Properties

Label 529.4.a.g.1.4
Level $529$
Weight $4$
Character 529.1
Self dual yes
Analytic conductor $31.212$
Analytic rank $1$
Dimension $4$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [529,4,Mod(1,529)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(529, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("529.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 529 = 23^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 529.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(31.2120103930\)
Analytic rank: \(1\)
Dimension: \(4\)
Coefficient field: 4.4.334189.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 2x^{3} - 16x^{2} - 5x + 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 23)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.4
Root \(0.362907\) of defining polynomial
Character \(\chi\) \(=\) 529.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+4.24143 q^{2} -4.41777 q^{3} +9.98977 q^{4} -7.80430 q^{5} -18.7377 q^{6} +27.0572 q^{7} +8.43948 q^{8} -7.48328 q^{9} -33.1014 q^{10} -35.2507 q^{11} -44.1325 q^{12} +58.1812 q^{13} +114.761 q^{14} +34.4776 q^{15} -44.1226 q^{16} -98.3726 q^{17} -31.7398 q^{18} +35.3289 q^{19} -77.9632 q^{20} -119.533 q^{21} -149.514 q^{22} -37.2837 q^{24} -64.0928 q^{25} +246.772 q^{26} +152.339 q^{27} +270.295 q^{28} -235.531 q^{29} +146.235 q^{30} -55.0241 q^{31} -254.659 q^{32} +155.730 q^{33} -417.241 q^{34} -211.163 q^{35} -74.7562 q^{36} -401.458 q^{37} +149.845 q^{38} -257.031 q^{39} -65.8643 q^{40} -59.2600 q^{41} -506.990 q^{42} -11.2341 q^{43} -352.147 q^{44} +58.4018 q^{45} -103.224 q^{47} +194.924 q^{48} +389.093 q^{49} -271.846 q^{50} +434.588 q^{51} +581.216 q^{52} +351.594 q^{53} +646.137 q^{54} +275.107 q^{55} +228.349 q^{56} -156.075 q^{57} -998.990 q^{58} -547.016 q^{59} +344.424 q^{60} -478.070 q^{61} -233.381 q^{62} -202.477 q^{63} -727.139 q^{64} -454.063 q^{65} +660.517 q^{66} -14.3681 q^{67} -982.720 q^{68} -895.633 q^{70} +843.177 q^{71} -63.1550 q^{72} +118.935 q^{73} -1702.76 q^{74} +283.148 q^{75} +352.927 q^{76} -953.786 q^{77} -1090.18 q^{78} +388.400 q^{79} +344.347 q^{80} -470.952 q^{81} -251.348 q^{82} +62.9800 q^{83} -1194.10 q^{84} +767.730 q^{85} -47.6488 q^{86} +1040.52 q^{87} -297.498 q^{88} -678.372 q^{89} +247.707 q^{90} +1574.22 q^{91} +243.084 q^{93} -437.816 q^{94} -275.717 q^{95} +1125.03 q^{96} -421.192 q^{97} +1650.31 q^{98} +263.791 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 2 q^{2} + 7 q^{3} + 20 q^{4} - 14 q^{5} - 17 q^{6} - 16 q^{7} - 63 q^{8} - 33 q^{9} + 70 q^{10} - 8 q^{11} - 67 q^{12} + 111 q^{13} + 144 q^{14} - 10 q^{15} + 64 q^{16} - 98 q^{17} + 49 q^{18} - 96 q^{19}+ \cdots + 1498 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 4.24143 1.49957 0.749787 0.661679i \(-0.230156\pi\)
0.749787 + 0.661679i \(0.230156\pi\)
\(3\) −4.41777 −0.850201 −0.425100 0.905146i \(-0.639761\pi\)
−0.425100 + 0.905146i \(0.639761\pi\)
\(4\) 9.98977 1.24872
\(5\) −7.80430 −0.698038 −0.349019 0.937116i \(-0.613485\pi\)
−0.349019 + 0.937116i \(0.613485\pi\)
\(6\) −18.7377 −1.27494
\(7\) 27.0572 1.46095 0.730476 0.682938i \(-0.239298\pi\)
0.730476 + 0.682938i \(0.239298\pi\)
\(8\) 8.43948 0.372976
\(9\) −7.48328 −0.277158
\(10\) −33.1014 −1.04676
\(11\) −35.2507 −0.966226 −0.483113 0.875558i \(-0.660494\pi\)
−0.483113 + 0.875558i \(0.660494\pi\)
\(12\) −44.1325 −1.06166
\(13\) 58.1812 1.24127 0.620637 0.784098i \(-0.286874\pi\)
0.620637 + 0.784098i \(0.286874\pi\)
\(14\) 114.761 2.19081
\(15\) 34.4776 0.593473
\(16\) −44.1226 −0.689416
\(17\) −98.3726 −1.40346 −0.701731 0.712442i \(-0.747589\pi\)
−0.701731 + 0.712442i \(0.747589\pi\)
\(18\) −31.7398 −0.415619
\(19\) 35.3289 0.426579 0.213289 0.976989i \(-0.431582\pi\)
0.213289 + 0.976989i \(0.431582\pi\)
\(20\) −77.9632 −0.871655
\(21\) −119.533 −1.24210
\(22\) −149.514 −1.44893
\(23\) 0 0
\(24\) −37.2837 −0.317104
\(25\) −64.0928 −0.512743
\(26\) 246.772 1.86138
\(27\) 152.339 1.08584
\(28\) 270.295 1.82432
\(29\) −235.531 −1.50817 −0.754087 0.656774i \(-0.771920\pi\)
−0.754087 + 0.656774i \(0.771920\pi\)
\(30\) 146.235 0.889956
\(31\) −55.0241 −0.318794 −0.159397 0.987215i \(-0.550955\pi\)
−0.159397 + 0.987215i \(0.550955\pi\)
\(32\) −254.659 −1.40681
\(33\) 155.730 0.821486
\(34\) −417.241 −2.10460
\(35\) −211.163 −1.01980
\(36\) −74.7562 −0.346094
\(37\) −401.458 −1.78377 −0.891883 0.452266i \(-0.850616\pi\)
−0.891883 + 0.452266i \(0.850616\pi\)
\(38\) 149.845 0.639687
\(39\) −257.031 −1.05533
\(40\) −65.8643 −0.260351
\(41\) −59.2600 −0.225728 −0.112864 0.993610i \(-0.536002\pi\)
−0.112864 + 0.993610i \(0.536002\pi\)
\(42\) −506.990 −1.86263
\(43\) −11.2341 −0.0398416 −0.0199208 0.999802i \(-0.506341\pi\)
−0.0199208 + 0.999802i \(0.506341\pi\)
\(44\) −352.147 −1.20655
\(45\) 58.4018 0.193467
\(46\) 0 0
\(47\) −103.224 −0.320355 −0.160178 0.987088i \(-0.551207\pi\)
−0.160178 + 0.987088i \(0.551207\pi\)
\(48\) 194.924 0.586142
\(49\) 389.093 1.13438
\(50\) −271.846 −0.768895
\(51\) 434.588 1.19323
\(52\) 581.216 1.55000
\(53\) 351.594 0.911229 0.455614 0.890177i \(-0.349420\pi\)
0.455614 + 0.890177i \(0.349420\pi\)
\(54\) 646.137 1.62830
