Properties

Label 529.4.a.h
Level $529$
Weight $4$
Character orbit 529.a
Self dual yes
Analytic conductor $31.212$
Analytic rank $1$
Dimension $5$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [529,4,Mod(1,529)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(529, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("529.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 529 = 23^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 529.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(31.2120103930\)
Analytic rank: \(1\)
Dimension: \(5\)
Coefficient field: \(\mathbb{Q}[x]/(x^{5} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{5} - 28x^{3} - 8x^{2} + 151x + 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 2 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3,\beta_4\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \beta_1 q^{2} + ( - \beta_{2} - \beta_1 - 1) q^{3} + (\beta_{3} + \beta_{2} + \beta_1 + 3) q^{4} + ( - \beta_{3} - \beta_1 - 1) q^{5} + ( - \beta_{4} - \beta_{3} - 4 \beta_1 - 8) q^{6} + ( - \beta_{4} + 2 \beta_{3} + 2 \beta_{2} + \cdots + 2) q^{7}+ \cdots + (20 \beta_{4} + 99 \beta_{3} + \cdots + 815) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 5 q - 7 q^{3} + 16 q^{4} - 4 q^{5} - 37 q^{6} + 14 q^{7} + 24 q^{8} + 58 q^{9} - 43 q^{10} + 54 q^{11} - 143 q^{12} - 30 q^{13} + 4 q^{14} - 20 q^{15} - 60 q^{16} - 75 q^{17} + 167 q^{18} + 167 q^{19} - 253 q^{20}+ \cdots + 4050 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{5} - 28x^{3} - 8x^{2} + 151x + 4 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( \nu^{4} - \nu^{3} - 19\nu^{2} + 3\nu + 28 ) / 8 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( -\nu^{4} + \nu^{3} + 27\nu^{2} - 11\nu - 116 ) / 8 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( \nu^{3} - \nu^{2} - 17\nu + 6 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{3} + \beta_{2} + \beta _1 + 11 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( \beta_{4} + \beta_{3} + \beta_{2} + 18\beta _1 + 5 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( \beta_{4} + 20\beta_{3} + 28\beta_{2} + 34\beta _1 + 186 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−4.18688
−3.05318
−0.0264564
2.46142
4.80509
−4.18688 −4.69621 9.52992 0.353159 19.6624 32.9954 −6.40560 −4.94564 −1.47863
1.2 −3.05318 7.41773 1.32189 −4.68644 −22.6476 −18.4238 20.3894 28.0227 14.3085
1.3 −0.0264564 −4.46196 −7.99930 13.4877 0.118048 −26.4212 0.423284 −7.09089 −0.356837
1.4 2.46142 3.78046 −1.94143 −3.30045 9.30529 16.6457 −24.4700 −12.7081 −8.12378
1.5 4.80509 −9.04002 15.0889 −9.85398 −43.4381 9.20386 34.0629 54.7219 −47.3493
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1.5
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(23\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 529.4.a.h 5
23.b odd 2 1 529.4.a.i yes 5
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
529.4.a.h 5 1.a even 1 1 trivial
529.4.a.i yes 5 23.b odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{4}^{\mathrm{new}}(\Gamma_0(529))\):

\( T_{2}^{5} - 28T_{2}^{3} - 8T_{2}^{2} + 151T_{2} + 4 \) Copy content Toggle raw display
\( T_{3}^{5} + 7T_{3}^{4} - 72T_{3}^{3} - 462T_{3}^{2} + 788T_{3} + 5312 \) Copy content Toggle raw display
\( T_{5}^{5} + 4T_{5}^{4} - 148T_{5}^{3} - 1066T_{5}^{2} - 1661T_{5} + 726 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{5} - 28 T^{3} + \cdots + 4 \) Copy content Toggle raw display
$3$ \( T^{5} + 7 T^{4} + \cdots + 5312 \) Copy content Toggle raw display
$5$ \( T^{5} + 4 T^{4} + \cdots + 726 \) Copy content Toggle raw display
$7$ \( T^{5} - 14 T^{4} + \cdots - 2460688 \) Copy content Toggle raw display
$11$ \( T^{5} - 54 T^{4} + \cdots - 68489152 \) Copy content Toggle raw display
$13$ \( T^{5} + 30 T^{4} + \cdots + 9900468 \) Copy content Toggle raw display
$17$ \( T^{5} + \cdots + 1832603296 \) Copy content Toggle raw display
$19$ \( T^{5} + \cdots - 1028652424 \) Copy content Toggle raw display
$23$ \( T^{5} \) Copy content Toggle raw display
$29$ \( T^{5} + \cdots - 2151398052 \) Copy content Toggle raw display
$31$ \( T^{5} + \cdots - 513947655360 \) Copy content Toggle raw display
$37$ \( T^{5} + \cdots - 106646547328 \) Copy content Toggle raw display
$41$ \( T^{5} + \cdots - 42621420230 \) Copy content Toggle raw display
$43$ \( T^{5} + \cdots - 84288484512 \) Copy content Toggle raw display
$47$ \( T^{5} + \cdots - 47734727136 \) Copy content Toggle raw display
$53$ \( T^{5} + \cdots + 6225734313576 \) Copy content Toggle raw display
$59$ \( T^{5} + \cdots - 57188888376 \) Copy content Toggle raw display
$61$ \( T^{5} + \cdots + 4541927640324 \) Copy content Toggle raw display
$67$ \( T^{5} + \cdots + 1218238739456 \) Copy content Toggle raw display
$71$ \( T^{5} + \cdots + 59857805265200 \) Copy content Toggle raw display
$73$ \( T^{5} + \cdots - 336797251627 \) Copy content Toggle raw display
$79$ \( T^{5} + \cdots - 15527969777664 \) Copy content Toggle raw display
$83$ \( T^{5} + \cdots + 48647467969344 \) Copy content Toggle raw display
$89$ \( T^{5} + \cdots + 224496464777930 \) Copy content Toggle raw display
$97$ \( T^{5} + \cdots + 238007597477798 \) Copy content Toggle raw display
show more
show less