Properties

Label 529.4.a.g.1.2
Level $529$
Weight $4$
Character 529.1
Self dual yes
Analytic conductor $31.212$
Analytic rank $1$
Dimension $4$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [529,4,Mod(1,529)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(529, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("529.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 529 = 23^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 529.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(31.2120103930\)
Analytic rank: \(1\)
Dimension: \(4\)
Coefficient field: 4.4.334189.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 2x^{3} - 16x^{2} - 5x + 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 23)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(5.22031\) of defining polynomial
Character \(\chi\) \(=\) 529.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-0.0323756 q^{2} +6.42170 q^{3} -7.99895 q^{4} -14.1026 q^{5} -0.207906 q^{6} +14.0109 q^{7} +0.517976 q^{8} +14.2382 q^{9} +0.456580 q^{10} +55.5140 q^{11} -51.3668 q^{12} -18.3149 q^{13} -0.453613 q^{14} -90.5626 q^{15} +63.9748 q^{16} -10.0273 q^{17} -0.460970 q^{18} -161.106 q^{19} +112.806 q^{20} +89.9740 q^{21} -1.79730 q^{22} +3.32628 q^{24} +73.8833 q^{25} +0.592956 q^{26} -81.9525 q^{27} -112.073 q^{28} +183.185 q^{29} +2.93202 q^{30} -144.762 q^{31} -6.21503 q^{32} +356.494 q^{33} +0.324640 q^{34} -197.591 q^{35} -113.891 q^{36} -181.411 q^{37} +5.21591 q^{38} -117.613 q^{39} -7.30481 q^{40} +77.7996 q^{41} -2.91296 q^{42} -315.335 q^{43} -444.054 q^{44} -200.795 q^{45} -524.190 q^{47} +410.827 q^{48} -146.693 q^{49} -2.39202 q^{50} -64.3923 q^{51} +146.500 q^{52} -73.7334 q^{53} +2.65326 q^{54} -782.892 q^{55} +7.25733 q^{56} -1034.57 q^{57} -5.93071 q^{58} -132.892 q^{59} +724.406 q^{60} -236.683 q^{61} +4.68676 q^{62} +199.490 q^{63} -511.598 q^{64} +258.288 q^{65} -11.5417 q^{66} -493.624 q^{67} +80.2079 q^{68} +6.39712 q^{70} -806.060 q^{71} +7.37504 q^{72} +1011.91 q^{73} +5.87328 q^{74} +474.456 q^{75} +1288.68 q^{76} +777.804 q^{77} +3.80779 q^{78} +599.386 q^{79} -902.212 q^{80} -910.705 q^{81} -2.51881 q^{82} +642.245 q^{83} -719.698 q^{84} +141.411 q^{85} +10.2092 q^{86} +1176.36 q^{87} +28.7549 q^{88} -883.399 q^{89} +6.50088 q^{90} -256.609 q^{91} -929.617 q^{93} +16.9710 q^{94} +2272.02 q^{95} -39.9111 q^{96} +71.2938 q^{97} +4.74929 q^{98} +790.419 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 2 q^{2} + 7 q^{3} + 20 q^{4} - 14 q^{5} - 17 q^{6} - 16 q^{7} - 63 q^{8} - 33 q^{9} + 70 q^{10} - 8 q^{11} - 67 q^{12} + 111 q^{13} + 144 q^{14} - 10 q^{15} + 64 q^{16} - 98 q^{17} + 49 q^{18} - 96 q^{19}+ \cdots + 1498 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.0323756 −0.0114465 −0.00572325 0.999984i \(-0.501822\pi\)
−0.00572325 + 0.999984i \(0.501822\pi\)
\(3\) 6.42170 1.23586 0.617928 0.786235i \(-0.287972\pi\)
0.617928 + 0.786235i \(0.287972\pi\)
\(4\) −7.99895 −0.999869
\(5\) −14.1026 −1.26137 −0.630687 0.776037i \(-0.717227\pi\)
−0.630687 + 0.776037i \(0.717227\pi\)
\(6\) −0.207906 −0.0141462
\(7\) 14.0109 0.756520 0.378260 0.925699i \(-0.376523\pi\)
0.378260 + 0.925699i \(0.376523\pi\)
\(8\) 0.517976 0.0228915
\(9\) 14.2382 0.527340
\(10\) 0.456580 0.0144383