\(55\) 275.107 0.674463
\(56\) 228.349 0.544900
\(57\) −156.075 −0.362678
\(58\) −998.990 −2.26162
\(59\) −547.016 −1.20704 −0.603520 0.797347i \(-0.706236\pi\)
−0.603520 + 0.797347i \(0.706236\pi\)
\(60\) 344.424 0.741082
\(61\) −478.070 −1.00345 −0.501726 0.865026i \(-0.667302\pi\)
−0.501726 + 0.865026i \(0.667302\pi\)
\(62\) −233.381 −0.478056
\(63\) −202.477 −0.404915
\(64\) −727.139 −1.42019
\(65\) −454.063 −0.866456
\(66\) 660.517 1.23188
\(67\) −14.3681 −0.0261992 −0.0130996 0.999914i \(-0.504170\pi\)
−0.0130996 + 0.999914i \(0.504170\pi\)
\(68\) −982.720 −1.75253
\(69\) 0 0
\(70\) −895.633 −1.52927
\(71\) 843.177 1.40939 0.704695 0.709510i \(-0.251084\pi\)
0.704695 + 0.709510i \(0.251084\pi\)
\(72\) −63.1550 −0.103373
\(73\) 118.935 0.190689 0.0953445 0.995444i \(-0.469605\pi\)
0.0953445 + 0.995444i \(0.469605\pi\)
\(74\) −1702.76 −2.67489
\(75\) 283.148 0.435934
\(76\) 352.927 0.532678
\(77\) −953.786 −1.41161
\(78\) −1090.18 −1.58255
\(79\) 388.400 0.553145 0.276572 0.960993i \(-0.410801\pi\)
0.276572 + 0.960993i \(0.410801\pi\)
\(80\) 344.347 0.481239
\(81\) −470.952 −0.646025
\(82\) −251.348 −0.338496
\(83\) 62.9800 0.0832886 0.0416443 0.999132i \(-0.486740\pi\)
0.0416443 + 0.999132i \(0.486740\pi\)
\(84\) −1194.10 −1.55104
\(85\) 767.730 0.979671
\(86\) −47.6488 −0.0597454
\(87\) 1040.52 1.28225
\(88\) −297.498 −0.360379
\(89\) −678.372 −0.807947 −0.403974 0.914771i \(-0.632371\pi\)
−0.403974 + 0.914771i \(0.632371\pi\)
\(90\) 247.707 0.290118
\(91\) 1574.22 1.81344
\(92\) 0 0
\(93\) 243.084 0.271039
\(94\) −437.816 −0.480397
\(95\) −275.717 −0.297768
\(96\) 1125.03 1.19607
\(97\) −421.192 −0.440882 −0.220441 0.975400i \(-0.570750\pi\)
−0.220441 + 0.975400i \(0.570750\pi\)
\(98\) 1650.31 1.70109
\(99\) 263.791 0.267798
\(100\) −640.273 −0.640273
\(101\) −1.65795 −0.00163339 −0.000816695 1.00000i \(-0.500260\pi\)
−0.000816695 1.00000i \(0.500260\pi\)
\(102\) 1843.28 1.78933
\(103\) −1057.63 −1.01176 −0.505879 0.862604i \(-0.668832\pi\)
−0.505879 + 0.862604i \(0.668832\pi\)
\(104\) 491.019 0.462965
\(105\) 932.869 0.867035
\(106\) 1491.26 1.36645
\(107\) 155.626 0.140607 0.0703036 0.997526i \(-0.477603\pi\)
0.0703036 + 0.997526i \(0.477603\pi\)
\(108\) 1521.83 1.35591
\(109\) 1815.84 1.59565 0.797826 0.602888i \(-0.205983\pi\)
0.797826 + 0.602888i \(0.205983\pi\)
\(110\) 1166.85 1.01141
\(111\) 1773.55 1.51656
\(112\) −1193.84 −1.00720
\(113\) −485.235 −0.403956 −0.201978 0.979390i \(-0.564737\pi\)
−0.201978 + 0.979390i \(0.564737\pi\)
\(114\) −661.982 −0.543862
\(115\) 0 0
\(116\) −2352.90 −1.88329
\(117\) −435.386 −0.344029
\(118\) −2320.13 −1.81005
\(119\) −2661.69 −2.05039
\(120\) 290.974 0.221351
\(121\) −88.3874 −0.0664068
\(122\) −2027.70 −1.50475
\(123\) 261.797 0.191914
\(124\) −549.678 −0.398085
\(125\) 1475.74 1.05595
\(126\) −858.792 −0.607200
\(127\) 2468.34 1.72464 0.862322 0.506360i \(-0.169009\pi\)
0.862322 + 0.506360i \(0.169009\pi\)
\(128\) −1046.84 −0.722879
\(129\) 49.6298 0.0338734
\(130\) −1925.88 −1.29931
\(131\) 1071.51 0.714647 0.357323 0.933981i \(-0.383689\pi\)
0.357323 + 0.933981i \(0.383689\pi\)
\(132\) 1555.70 1.02581
\(133\) 955.901 0.623212
\(134\) −60.9414 −0.0392876
\(135\) −1188.90 −0.757959
\(136\) −830.214 −0.523458
\(137\) −241.497 −0.150602 −0.0753009 0.997161i \(-0.523992\pi\)
−0.0753009 + 0.997161i \(0.523992\pi\)
\(138\) 0 0
\(139\) 2659.19 1.62266 0.811329 0.584590i \(-0.198745\pi\)
0.811329 + 0.584590i \(0.198745\pi\)
\(140\) −2109.47 −1.27345
\(141\) 456.018 0.272366
\(142\) 3576.28 2.11349
\(143\) −2050.93 −1.19935
\(144\) 330.182 0.191078
\(145\) 1838.16 1.05276
\(146\) 504.456 0.285952
\(147\) −1718.93 −0.964453
\(148\) −4010.48 −2.22743
\(149\) 182.051 0.100095 0.0500477 0.998747i \(-0.484063\pi\)
0.0500477 + 0.998747i \(0.484063\pi\)
\(150\) 1200.95 0.653716
\(151\) −3377.13 −1.82005 −0.910023 0.414557i \(-0.863937\pi\)
−0.910023 + 0.414557i \(0.863937\pi\)
\(152\) 298.157 0.159104
\(153\) 736.150 0.388981
\(154\) −4045.42 −2.11681
\(155\) 429.425 0.222531
\(156\) −2567.68 −1.31781
\(157\) 2843.19 1.44530 0.722648 0.691216i \(-0.242925\pi\)
0.722648 + 0.691216i \(0.242925\pi\)
\(158\) 1647.37 0.829481
\(159\) −1553.26 −0.774728
\(160\) 1987.44 0.982005
\(161\) 0 0
\(162\) −1997.51 −0.968762
\(163\) 2135.85 1.02633 0.513167 0.858289i \(-0.328472\pi\)
0.513167 + 0.858289i \(0.328472\pi\)
\(164\) −591.994 −0.281872
\(165\) −1215.36 −0.573429
\(166\) 267.126 0.124897
\(167\) 796.566 0.369103 0.184551 0.982823i \(-0.440917\pi\)
0.184551 + 0.982823i \(0.440917\pi\)
\(168\) −1008.79 −0.463275
\(169\) 1188.05 0.540759
\(170\) 3256.28 1.46909
\(171\) −264.376 −0.118230
\(172\) −112.226 −0.0497510
\(173\) −4456.05 −1.95831 −0.979154 0.203121i \(-0.934892\pi\)
−0.979154 + 0.203121i \(0.934892\pi\)
\(174\) 4413.31 1.92283
\(175\) −1734.17 −0.749093
\(176\) 1555.35 0.666132
\(177\) 2416.59 1.02623
\(178\) −2877.27 −1.21158
\(179\) −693.459 −0.289562 −0.144781 0.989464i \(-0.546248\pi\)
−0.144781 + 0.989464i \(0.546248\pi\)
\(180\) 583.420 0.241587
\(181\) 974.743 0.400288 0.200144 0.979767i \(-0.435859\pi\)
0.200144 + 0.979767i \(0.435859\pi\)
\(182\) 6676.95 2.71939
