Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [529,4,Mod(1,529)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(529, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([0]))
N = Newforms(chi, 4, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("529.1");
S:= CuspForms(chi, 4);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 529 = 23^{2} \) |
Weight: | \( k \) | \(=\) | \( 4 \) |
Character orbit: | \([\chi]\) | \(=\) | 529.a (trivial) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | yes |
Analytic conductor: | \(31.2120103930\) |
Analytic rank: | \(0\) |
Dimension: | \(24\) |
Twist minimal: | yes |
Fricke sign: | \(+1\) |
Sato-Tate group: | $\mathrm{SU}(2)$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1.1 | −5.18273 | −0.934501 | 18.8607 | −7.90805 | 4.84327 | 17.4062 | −56.2881 | −26.1267 | 40.9853 | ||||||||||||||||||
1.2 | −5.18273 | −0.934501 | 18.8607 | 7.90805 | 4.84327 | −17.4062 | −56.2881 | −26.1267 | −40.9853 | ||||||||||||||||||
1.3 | −4.78413 | 9.28484 | 14.8879 | −11.1627 | −44.4198 | −12.0979 | −32.9524 | 59.2083 | 53.4036 | ||||||||||||||||||
1.4 | −4.78413 | 9.28484 | 14.8879 | 11.1627 | −44.4198 | 12.0979 | −32.9524 | 59.2083 | −53.4036 | ||||||||||||||||||
1.5 | −3.49874 | −4.75964 | 4.24120 | −6.95940 | 16.6528 | −9.95165 | 13.1511 | −4.34581 | 24.3491 | ||||||||||||||||||
1.6 | −3.49874 | −4.75964 | 4.24120 | 6.95940 | 16.6528 | 9.95165 | 13.1511 | −4.34581 | −24.3491 | ||||||||||||||||||
1.7 | −2.02425 | −2.87466 | −3.90243 | −12.2605 | 5.81902 | 33.3107 | 24.0934 | −18.7363 | 24.8182 | ||||||||||||||||||
1.8 | −2.02425 | −2.87466 | −3.90243 | 12.2605 | 5.81902 | −33.3107 | 24.0934 | −18.7363 | −24.8182 | ||||||||||||||||||
1.9 | −1.45684 | 7.83065 | −5.87761 | −1.67357 | −11.4080 | −32.2680 | 20.2175 | 34.3191 | 2.43813 | ||||||||||||||||||
1.10 | −1.45684 | 7.83065 | −5.87761 | 1.67357 | −11.4080 | 32.2680 | 20.2175 | 34.3191 | −2.43813 | ||||||||||||||||||
1.11 | 0.467470 | −0.443481 | −7.78147 | −16.9623 | −0.207314 | 3.65525 | −7.37736 | −26.8033 | −7.92935 | ||||||||||||||||||
1.12 | 0.467470 | −0.443481 | −7.78147 | 16.9623 | −0.207314 | −3.65525 | −7.37736 | −26.8033 | 7.92935 | ||||||||||||||||||
1.13 | 1.26033 | 7.25401 | −6.41157 | −18.6981 | 9.14243 | −13.1556 | −18.1633 | 25.6207 | −23.5658 | ||||||||||||||||||
1.14 | 1.26033 | 7.25401 | −6.41157 | 18.6981 | 9.14243 | 13.1556 | −18.1633 | 25.6207 | 23.5658 | ||||||||||||||||||
1.15 | 1.99819 | −0.476116 | −4.00725 | −16.7765 | −0.951368 | −10.3260 | −23.9927 | −26.7733 | −33.5226 | ||||||||||||||||||
1.16 | 1.99819 | −0.476116 | −4.00725 | 16.7765 | −0.951368 | 10.3260 | −23.9927 | −26.7733 | 33.5226 | ||||||||||||||||||
1.17 | 3.16637 | −8.06841 | 2.02592 | −10.4025 | −25.5476 | 26.5887 | −18.9162 | 38.0992 | −32.9383 | ||||||||||||||||||
1.18 | 3.16637 | −8.06841 | 2.02592 | 10.4025 | −25.5476 | −26.5887 | −18.9162 | 38.0992 | 32.9383 | ||||||||||||||||||
1.19 | 3.50216 | −7.39575 | 4.26516 | −17.4329 | −25.9011 | −31.4793 | −13.0800 | 27.6972 | −61.0529 | ||||||||||||||||||
1.20 | 3.50216 | −7.39575 | 4.26516 | 17.4329 | −25.9011 | 31.4793 | −13.0800 | 27.6972 | 61.0529 | ||||||||||||||||||
See all 24 embeddings |
Atkin-Lehner signs
\( p \) | Sign |
---|---|
\(23\) | \( +1 \) |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
23.b | odd | 2 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 529.4.a.l | ✓ | 24 |
23.b | odd | 2 | 1 | inner | 529.4.a.l | ✓ | 24 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
529.4.a.l | ✓ | 24 | 1.a | even | 1 | 1 | trivial |
529.4.a.l | ✓ | 24 | 23.b | odd | 2 | 1 | inner |
Hecke kernels
This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{4}^{\mathrm{new}}(\Gamma_0(529))\):
\( T_{2}^{12} - 4 T_{2}^{11} - 68 T_{2}^{10} + 268 T_{2}^{9} + 1582 T_{2}^{8} - 6244 T_{2}^{7} + \cdots - 92928 \)
|
\( T_{3}^{12} - 12 T_{3}^{11} - 147 T_{3}^{10} + 1932 T_{3}^{9} + 7344 T_{3}^{8} - 106572 T_{3}^{7} + \cdots - 3079712 \)
|
\( T_{5}^{24} - 1900 T_{5}^{22} + 1578637 T_{5}^{20} - 755197280 T_{5}^{18} + 230609593306 T_{5}^{16} + \cdots + 92\!\cdots\!64 \)
|