Properties

Label 529.4.a.j
Level $529$
Weight $4$
Character orbit 529.a
Self dual yes
Analytic conductor $31.212$
Analytic rank $1$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [529,4,Mod(1,529)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(529, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("529.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 529 = 23^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 529.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(31.2120103930\)
Analytic rank: \(1\)
Dimension: \(6\)
Coefficient field: 6.6.13191844032.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - 39x^{4} + 276x^{2} - 192 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{17}]\)
Coefficient ring index: \( 3 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{5}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \beta_{2} q^{2} + (\beta_{3} - \beta_{2} - 1) q^{3} + (2 \beta_{3} - \beta_{2} + 6) q^{4} + ( - \beta_{5} - \beta_{4} + 6 \beta_1) q^{5} + ( - \beta_{3} + 3 \beta_{2} - 13) q^{6} + (2 \beta_{5} - 8 \beta_1) q^{7}+ \cdots + ( - 94 \beta_{5} + 50 \beta_{4} - 404 \beta_1) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - 6 q^{3} + 36 q^{4} - 78 q^{6} - 72 q^{8} + 48 q^{9} + 294 q^{12} - 168 q^{13} + 132 q^{16} - 282 q^{18} - 318 q^{24} + 582 q^{25} - 450 q^{26} - 282 q^{27} - 576 q^{29} + 192 q^{31} - 216 q^{32} - 1404 q^{35}+ \cdots - 8928 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{6} - 39x^{4} + 276x^{2} - 192 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( ( -\nu^{5} + 47\nu^{3} - 444\nu ) / 208 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( -\nu^{4} + 47\nu^{2} - 288 ) / 52 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( 3\nu^{4} - 89\nu^{2} + 188 ) / 52 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( -9\nu^{5} + 319\nu^{3} - 1188\nu ) / 208 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( ( 5\nu^{5} - 183\nu^{3} + 1128\nu ) / 104 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( \beta_{5} + \beta_{4} + \beta_1 ) / 3 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{3} + 3\beta_{2} + 13 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( 9\beta_{5} + 7\beta_{4} + 27\beta_1 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( 47\beta_{3} + 89\beta_{2} + 323 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( 275\beta_{5} + 181\beta_{4} + 913\beta_1 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
0.883106
−0.883106
2.86379
−2.86379
5.47895
−5.47895
−4.84527 6.16096 15.4766 −14.7737 −29.8515 30.6409 −36.2264 10.9574 71.5824
1.2 −4.84527 6.16096 15.4766 14.7737 −29.8515 −30.6409 −36.2264 10.9574 −71.5824
1.3 0.580756 −8.12174 −7.66272 −20.7157 −4.71675 11.8446 −9.09622 38.9626 −12.0308
1.4 0.580756 −8.12174 −7.66272 20.7157 −4.71675 −11.8446 −9.09622 38.9626 12.0308
1.5 4.26451 −1.03922 10.1861 −4.31248 −4.43175 0.916304 9.32257 −25.9200 −18.3906
1.6 4.26451 −1.03922 10.1861 4.31248 −4.43175 −0.916304 9.32257 −25.9200 18.3906
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1.6
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(23\) \( -1 \)

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
23.b odd 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 529.4.a.j 6
23.b odd 2 1 inner 529.4.a.j 6
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
529.4.a.j 6 1.a even 1 1 trivial
529.4.a.j 6 23.b odd 2 1 inner

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{4}^{\mathrm{new}}(\Gamma_0(529))\):

\( T_{2}^{3} - 21T_{2} + 12 \) Copy content Toggle raw display
\( T_{3}^{3} + 3T_{3}^{2} - 48T_{3} - 52 \) Copy content Toggle raw display
\( T_{5}^{6} - 666T_{5}^{4} + 105705T_{5}^{2} - 1741932 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T^{3} - 21 T + 12)^{2} \) Copy content Toggle raw display
$3$ \( (T^{3} + 3 T^{2} - 48 T - 52)^{2} \) Copy content Toggle raw display
$5$ \( T^{6} - 666 T^{4} + \cdots - 1741932 \) Copy content Toggle raw display
$7$ \( T^{6} - 1080 T^{4} + \cdots - 110592 \) Copy content Toggle raw display
$11$ \( T^{6} + \cdots - 1341206208 \) Copy content Toggle raw display
$13$ \( (T^{3} + 84 T^{2} + \cdots - 1948)^{2} \) Copy content Toggle raw display
$17$ \( T^{6} + \cdots - 3281271552 \) Copy content Toggle raw display
$19$ \( T^{6} + \cdots - 59359082688 \) Copy content Toggle raw display
$23$ \( T^{6} \) Copy content Toggle raw display
$29$ \( (T^{3} + 288 T^{2} + \cdots - 56688)^{2} \) Copy content Toggle raw display
$31$ \( (T^{3} - 96 T^{2} + \cdots + 12267392)^{2} \) Copy content Toggle raw display
$37$ \( T^{6} + \cdots - 7883993088 \) Copy content Toggle raw display
$41$ \( (T^{3} + 324 T^{2} + \cdots - 7698498)^{2} \) Copy content Toggle raw display
$43$ \( T^{6} + \cdots - 228202687426752 \) Copy content Toggle raw display
$47$ \( (T^{3} + 342 T^{2} + \cdots - 5178552)^{2} \) Copy content Toggle raw display
$53$ \( T^{6} + \cdots - 184087970695872 \) Copy content Toggle raw display
$59$ \( (T^{3} - 873 T^{2} + \cdots - 5440608)^{2} \) Copy content Toggle raw display
$61$ \( T^{6} + \cdots - 11\!\cdots\!12 \) Copy content Toggle raw display
$67$ \( T^{6} + \cdots - 13\!\cdots\!68 \) Copy content Toggle raw display
$71$ \( (T^{3} + 180 T^{2} + \cdots - 5909952)^{2} \) Copy content Toggle raw display
$73$ \( (T^{3} + 1839 T^{2} + \cdots + 200808689)^{2} \) Copy content Toggle raw display
$79$ \( T^{6} + \cdots - 33\!\cdots\!52 \) Copy content Toggle raw display
$83$ \( T^{6} + \cdots - 546901642513152 \) Copy content Toggle raw display
$89$ \( T^{6} + \cdots - 11\!\cdots\!48 \) Copy content Toggle raw display
$97$ \( T^{6} + \cdots - 11\!\cdots\!52 \) Copy content Toggle raw display
show more
show less