\(183\) 2112.01 0.853136
\(184\) 0 0
\(185\) 3133.10 1.24514
\(186\) 1031.03 0.406443
\(187\) 3467.70 1.35606
\(188\) −1031.18 −0.400035
\(189\) 4121.88 1.58636
\(190\) −1169.44 −0.446526
\(191\) 775.067 0.293623 0.146811 0.989165i \(-0.453099\pi\)
0.146811 + 0.989165i \(0.453099\pi\)
\(192\) 3212.34 1.20745
\(193\) 2021.09 0.753789 0.376895 0.926256i \(-0.376992\pi\)
0.376895 + 0.926256i \(0.376992\pi\)
\(194\) −1786.46 −0.661136
\(195\) 2005.95 0.736662
\(196\) 3886.95 1.41653
\(197\) 566.907 0.205028 0.102514 0.994732i \(-0.467311\pi\)
0.102514 + 0.994732i \(0.467311\pi\)
\(198\) 1118.85 0.401582
\(199\) 1724.07 0.614150 0.307075 0.951685i \(-0.400650\pi\)
0.307075 + 0.951685i \(0.400650\pi\)
\(200\) −540.910 −0.191241
\(201\) 63.4751 0.0222746
\(202\) −7.03210 −0.00244939
\(203\) −6372.82 −2.20337
\(204\) 4341.43 1.49001
\(205\) 462.483 0.157567
\(206\) −4485.86 −1.51721
\(207\) 0 0
\(208\) −2567.11 −0.855754
\(209\) −1245.37 −0.412172
\(210\) 3956.70 1.30018
\(211\) 2757.94 0.899832 0.449916 0.893071i \(-0.351454\pi\)
0.449916 + 0.893071i \(0.351454\pi\)
\(212\) 3512.34 1.13787
\(213\) −3724.97 −1.19827
\(214\) 660.079 0.210851
\(215\) 87.6745 0.0278109
\(216\) 1285.66 0.404993
\(217\) −1488.80 −0.465743
\(218\) 7701.77 2.39280
\(219\) −525.428 −0.162124
\(220\) 2748.26 0.842216
\(221\) −5723.43 −1.74208
\(222\) 7522.40 2.27419
\(223\) −4257.81 −1.27858 −0.639292 0.768964i \(-0.720773\pi\)
−0.639292 + 0.768964i \(0.720773\pi\)
\(224\) −6890.37 −2.05528
\(225\) 479.624 0.142111
\(226\) −2058.09 −0.605762
\(227\) −4320.03 −1.26313 −0.631564 0.775324i \(-0.717587\pi\)
−0.631564 + 0.775324i \(0.717587\pi\)
\(228\) −1559.15 −0.452883
\(229\) −1057.27 −0.305094 −0.152547 0.988296i \(-0.548747\pi\)
−0.152547 + 0.988296i \(0.548747\pi\)
\(230\) 0 0
\(231\) 4213.61 1.20015
\(232\) −1987.76 −0.562513
\(233\) −3194.98 −0.898327 −0.449163 0.893450i \(-0.648278\pi\)
−0.449163 + 0.893450i \(0.648278\pi\)
\(234\) −1846.66 −0.515897
\(235\) 805.588 0.223620
\(236\) −5464.56 −1.50726
\(237\) −1715.86 −0.470284
\(238\) −11289.4 −3.07471
\(239\) 131.327 0.0355433 0.0177717 0.999842i \(-0.494343\pi\)
0.0177717 + 0.999842i \(0.494343\pi\)
\(240\) −1521.25 −0.409150
\(241\) −2429.45 −0.649356 −0.324678 0.945825i \(-0.605256\pi\)
−0.324678 + 0.945825i \(0.605256\pi\)
\(242\) −374.890 −0.0995819
\(243\) −2032.60 −0.536590
\(244\) −4775.81 −1.25303
\(245\) −3036.60 −0.791842
\(246\) 1110.40 0.287790
\(247\) 2055.47 0.529501
\(248\) −464.375 −0.118903
\(249\) −278.232 −0.0708121
\(250\) 6259.25 1.58348
\(251\) −689.940 −0.173501 −0.0867503 0.996230i \(-0.527648\pi\)
−0.0867503 + 0.996230i \(0.527648\pi\)
\(252\) −2022.70 −0.505626
\(253\) 0 0
\(254\) 10469.3 2.58623
\(255\) −3391.66 −0.832917
\(256\) 1377.01 0.336184
\(257\) −7466.72 −1.81230 −0.906151 0.422955i \(-0.860993\pi\)
−0.906151 + 0.422955i \(0.860993\pi\)
\(258\) 210.502 0.0507956
\(259\) −10862.3 −2.60600
\(260\) −4535.99 −1.08196
\(261\) 1762.55 0.418003
\(262\) 4544.76 1.07167
\(263\) 1688.09 0.395786 0.197893 0.980224i \(-0.436590\pi\)
0.197893 + 0.980224i \(0.436590\pi\)
\(264\) 1314.28 0.306395
\(265\) −2743.95 −0.636072
\(266\) 4054.39 0.934552
\(267\) 2996.89 0.686917
\(268\) −143.534 −0.0327155
\(269\) −3665.13 −0.830731 −0.415365 0.909655i \(-0.636346\pi\)
−0.415365 + 0.909655i \(0.636346\pi\)
\(270\) −5042.65 −1.13661
\(271\) 289.699 0.0649371 0.0324686 0.999473i \(-0.489663\pi\)
0.0324686 + 0.999473i \(0.489663\pi\)
\(272\) 4340.46 0.967570
\(273\) −6954.55 −1.54179
\(274\) −1024.29 −0.225839
\(275\) 2259.32 0.495425
\(276\) 0 0
\(277\) 0.383938 8.32802e−5 0 4.16401e−5 1.00000i \(-0.499987\pi\)
4.16401e−5 1.00000i \(0.499987\pi\)
\(278\) 11278.8 2.43330
\(279\) 411.761 0.0883565
\(280\) −1782.10 −0.380361
\(281\) 3507.39 0.744602 0.372301 0.928112i \(-0.378569\pi\)
0.372301 + 0.928112i \(0.378569\pi\)
\(282\) 1934.17 0.408434
\(283\) −4231.65 −0.888854 −0.444427 0.895815i \(-0.646593\pi\)
−0.444427 + 0.895815i \(0.646593\pi\)
\(284\) 8423.15 1.75994
\(285\) 1218.06 0.253163
\(286\) −8698.87 −1.79851
\(287\) −1603.41 −0.329778
\(288\) 1905.69 0.389908
\(289\) 4764.17 0.969707
\(290\) 7796.42 1.57870
\(291\) 1860.73 0.374839
\(292\) 1188.13 0.238118
\(293\) 1066.58 0.212663 0.106331 0.994331i \(-0.466090\pi\)
0.106331 + 0.994331i \(0.466090\pi\)
\(294\) −7290.71 −1.44627
\(295\) 4269.08 0.842561
\(296\) −3388.10 −0.665302
\(297\) −5370.07 −1.04917
\(298\) 772.159 0.150100
\(299\) 0 0
\(300\) 2828.58 0.544360
\(301\) −303.964 −0.0582067
\(302\) −14323.9 −2.72929
\(303\) 7.32446 0.00138871
\(304\) −1558.80 −0.294090
\(305\) 3731.00 0.700448
\(306\) 3122.33 0.583306
\(307\) −2744.52 −0.510222 −0.255111 0.966912i \(-0.582112\pi\)
−0.255111 + 0.966912i \(0.582112\pi\)
\(308\) −9528.10 −1.76271
\(309\) 4672.36 0.860198
\(310\) 1821.38 0.333701
\(311\) 2719.23 0.495798 0.247899 0.968786i \(-0.420260\pi\)
0.247899 + 0.968786i \(0.420260\pi\)
\(312\) −2169.21 −0.393613
\(313\) −5919.04 −1.06890 −0.534448 0.845202i \(-0.679480\pi\)
−0.534448 + 0.845202i \(0.679480\pi\)
\(314\) 12059.2 2.16733
\(315\) 1580.19 0.282646
\(316\) 3880.03 0.690724
