0500352 0.998747i \(-0.484067\pi\)
0.0500352 + 0.998747i \(0.484067\pi\)
\(912\) −11140.4 −0.404490
\(913\) −11962.7 −0.433632
\(914\) −2965.88 −0.107333
\(915\) 60286.1 2.17814
\(916\) −560.723 −0.0202258
\(917\) 26789.2 0.964731
\(918\) 3237.67 0.116404
\(919\) 15074.4 0.541085 0.270543 0.962708i \(-0.412797\pi\)
0.270543 + 0.962708i \(0.412797\pi\)
\(920\) 0 0
\(921\) 58485.8 2.09248
\(922\) 16453.6 0.587712
\(923\) 14632.7 0.521820
\(924\) 35428.6 1.26138
\(925\) −636.569 −0.0226273
\(926\) 7662.03 0.271912
\(927\) −21040.7 −0.745489
\(928\) 16847.5 0.595956
\(929\) −25851.6 −0.912985 −0.456493 0.889727i \(-0.650894\pi\)
−0.456493 + 0.889727i \(0.650894\pi\)
\(930\) −26910.1 −0.948836
\(931\) 10593.4 0.372916
\(932\) −13200.4 −0.463941
\(933\) −13186.3 −0.462701
\(934\) 16629.0 0.582567
\(935\) −19976.8 −0.698729
\(936\) 25275.9 0.882658
\(937\) −7548.98 −0.263196 −0.131598 0.991303i \(-0.542011\pi\)
−0.131598 + 0.991303i \(0.542011\pi\)
\(938\) −33834.8 −1.17777
\(939\) −44698.3 −1.55343
\(940\) 21793.1 0.756184
\(941\) 27899.3 0.966517 0.483258 0.875478i \(-0.339453\pi\)
0.483258 + 0.875478i \(0.339453\pi\)
\(942\) −9140.82 −0.316161
\(943\) 0 0
\(944\) −12353.4 −0.425920
\(945\) 12971.5 0.446523
\(946\) 2822.42 0.0970028
\(947\) −47574.9 −1.63250 −0.816249 0.577700i \(-0.803950\pi\)
−0.816249 + 0.577700i \(0.803950\pi\)
\(948\) −13996.8 −0.479530
\(949\) 45087.9 1.54227
\(950\) −1058.18 −0.0361388
\(951\) 71381.5 2.43397
\(952\) 17683.3 0.602016
\(953\) −46468.1 −1.57948 −0.789742 0.613439i \(-0.789786\pi\)
−0.789742 + 0.613439i \(0.789786\pi\)
\(954\) −315.744 −0.0107155
\(955\) 9265.83 0.313964
\(956\) 20832.2 0.704771
\(957\) −25953.4 −0.876651
\(958\) 29416.5 0.992070
\(959\) −18747.4 −0.631268
\(960\) 11665.8 0.392198
\(961\) 24300.9 0.815713
\(962\) 8711.39 0.291961
\(963\) −6300.32 −0.210826
\(964\) 6199.04 0.207114
\(965\) 22386.2 0.746775
\(966\) 0 0
\(967\) −1834.16 −0.0609954 −0.0304977 0.999535i \(-0.509709\pi\)
−0.0304977 + 0.999535i \(0.509709\pi\)
\(968\) 9782.96 0.324831
\(969\) 28338.0 0.939470
\(970\) 18006.3 0.596030
\(971\) 9617.90 0.317871 0.158936 0.987289i \(-0.449194\pi\)
0.158936 + 0.987289i \(0.449194\pi\)
\(972\) −26290.5 −0.867558
\(973\) −17204.4 −0.566854
\(974\) −9811.56 −0.322775
\(975\) −3065.99 −0.100708
\(976\) 12415.8 0.407192
\(977\) −56811.2 −1.86034 −0.930169 0.367131i \(-0.880340\pi\)
−0.930169 + 0.367131i \(0.880340\pi\)
\(978\) 22563.8 0.737743
\(979\) 10924.0 0.356622
\(980\) 6918.85 0.225525
\(981\) −1697.63 −0.0552509
\(982\) 12456.7 0.404797
\(983\) −50250.6 −1.63046 −0.815232 0.579135i \(-0.803390\pi\)
−0.815232 + 0.579135i \(0.803390\pi\)
\(984\) −11749.6 −0.380653
\(985\) −48959.8 −1.58375
\(986\) −5445.31 −0.175876
\(987\) 46943.4 1.51390
\(988\) −38215.8 −1.23057
\(989\) 0 0
\(990\) −13864.7 −0.445100
\(991\) −7883.81 −0.252712 −0.126356 0.991985i \(-0.540328\pi\)
−0.126356 + 0.991985i \(0.540328\pi\)
\(992\) −43617.0 −1.39601
\(993\) −6975.31 −0.222915
\(994\) 7105.01 0.226717
\(995\) −15952.2 −0.508261
\(996\) 11083.3 0.352598
\(997\) 26318.4 0.836019 0.418009 0.908443i \(-0.362728\pi\)
0.418009 + 0.908443i \(0.362728\pi\)
\(998\) 14099.8 0.447216
\(999\) −4862.08 −0.153983
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 529.4.a.m.1.10 25
23.15 odd 22 23.4.c.a.18.4 yes 50
23.20 odd 22 23.4.c.a.9.4 50
23.22 odd 2 529.4.a.n.1.10 25
69.20 even 22 207.4.i.a.55.2 50
69.38 even 22 207.4.i.a.64.2 50
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
23.4.c.a.9.4 50 23.20 odd 22
23.4.c.a.18.4 yes 50 23.15 odd 22
207.4.i.a.55.2 50 69.20 even 22
207.4.i.a.64.2 50 69.38 even 22
529.4.a.m.1.10 25 1.1 even 1 trivial
529.4.a.n.1.10 25 23.22 odd 2