\(317\) 1327.55 0.235213 0.117606 0.993060i \(-0.462478\pi\)
0.117606 + 0.993060i \(0.462478\pi\)
\(318\) −6588.06 −1.16176
\(319\) 8302.64 1.45724
\(320\) 5674.82 0.991350
\(321\) −687.522 −0.119544
\(322\) 0 0
\(323\) −3475.39 −0.598688
\(324\) −4704.70 −0.806705
\(325\) −3729.00 −0.636454
\(326\) 9059.06 1.53906
\(327\) −8021.98 −1.35663
\(328\) −500.124 −0.0841912
\(329\) −2792.94 −0.468024
\(330\) −5154.88 −0.859899
\(331\) 3236.92 0.537514 0.268757 0.963208i \(-0.413387\pi\)
0.268757 + 0.963208i \(0.413387\pi\)
\(332\) 629.156 0.104004
\(333\) 3004.22 0.494386
\(334\) 3378.58 0.553497
\(335\) 112.133 0.0182880
\(336\) 5274.10 0.856326
\(337\) −12263.3 −1.98226 −0.991132 0.132878i \(-0.957578\pi\)
−0.991132 + 0.132878i \(0.957578\pi\)
\(338\) 5039.03 0.810908
\(339\) 2143.66 0.343444
\(340\) 7669.44 1.22334
\(341\) 1939.64 0.308028
\(342\) −1121.33 −0.177294
\(343\) 1247.15 0.196326
\(344\) −94.8102 −0.0148600
\(345\) 0 0
\(346\) −18900.0 −2.93663
\(347\) −10377.8 −1.60551 −0.802753 0.596311i \(-0.796632\pi\)
−0.802753 + 0.596311i \(0.796632\pi\)
\(348\) 10394.6 1.60117
\(349\) 4837.57 0.741975 0.370987 0.928638i \(-0.379019\pi\)
0.370987 + 0.928638i \(0.379019\pi\)
\(350\) −7355.39 −1.12332
\(351\) 8863.28 1.34783
\(352\) 8976.92 1.35929
\(353\) 6761.01 1.01941 0.509706 0.860349i \(-0.329754\pi\)
0.509706 + 0.860349i \(0.329754\pi\)
\(354\) 10249.8 1.53890
\(355\) −6580.41 −0.983809
\(356\) −6776.78 −1.00890
\(357\) 11758.7 1.74325
\(358\) −2941.26 −0.434219
\(359\) −4539.67 −0.667394 −0.333697 0.942680i \(-0.608296\pi\)
−0.333697 + 0.942680i \(0.608296\pi\)
\(360\) 492.881 0.0721586
\(361\) −5610.87 −0.818030
\(362\) 4134.31 0.600261
\(363\) 390.476 0.0564591
\(364\) 15726.1 2.26448
\(365\) −928.206 −0.133108
\(366\) 8957.93 1.27934
\(367\) 9564.79 1.36043 0.680215 0.733012i \(-0.261886\pi\)
0.680215 + 0.733012i \(0.261886\pi\)
\(368\) 0 0
\(369\) 443.459 0.0625625
\(370\) 13288.9 1.86717
\(371\) 9513.15 1.33126
\(372\) 2428.35 0.338453
\(373\) 5028.99 0.698100 0.349050 0.937104i \(-0.386504\pi\)
0.349050 + 0.937104i \(0.386504\pi\)
\(374\) 14708.0 2.03352
\(375\) −6519.48 −0.897772
\(376\) −871.153 −0.119485
\(377\) −13703.5 −1.87206
\(378\) 17482.7 2.37887
\(379\) −560.190 −0.0759235 −0.0379618 0.999279i \(-0.512087\pi\)
−0.0379618 + 0.999279i \(0.512087\pi\)
\(380\) −2754.35 −0.371830
\(381\) −10904.6 −1.46629
\(382\) 3287.40 0.440309
\(383\) −5273.52 −0.703563 −0.351781 0.936082i \(-0.614424\pi\)
−0.351781 + 0.936082i \(0.614424\pi\)
\(384\) 4624.70 0.614592
\(385\) 7443.64 0.985358
\(386\) 8572.33 1.13036
\(387\) 84.0681 0.0110424
\(388\) −4207.61 −0.550539
\(389\) 9371.31 1.22145 0.610725 0.791843i \(-0.290878\pi\)
0.610725 + 0.791843i \(0.290878\pi\)
\(390\) 8508.10 1.10468
\(391\) 0 0
\(392\) 3283.74 0.423097
\(393\) −4733.71 −0.607593
\(394\) 2404.50 0.307454
\(395\) −3031.19 −0.386116
\(396\) 2635.21 0.334405
\(397\) 6200.86 0.783909 0.391955 0.919985i \(-0.371799\pi\)
0.391955 + 0.919985i \(0.371799\pi\)
\(398\) 7312.52 0.920963
\(399\) −4222.95 −0.529855
\(400\) 2827.95 0.353493
\(401\) −2600.97 −0.323906 −0.161953 0.986798i \(-0.551779\pi\)
−0.161953 + 0.986798i \(0.551779\pi\)
\(402\) 269.225 0.0334024
\(403\) −3201.37 −0.395711
\(404\) −16.5626 −0.00203965
\(405\) 3675.45 0.450950
\(406\) −27029.9 −3.30412
\(407\) 14151.7 1.72352
\(408\) 3667.70 0.445044
\(409\) 6260.14 0.756831 0.378416 0.925636i \(-0.376469\pi\)
0.378416 + 0.925636i \(0.376469\pi\)
\(410\) 1961.59 0.236283
\(411\) 1066.88 0.128042
\(412\) −10565.5 −1.26340
\(413\) −14800.7 −1.76343
\(414\) 0 0
\(415\) −491.515 −0.0581387
\(416\) −14816.4 −1.74623
\(417\) −11747.7 −1.37959
\(418\) −5282.15 −0.618082
\(419\) 6352.30 0.740645 0.370322 0.928903i \(-0.379247\pi\)
0.370322 + 0.928903i \(0.379247\pi\)
\(420\) 9319.15 1.08269
\(421\) −3405.54 −0.394242 −0.197121 0.980379i \(-0.563159\pi\)
−0.197121 + 0.980379i \(0.563159\pi\)
\(422\) 11697.6 1.34936
\(423\) 772.450 0.0887892
\(424\) 2967.27 0.339866
\(425\) 6304.98 0.719615
\(426\) −15799.2 −1.79689
\(427\) −12935.2 −1.46600
\(428\) 1554.67 0.175579
\(429\) 9060.53 1.01969
\(430\) 371.866 0.0417046
\(431\) 17077.6 1.90858 0.954290 0.298881i \(-0.0966135\pi\)
0.954290 + 0.298881i \(0.0966135\pi\)
\(432\) −6721.61 −0.748597
\(433\) −15884.5 −1.76296 −0.881480 0.472222i \(-0.843452\pi\)
−0.881480 + 0.472222i \(0.843452\pi\)
\(434\) −6314.65 −0.698417
\(435\) −8120.56 −0.895060
\(436\) 18139.8 1.99253
\(437\) 0 0
\(438\) −2228.57 −0.243117
\(439\) −5977.96 −0.649914 −0.324957 0.945729i \(-0.605350\pi\)
−0.324957 + 0.945729i \(0.605350\pi\)
\(440\) 2321.76 0.251558
\(441\) −2911.69 −0.314404
\(442\) −24275.6 −2.61238
\(443\) −1747.71 −0.187440 −0.0937202 0.995599i \(-0.529876\pi\)
−0.0937202 + 0.995599i \(0.529876\pi\)
\(444\) 17717.4 1.89376
\(445\) 5294.22 0.563978
\(446\) −18059.2 −1.91733
\(447\) −804.261 −0.0851012
\(448\) −19674.4 −2.07484
\(449\) 10320.1 1.08472 0.542358 0.840148i \(-0.317532\pi\)
0.542358 + 0.840148i \(0.317532\pi\)
\(450\) 2034.30 0.213106
\(451\) 2088.96 0.218105
\(452\) −4847.39 −0.504429
\(453\) 14919.4 1.54741
\(454\) −18323.1 −1.89415
\(455\) −12285.7 −1.26585
\(456\) −1317.19 −0.135270
\(457\) 11934.9 1.22164 0.610821 0.791769i \(-0.290839\pi\)
0.610821 + 0.791769i \(0.290839\pi\)
\(458\) −4484.35 −0.457510
\(459\) −14986.0 −1.52394
\(460\) 0 0
\(461\) −5673.34 −0.573175 −0.286588 0.958054i \(-0.592521\pi\)
−0.286588 + 0.958054i \(0.592521\pi\)
\(462\) 17871.8 1.79972
\(463\) −7559.91 −0.758831 −0.379416 0.925226i \(-0.623875\pi\)
−0.379416 + 0.925226i \(0.623875\pi\)
\(464\) 10392.3 1.03976
\(465\) −1897.10 −0.189196
\(466\) −13551.3 −1.34711
\(467\) −1203.47 −0.119250 −0.0596252 0.998221i \(-0.518991\pi\)
−0.0596252 + 0.998221i \(0.518991\pi\)
\(468\) −4349.40 −0.429597
\(469\) −388.761 −0.0382758
\(470\) 3416.85 0.335335
\(471\) −12560.6 −1.22879
\(472\) −4616.53 −0.450197
\(473\) 396.011 0.0384960
\(474\) −7277.73 −0.705226
\(475\) −2264.33 −0.218725
\(476\) −26589.7 −2.56037
\(477\) −2631.07 −0.252555
\(478\) 557.016 0.0532999
\(479\) −7928.98 −0.756335 −0.378167 0.925737i \(-0.623446\pi\)
−0.378167 + 0.925737i \(0.623446\pi\)
\(480\) −8780.05 −0.834901
\(481\) −23357.3 −2.21414
\(482\) −10304.4 −0.973757
\(483\) 0 0
\(484\) −882.970 −0.0829236
\(485\) 3287.11 0.307753
\(486\) −8621.15 −0.804657
\(487\) 748.445 0.0696412 0.0348206 0.999394i \(-0.488914\pi\)
0.0348206 + 0.999394i \(0.488914\pi\)
\(488\) −4034.66 −0.374264
\(489\) −9435.70 −0.872591
\(490\) −12879.5 −1.18743
\(491\) −2201.18 −0.202318 −0.101159 0.994870i \(-0.532255\pi\)
−0.101159 + 0.994870i \(0.532255\pi\)
\(492\) 2615.30 0.239648
\(493\) 23169.8 2.11667
\(494\) 8718.16 0.794026
\(495\) −2058.70 −0.186933
\(496\) 2427.81 0.219782
\(497\) 22814.0 2.05905
\(498\) −1180.10 −0.106188
\(499\) −12268.4 −1.10062 −0.550308 0.834961i \(-0.685490\pi\)
−0.550308 + 0.834961i \(0.685490\pi\)
\(500\) 14742.3 1.31859
\(501\) −3519.05 −0.313811
\(502\) −2926.34 −0.260177
\(503\) −10161.0 −0.900711 −0.450356 0.892849i \(-0.648703\pi\)
−0.450356 + 0.892849i \(0.648703\pi\)
\(504\) −1708.80 −0.151024
\(505\) 12.9392 0.00114017
\(506\) 0 0
\(507\) −5248.52 −0.459754
\(508\) 24658.2 2.15360
\(509\) 18108.1 1.57687 0.788434 0.615119i \(-0.210892\pi\)
0.788434 + 0.615119i \(0.210892\pi\)
\(510\) −14385.5 −1.24902
\(511\) 3218.05 0.278588
\(512\) 14215.2 1.22701
\(513\) 5381.98 0.463197
\(514\) −31669.6 −2.71768
\(515\) 8254.04 0.706246
\(516\) 495.791 0.0422984
\(517\) 3638.70 0.309536
\(518\) −46071.9 −3.90788
\(519\) 19685.8 1.66495
\(520\) −3832.06 −0.323167
\(521\) 10987.7 0.923950 0.461975 0.886893i \(-0.347141\pi\)
0.461975 + 0.886893i \(0.347141\pi\)
\(522\) 7475.72 0.626826
\(523\) −20489.8 −1.71311 −0.856553 0.516059i \(-0.827399\pi\)
−0.856553 + 0.516059i \(0.827399\pi\)
\(524\) 10704.2 0.892394
\(525\) 7661.19 0.636879
\(526\) 7159.91 0.593511
\(527\) 5412.87 0.447416
\(528\) −6871.21 −0.566346
\(529\) 0 0
\(530\) −11638.3 −0.953838
\(531\) 4093.47 0.334542
\(532\) 9549.23 0.778217
\(533\) −3447.82 −0.280190
\(534\) 12711.1 1.03008
\(535\) −1214.55 −0.0981491
\(536\) −121.259 −0.00977166
\(537\) 3063.54 0.246186
\(538\) −15545.4 −1.24574
\(539\) −13715.8 −1.09607
\(540\) −11876.9 −0.946479
\(541\) 1261.91 0.100284 0.0501420 0.998742i \(-0.484033\pi\)
0.0501420 + 0.998742i \(0.484033\pi\)
\(542\) 1228.74 0.0973780
\(543\) −4306.20 −0.340325
\(544\) 25051.5 1.97440
\(545\) −14171.4 −1.11383
\(546\) −29497.3 −2.31203
\(547\) −5337.23 −0.417191 −0.208596 0.978002i \(-0.566889\pi\)
−0.208596 + 0.978002i \(0.566889\pi\)
\(548\) −2412.50 −0.188060
\(549\) 3577.53 0.278115
\(550\) 9582.75 0.742927
\(551\) −8321.05 −0.643355
\(552\) 0 0
\(553\) 10509.0 0.808118
\(554\) 1.62845 0.000124885 0
\(555\) −13841.3 −1.05862
\(556\) 26564.7 2.02625
\(557\) 10891.2 0.828503 0.414251 0.910163i \(-0.364043\pi\)
0.414251 + 0.910163i \(0.364043\pi\)
\(558\) 1746.46 0.132497
\(559\) −653.615 −0.0494543
\(560\) 9317.06 0.703067
\(561\) −15319.5 −1.15293
\(562\) 14876.4 1.11659
\(563\) −19620.8 −1.46877 −0.734385 0.678733i \(-0.762529\pi\)
−0.734385 + 0.678733i \(0.762529\pi\)
\(564\) 4555.52 0.340110
\(565\) 3786.92 0.281977
\(566\) −17948.3 −1.33290
\(567\) −12742.7 −0.943812
\(568\) 7115.98 0.525669
\(569\) −25207.8 −1.85723 −0.928617 0.371041i \(-0.879001\pi\)
−0.928617 + 0.371041i \(0.879001\pi\)
\(570\) 5166.31 0.379636
\(571\) −18889.0 −1.38438 −0.692190 0.721715i \(-0.743354\pi\)
−0.692190 + 0.721715i \(0.743354\pi\)
\(572\) −20488.3 −1.49765
\(573\) −3424.07 −0.249638
\(574\) −6800.77 −0.494527
\(575\) 0 0
\(576\) 5441.38 0.393619
\(577\) −8214.44 −0.592672 −0.296336 0.955084i \(-0.595765\pi\)
−0.296336 + 0.955084i \(0.595765\pi\)
\(578\) 20206.9 1.45415
\(579\) −8928.72 −0.640872
\(580\) 18362.8 1.31461
\(581\) 1704.06 0.121681
\(582\) 7892.17 0.562098
\(583\) −12393.9 −0.880453
\(584\) 1003.75 0.0711224
\(585\) 3397.88 0.240146
\(586\) 4523.82 0.318903
\(587\) 3022.88 0.212551 0.106276 0.994337i \(-0.466107\pi\)
0.106276 + 0.994337i \(0.466107\pi\)
\(588\) −17171.7 −1.20433
\(589\) −1943.94 −0.135991
\(590\) 18107.0 1.26348
\(591\) −2504.47 −0.174315
\(592\) 17713.4 1.22976
\(593\) −16386.9 −1.13479 −0.567394 0.823446i \(-0.692048\pi\)
−0.567394 + 0.823446i \(0.692048\pi\)
\(594\) −22776.8 −1.57331
\(595\) 20772.6 1.43125
\(596\) 1818.65 0.124991
\(597\) −7616.53 −0.522151
\(598\) 0 0
\(599\) −4768.20 −0.325247 −0.162624 0.986688i \(-0.551996\pi\)
−0.162624 + 0.986688i \(0.551996\pi\)
\(600\) 2389.62 0.162593
\(601\) 1849.74 0.125545 0.0627725 0.998028i \(-0.480006\pi\)
0.0627725 + 0.998028i \(0.480006\pi\)
\(602\) −1289.24 −0.0872852
\(603\) 107.521 0.00726132
\(604\) −33736.8 −2.27273
\(605\) 689.802 0.0463545
\(606\) 31.0662 0.00208247
\(607\) 18350.2 1.22704 0.613519 0.789680i \(-0.289754\pi\)
0.613519 + 0.789680i \(0.289754\pi\)
\(608\) −8996.82 −0.600114
\(609\) 28153.7 1.87331
\(610\) 15824.8 1.05037
\(611\) −6005.67 −0.397649
\(612\) 7353.96 0.485729
\(613\) −13252.1 −0.873160 −0.436580 0.899666i \(-0.643810\pi\)
−0.436580 + 0.899666i \(0.643810\pi\)
\(614\) −11640.7 −0.765116
\(615\) −2043.15 −0.133964
\(616\) −8049.46 −0.526497
\(617\) 5203.51 0.339523 0.169761 0.985485i \(-0.445700\pi\)
0.169761 + 0.985485i \(0.445700\pi\)
\(618\) 19817.5 1.28993
\(619\) 3974.35 0.258066 0.129033 0.991640i \(-0.458813\pi\)
0.129033 + 0.991640i \(0.458813\pi\)
\(620\) 4289.86 0.277879
\(621\) 0 0
\(622\) 11533.4 0.743486
\(623\) −18354.9 −1.18037
\(624\) 11340.9 0.727563
\(625\) −3505.50 −0.224352
\(626\) −25105.2 −1.60289
\(627\) 5501.75 0.350429
\(628\) 28402.8 1.80477
\(629\) 39492.5 2.50345
\(630\) 6702.27 0.423849
\(631\) −14357.8 −0.905827 −0.452913 0.891555i \(-0.649615\pi\)
−0.452913 + 0.891555i \(0.649615\pi\)
\(632\) 3277.90 0.206310
\(633\) −12184.0 −0.765038
\(634\) 5630.70 0.352719
\(635\) −19263.7 −1.20387
\(636\) −15516.7 −0.967419
\(637\) 22637.9 1.40808
\(638\) 35215.1 2.18523
\(639\) −6309.73 −0.390625
\(640\) 8169.86 0.504597
\(641\) −2587.81 −0.159458 −0.0797288 0.996817i \(-0.525405\pi\)
−0.0797288 + 0.996817i \(0.525405\pi\)
\(642\) −2916.08 −0.179265
\(643\) 18495.1 1.13433 0.567167 0.823603i \(-0.308040\pi\)
0.567167 + 0.823603i \(0.308040\pi\)
\(644\) 0 0
\(645\) −387.326 −0.0236449
\(646\) −14740.7 −0.897776
\(647\) 5705.85 0.346708 0.173354 0.984860i \(-0.444540\pi\)
0.173354 + 0.984860i \(0.444540\pi\)
\(648\) −3974.59 −0.240952
\(649\) 19282.7 1.16627
\(650\) −15816.3 −0.954409
\(651\) 6577.18 0.395975
\(652\) 21336.6 1.28161
\(653\) 17240.3 1.03318 0.516588 0.856234i \(-0.327202\pi\)
0.516588 + 0.856234i \(0.327202\pi\)
\(654\) −34024.7 −2.03436
\(655\) −8362.43 −0.498851
\(656\) 2614.71 0.155621
\(657\) −890.024 −0.0528511
\(658\) −11846.1 −0.701837
\(659\) −1656.26 −0.0979041 −0.0489520 0.998801i \(-0.515588\pi\)
−0.0489520 + 0.998801i \(0.515588\pi\)
\(660\) −12141.2 −0.716053
\(661\) 14138.6 0.831965 0.415983 0.909373i \(-0.363438\pi\)
0.415983 + 0.909373i \(0.363438\pi\)
\(662\) 13729.2 0.806042
\(663\) 25284.8 1.48112
\(664\) 531.519 0.0310647
\(665\) −7460.14 −0.435025
\(666\) 12742.2 0.741368
\(667\) 0 0
\(668\) 7957.51 0.460906
\(669\) 18810.1 1.08705
\(670\) 475.606 0.0274242
\(671\) 16852.3 0.969562
\(672\) 30440.1 1.74740
\(673\) 19008.2 1.08873 0.544363 0.838850i \(-0.316772\pi\)
0.544363 + 0.838850i \(0.316772\pi\)
\(674\) −52013.9 −2.97255
\(675\) −9763.86 −0.556757
\(676\) 11868.3 0.675257
\(677\) 2957.92 0.167920 0.0839602 0.996469i \(-0.473243\pi\)
0.0839602 + 0.996469i \(0.473243\pi\)
\(678\) 9092.19 0.515020
\(679\) −11396.3 −0.644108
\(680\) 6479.24 0.365394
\(681\) 19084.9 1.07391
\(682\) 8226.86 0.461910
\(683\) −23345.5 −1.30789 −0.653947 0.756540i \(-0.726888\pi\)
−0.653947 + 0.756540i \(0.726888\pi\)
\(684\) −2641.05 −0.147636
\(685\) 1884.71 0.105126
\(686\) 5289.70 0.294405
\(687\) 4670.78 0.259391
\(688\) 495.679 0.0274674
\(689\) 20456.1 1.13108
\(690\) 0 0
\(691\) −11901.8 −0.655234 −0.327617 0.944811i \(-0.606246\pi\)
−0.327617 + 0.944811i \(0.606246\pi\)
\(692\) −44514.9 −2.44538
\(693\) 7137.45 0.391240
\(694\) −44016.9 −2.40758
\(695\) −20753.1 −1.13268
\(696\) 8781.48 0.478249
\(697\) 5829.56 0.316801
\(698\) 20518.2 1.11265
\(699\) 14114.7 0.763758
\(700\) −17324.0 −0.935408
\(701\) 12803.0 0.689817 0.344909 0.938636i \(-0.387910\pi\)
0.344909 + 0.938636i \(0.387910\pi\)
\(702\) 37593.0 2.02116
\(703\) −14183.1 −0.760917
\(704\) 25632.2 1.37223
\(705\) −3558.91 −0.190122
\(706\) 28676.4 1.52868
\(707\) −44.8596 −0.00238631
\(708\) 24141.2 1.28147
\(709\) −8087.63 −0.428403 −0.214201 0.976790i \(-0.568715\pi\)
−0.214201 + 0.976790i \(0.568715\pi\)
\(710\) −27910.4 −1.47529
\(711\) −2906.51 −0.153309
\(712\) −5725.11 −0.301345
\(713\) 0 0
\(714\) 49873.9 2.61412
\(715\) 16006.1 0.837193
\(716\) −6927.49 −0.361582
\(717\) −580.174 −0.0302190
\(718\) −19254.7 −1.00081
\(719\) −34338.9 −1.78112 −0.890560 0.454867i \(-0.849687\pi\)
−0.890560 + 0.454867i \(0.849687\pi\)
\(720\) −2576.84 −0.133379
\(721\) −28616.4 −1.47813
\(722\) −23798.1 −1.22670
\(723\) 10732.8 0.552083
\(724\) 9737.46 0.499848
\(725\) 15095.9 0.773305
\(726\) 1656.18 0.0846646
\(727\) −2109.84 −0.107633 −0.0538167 0.998551i \(-0.517139\pi\)
−0.0538167 + 0.998551i \(0.517139\pi\)
\(728\) 13285.6 0.676370
\(729\) 21695.3 1.10223
\(730\) −3936.93 −0.199606
\(731\) 1105.13 0.0559162
\(732\) 21098.4 1.06533
\(733\) −15133.9 −0.762599 −0.381299 0.924452i \(-0.624523\pi\)
−0.381299 + 0.924452i \(0.624523\pi\)
\(734\) 40568.5 2.04007
\(735\) 13415.0 0.673225
\(736\) 0 0
\(737\) 506.486 0.0253143
\(738\) 1880.90 0.0938171
\(739\) −29057.4 −1.44641 −0.723204 0.690635i \(-0.757331\pi\)
−0.723204 + 0.690635i \(0.757331\pi\)
\(740\) 31299.0 1.55483
\(741\) −9080.62 −0.450182
\(742\) 40349.4 1.99633
\(743\) 3088.06 0.152476 0.0762382 0.997090i \(-0.475709\pi\)
0.0762382 + 0.997090i \(0.475709\pi\)
\(744\) 2051.50 0.101091
\(745\) −1420.78 −0.0698704
\(746\) 21330.1 1.04685
\(747\) −471.297 −0.0230841
\(748\) 34641.6 1.69334
\(749\) 4210.81 0.205420
\(750\) −27651.9 −1.34627
\(751\) 11655.2 0.566317 0.283159 0.959073i \(-0.408618\pi\)
0.283159 + 0.959073i \(0.408618\pi\)
\(752\) 4554.50 0.220858
\(753\) 3048.00 0.147510
\(754\) −58122.4 −2.80729
\(755\) 26356.2 1.27046
\(756\) 41176.6 1.98092
\(757\) 38979.8 1.87152 0.935762 0.352633i \(-0.114713\pi\)
0.935762 + 0.352633i \(0.114713\pi\)
\(758\) −2376.01 −0.113853
\(759\) 0 0
\(760\) −2326.91 −0.111060
\(761\) 8875.64 0.422788 0.211394 0.977401i \(-0.432200\pi\)
0.211394 + 0.977401i \(0.432200\pi\)
\(762\) −46251.0 −2.19882
\(763\) 49131.6 2.33117
\(764\) 7742.75 0.366653
\(765\) −5745.13 −0.271524
\(766\) −22367.3 −1.05504
\(767\) −31826.0 −1.49827
\(768\) −6083.32 −0.285824
\(769\) −27567.7 −1.29274 −0.646370 0.763024i \(-0.723714\pi\)
−0.646370 + 0.763024i \(0.723714\pi\)
\(770\) 31571.7 1.47762
\(771\) 32986.3 1.54082
\(772\) 20190.2 0.941273
\(773\) 5450.84 0.253626 0.126813 0.991927i \(-0.459525\pi\)
0.126813 + 0.991927i \(0.459525\pi\)
\(774\) 356.569 0.0165589
\(775\) 3526.65 0.163459
\(776\) −3554.64 −0.164438
\(777\) 47987.4 2.21562
\(778\) 39747.8 1.83165
\(779\) −2093.59 −0.0962909
\(780\) 20039.0 0.919885
\(781\) −29722.6 −1.36179
\(782\) 0 0
\(783\) −35880.7 −1.63764
\(784\) −17167.8 −0.782062
\(785\) −22189.1 −1.00887
\(786\) −20077.7 −0.911131
\(787\) −20985.1 −0.950494 −0.475247 0.879852i \(-0.657641\pi\)
−0.475247 + 0.879852i \(0.657641\pi\)
\(788\) 5663.28 0.256023
\(789\) −7457.58 −0.336498
\(790\) −12856.6 −0.579010
\(791\) −13129.1 −0.590161
\(792\) 2226.26 0.0998821
\(793\) −27814.7 −1.24556
\(794\) 26300.5 1.17553
\(795\) 12122.1 0.540789
\(796\) 17223.0 0.766902
\(797\) 30421.8 1.35206 0.676032 0.736872i \(-0.263698\pi\)
0.676032 + 0.736872i \(0.263698\pi\)
\(798\) −17911.4 −0.794557
\(799\) 10154.4 0.449607
\(800\) 16321.8 0.721330
\(801\) 5076.45 0.223929
\(802\) −11031.9 −0.485721
\(803\) −4192.55 −0.184249
\(804\) 634.102 0.0278147
\(805\) 0 0
\(806\) −13578.4 −0.593398
\(807\) 16191.7 0.706288
\(808\) −13.9923 −0.000609215 0
\(809\) −12231.4 −0.531560 −0.265780 0.964034i \(-0.585629\pi\)
−0.265780 + 0.964034i \(0.585629\pi\)
\(810\) 15589.2 0.676233
\(811\) 6733.52 0.291548 0.145774 0.989318i \(-0.453433\pi\)
0.145774 + 0.989318i \(0.453433\pi\)
\(812\) −63663.0 −2.75140
\(813\) −1279.82 −0.0552096
\(814\) 60023.5 2.58455
\(815\) −16668.8 −0.716421
\(816\) −19175.2 −0.822629
\(817\) −396.889 −0.0169956
\(818\) 26552.0 1.13492
\(819\) −11780.3 −0.502610
\(820\) 4620.10 0.196757
\(821\) −659.373 −0.0280296 −0.0140148 0.999902i \(-0.504461\pi\)
−0.0140148 + 0.999902i \(0.504461\pi\)
\(822\) 4525.09 0.192008
\(823\) 37882.3 1.60449 0.802245 0.596995i \(-0.203639\pi\)
0.802245 + 0.596995i \(0.203639\pi\)
\(824\) −8925.82 −0.377361
\(825\) −9981.16 −0.421211
\(826\) −62776.3 −2.64439
\(827\) 36305.0 1.52654 0.763271 0.646079i \(-0.223592\pi\)
0.763271 + 0.646079i \(0.223592\pi\)
\(828\) 0 0
\(829\) 35900.3 1.50406 0.752032 0.659127i \(-0.229074\pi\)
0.752032 + 0.659127i \(0.229074\pi\)
\(830\) −2084.73 −0.0871832
\(831\) −1.69615 −7.08049e−5 0
\(832\) −42305.8 −1.76285
\(833\) −38276.1 −1.59206
\(834\) −49827.1 −2.06879
\(835\) −6216.64 −0.257648
\(836\) −12440.9 −0.514688
\(837\) −8382.34 −0.346160
\(838\) 26942.9 1.11065
\(839\) 40349.3 1.66033 0.830163 0.557521i \(-0.188247\pi\)
0.830163 + 0.557521i \(0.188247\pi\)
\(840\) 7872.93 0.323383
\(841\) 31086.0 1.27459
\(842\) −14444.4 −0.591194
\(843\) −15494.8 −0.633062
\(844\) 27551.2 1.12364
\(845\) −9271.88 −0.377470
\(846\) 3276.30 0.133146
\(847\) −2391.52 −0.0970172
\(848\) −15513.3 −0.628216
\(849\) 18694.5 0.755704
\(850\) 26742.2 1.07912
\(851\) 0 0
\(852\) −37211.6 −1.49630
\(853\) 19569.0 0.785498 0.392749 0.919646i \(-0.371524\pi\)
0.392749 + 0.919646i \(0.371524\pi\)
\(854\) −54864.0 −2.19837
\(855\) 2063.27 0.0825290
\(856\) 1313.41 0.0524431
\(857\) 24551.4 0.978598 0.489299 0.872116i \(-0.337253\pi\)
0.489299 + 0.872116i \(0.337253\pi\)
\(858\) 38429.7 1.52910
\(859\) 13459.2 0.534599 0.267300 0.963613i \(-0.413869\pi\)
0.267300 + 0.963613i \(0.413869\pi\)
\(860\) 875.849 0.0347281
\(861\) 7083.51 0.280378
\(862\) 72433.5 2.86206
\(863\) −42260.5 −1.66694 −0.833468 0.552568i \(-0.813648\pi\)
−0.833468 + 0.552568i \(0.813648\pi\)
\(864\) −38794.6 −1.52757
\(865\) 34776.4 1.36697
\(866\) −67373.2 −2.64369
\(867\) −21047.0 −0.824446
\(868\) −14872.8 −0.581584
\(869\) −13691.4 −0.534463
\(870\) −34442.8 −1.34221
\(871\) −835.954 −0.0325203
\(872\) 15324.8 0.595140
\(873\) 3151.90 0.122194
\(874\) 0 0
\(875\) 39929.4 1.54270
\(876\) −5248.91 −0.202448
\(877\) 37306.1 1.43642 0.718208 0.695829i \(-0.244963\pi\)
0.718208 + 0.695829i \(0.244963\pi\)
\(878\) −25355.1 −0.974595
\(879\) −4711.90 −0.180806
\(880\) −12138.5 −0.464986
\(881\) 6563.30 0.250991 0.125496 0.992094i \(-0.459948\pi\)
0.125496 + 0.992094i \(0.459948\pi\)
\(882\) −12349.7 −0.471471
\(883\) −27904.7 −1.06350 −0.531749 0.846902i \(-0.678465\pi\)
−0.531749 + 0.846902i \(0.678465\pi\)
\(884\) −57175.8 −2.17537
\(885\) −18859.8 −0.716346
\(886\) −7412.79 −0.281081
\(887\) 4358.15 0.164974 0.0824872 0.996592i \(-0.473714\pi\)
0.0824872 + 0.996592i \(0.473714\pi\)
\(888\) 14967.9 0.565640
\(889\) 66786.4 2.51962
\(890\) 22455.1 0.845727
\(891\) 16601.4 0.624206
\(892\) −42534.6 −1.59660
\(893\) −3646.77 −0.136657
\(894\) −3411.22 −0.127616
\(895\) 5411.96 0.202125
\(896\) −28324.6 −1.05609
\(897\) 0 0
\(898\) 43772.2 1.62661
\(899\) 12959.9 0.480797
\(900\) 4791.34 0.177457
\(901\) −34587.2 −1.27888
\(902\) 8860.18 0.327064
\(903\) 1342.85 0.0494874
\(904\) −4095.13 −0.150666
\(905\) −7607.19 −0.279416
\(906\) 63279.7 2.32045
\(907\) 52106.6 1.90758 0.953788 0.300481i \(-0.0971472\pi\)
0.953788 + 0.300481i \(0.0971472\pi\)
\(908\) −43156.1 −1.57730
\(909\) 12.4069 0.000452708 0
\(910\) −52109.0 −1.89824
\(911\) −34691.3 −1.26166 −0.630832 0.775920i \(-0.717286\pi\)
−0.630832 + 0.775920i \(0.717286\pi\)
\(912\) 6886.44 0.250036
\(913\) −2220.09 −0.0804757
\(914\) 50621.1 1.83194
\(915\) −16482.7 −0.595522
\(916\) −10561.9 −0.380977
\(917\) 28992.2 1.04406
\(918\) −63562.2 −2.28526
\(919\) −5838.08 −0.209555 −0.104777 0.994496i \(-0.533413\pi\)
−0.104777 + 0.994496i \(0.533413\pi\)
\(920\) 0 0
\(921\) 12124.7 0.433791
\(922\) −24063.1 −0.859519
\(923\) 49057.0 1.74944
\(924\) 42093.0 1.49866
\(925\) 25730.6 0.914613
\(926\) −32064.9 −1.13792
\(927\) 7914.52 0.280417
\(928\) 59980.2 2.12171
\(929\) −31619.5 −1.11669 −0.558344 0.829610i \(-0.688563\pi\)
−0.558344 + 0.829610i \(0.688563\pi\)
\(930\) −8046.44 −0.283713
\(931\) 13746.2 0.483903
\(932\) −31917.1 −1.12176
\(933\) −12012.9 −0.421528
\(934\) −5104.44 −0.178825
\(935\) −27063.0 −0.946583
\(936\) −3674.43 −0.128315
\(937\) −30060.8 −1.04807 −0.524036 0.851696i \(-0.675574\pi\)
−0.524036 + 0.851696i \(0.675574\pi\)
\(938\) −1648.91 −0.0573973
\(939\) 26149.0 0.908776
\(940\) 8047.64 0.279239
\(941\) 45847.9 1.58831 0.794155 0.607715i \(-0.207914\pi\)
0.794155 + 0.607715i \(0.207914\pi\)
\(942\) −53274.9 −1.84266
\(943\) 0 0
\(944\) 24135.8 0.832154
\(945\) −32168.4 −1.10734
\(946\) 1679.65 0.0577276
\(947\) 16769.4 0.575431 0.287716 0.957716i \(-0.407104\pi\)
0.287716 + 0.957716i \(0.407104\pi\)
\(948\) −17141.1 −0.587254
\(949\) 6919.78 0.236697
\(950\) −9604.00 −0.327995
\(951\) −5864.80 −0.199978
\(952\) −22463.3 −0.764747
\(953\) 10747.1 0.365303 0.182652 0.983178i \(-0.441532\pi\)
0.182652 + 0.983178i \(0.441532\pi\)
\(954\) −11159.5 −0.378724
\(955\) −6048.86 −0.204960
\(956\) 1311.93 0.0443837
\(957\) −36679.2 −1.23894
\(958\) −33630.2 −1.13418
\(959\) −6534.23 −0.220022
\(960\) −25070.1 −0.842846
\(961\) −26763.3 −0.898370
\(962\) −99068.5 −3.32027
\(963\) −1164.59 −0.0389704
\(964\) −24269.7 −0.810864
\(965\) −15773.2 −0.526174
\(966\) 0 0
\(967\) −12138.2 −0.403659 −0.201829 0.979421i \(-0.564689\pi\)
−0.201829 + 0.979421i \(0.564689\pi\)
\(968\) −745.944 −0.0247681
\(969\) 15353.5 0.509005
\(970\) 13942.1 0.461498
\(971\) −12928.1 −0.427273 −0.213636 0.976913i \(-0.568531\pi\)
−0.213636 + 0.976913i \(0.568531\pi\)
\(972\) −20305.2 −0.670052
\(973\) 71950.3 2.37063
\(974\) 3174.48 0.104432
\(975\) 16473.9 0.541114
\(976\) 21093.7 0.691797
\(977\) −14735.6 −0.482532 −0.241266 0.970459i \(-0.577563\pi\)
−0.241266 + 0.970459i \(0.577563\pi\)
\(978\) −40020.9 −1.30851
\(979\) 23913.1 0.780660
\(980\) −30334.9 −0.988790
\(981\) −13588.4 −0.442248
\(982\) −9336.17 −0.303390
\(983\) −29251.2 −0.949104 −0.474552 0.880228i \(-0.657390\pi\)
−0.474552 + 0.880228i \(0.657390\pi\)
\(984\) 2209.43 0.0715795
\(985\) −4424.32 −0.143117
\(986\) 98273.3 3.17410
\(987\) 12338.6 0.397914
\(988\) 20533.7 0.661199
\(989\) 0 0
\(990\) −8731.86 −0.280320
\(991\) 47986.6 1.53819 0.769094 0.639136i \(-0.220708\pi\)
0.769094 + 0.639136i \(0.220708\pi\)
\(992\) 14012.4 0.448482
\(993\) −14300.0 −0.456995
\(994\) 96764.2 3.08770
\(995\) −13455.1 −0.428700
\(996\) −2779.47 −0.0884246
\(997\) 32463.8 1.03123 0.515617 0.856819i \(-0.327563\pi\)
0.515617 + 0.856819i \(0.327563\pi\)
\(998\) −52035.5 −1.65046
\(999\) −61157.9 −1.93689
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 529.4.a.g.1.4 4
23.22 odd 2 23.4.a.b.1.4 4
69.68 even 2 207.4.a.e.1.1 4
92.91 even 2 368.4.a.l.1.4 4
115.22 even 4 575.4.b.g.24.7 8
115.68 even 4 575.4.b.g.24.2 8
115.114 odd 2 575.4.a.i.1.1 4
161.160 even 2 1127.4.a.c.1.4 4
184.45 odd 2 1472.4.a.y.1.4 4
184.91 even 2 1472.4.a.bf.1.1 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
23.4.a.b.1.4 4 23.22 odd 2
207.4.a.e.1.1 4 69.68 even 2
368.4.a.l.1.4 4 92.91 even 2
529.4.a.g.1.4 4 1.1 even 1 trivial
575.4.a.i.1.1 4 115.114 odd 2
575.4.b.g.24.2 8 115.68 even 4
575.4.b.g.24.7 8 115.22 even 4
1127.4.a.c.1.4 4 161.160 even 2
1472.4.a.y.1.4 4 184.45 odd 2
1472.4.a.bf.1.1 4 184.91 even 2