\(11\) 55.5140 1.52165 0.760823 0.648959i \(-0.224796\pi\)
0.760823 + 0.648959i \(0.224796\pi\)
\(12\) −51.3668 −1.23569
\(13\) −18.3149 −0.390742 −0.195371 0.980729i \(-0.562591\pi\)
−0.195371 + 0.980729i \(0.562591\pi\)
\(14\) −0.453613 −0.00865951
\(15\) −90.5626 −1.55888
\(16\) 63.9748 0.999607
\(17\) −10.0273 −0.143058 −0.0715288 0.997439i \(-0.522788\pi\)
−0.0715288 + 0.997439i \(0.522788\pi\)
\(18\) −0.460970 −0.00603620
\(19\) −161.106 −1.94528 −0.972639 0.232321i \(-0.925368\pi\)
−0.972639 + 0.232321i \(0.925368\pi\)
\(20\) 112.806 1.26121
\(21\) 89.9740 0.934950
\(22\) −1.79730 −0.0174175
\(23\) 0 0
\(24\) 3.32628 0.0282906
\(25\) 73.8833 0.591066
\(26\) 0.592956 0.00447263
\(27\) −81.9525 −0.584139
\(28\) −112.073 −0.756421
\(29\) 183.185 1.17298 0.586492 0.809955i \(-0.300509\pi\)
0.586492 + 0.809955i \(0.300509\pi\)
\(30\) 2.93202 0.0178437
\(31\) −144.762 −0.838710 −0.419355 0.907822i \(-0.637744\pi\)
−0.419355 + 0.907822i \(0.637744\pi\)
\(32\) −6.21503 −0.0343335
\(33\) 356.494 1.88054
\(34\) 0.324640 0.00163751
\(35\) −197.591 −0.954255
\(36\) −113.891 −0.527271
\(37\) −181.411 −0.806047 −0.403023 0.915190i \(-0.632041\pi\)
−0.403023 + 0.915190i \(0.632041\pi\)
\(38\) 5.21591 0.0222666
\(39\) −117.613 −0.482900
\(40\) −7.30481 −0.0288748
\(41\) 77.7996 0.296348 0.148174 0.988961i \(-0.452660\pi\)
0.148174 + 0.988961i \(0.452660\pi\)
\(42\) −2.91296 −0.0107019
\(43\) −315.335 −1.11833 −0.559164 0.829057i \(-0.688878\pi\)
−0.559164 + 0.829057i \(0.688878\pi\)
\(44\) −444.054 −1.52145
\(45\) −200.795 −0.665174
\(46\) 0 0
\(47\) −524.190 −1.62683 −0.813414 0.581685i \(-0.802393\pi\)
−0.813414 + 0.581685i \(0.802393\pi\)
\(48\) 410.827 1.23537
\(49\) −146.693 −0.427678
\(50\) −2.39202 −0.00676565
\(51\) −64.3923 −0.176799
\(52\) 146.500 0.390690
\(53\) −73.7334 −0.191095 −0.0955477 0.995425i \(-0.530460\pi\)
−0.0955477 + 0.995425i \(0.530460\pi\)
\(54\) 2.65326 0.00668636
\(55\) −782.892 −1.91937
\(56\) 7.25733 0.0173179
\(57\) −1034.57 −2.40408
\(58\) −5.93071 −0.0134266
\(59\) −132.892 −0.293239 −0.146619 0.989193i \(-0.546839\pi\)
−0.146619 + 0.989193i \(0.546839\pi\)
\(60\) 724.406 1.55867
\(61\) −236.683 −0.496789 −0.248394 0.968659i \(-0.579903\pi\)
−0.248394 + 0.968659i \(0.579903\pi\)
\(62\) 4.68676 0.00960030
\(63\) 199.490 0.398943
\(64\) −511.598 −0.999214
\(65\) 258.288 0.492872
\(66\) −11.5417 −0.0215256
\(67\) −493.624 −0.900086 −0.450043 0.893007i \(-0.648591\pi\)
−0.450043 + 0.893007i \(0.648591\pi\)
\(68\) 80.2079 0.143039
\(69\) 0 0
\(70\) 6.39712 0.0109229
\(71\) −806.060 −1.34735 −0.673674 0.739029i \(-0.735285\pi\)
−0.673674 + 0.739029i \(0.735285\pi\)
\(72\) 7.37504 0.0120716
\(73\) 1011.91 1.62241 0.811203 0.584764i \(-0.198813\pi\)
0.811203 + 0.584764i \(0.198813\pi\)
\(74\) 5.87328 0.00922642
\(75\) 474.456 0.730473
\(76\) 1288.68 1.94502
\(77\) 777.804 1.15116
\(78\) 3.80779 0.00552752
\(79\) 599.386 0.853623 0.426811 0.904341i \(-0.359637\pi\)
0.426811 + 0.904341i \(0.359637\pi\)
\(80\) −902.212 −1.26088
\(81\) −910.705 −1.24925
\(82\) −2.51881 −0.00339215
\(83\) 642.245 0.849344 0.424672 0.905347i \(-0.360390\pi\)
0.424672 + 0.905347i \(0.360390\pi\)
\(84\) −719.698 −0.934827
\(85\) 141.411 0.180449
\(86\) 10.2092 0.0128009
\(87\) 1176.36 1.44964
\(88\) 28.7549 0.0348328
\(89\) −883.399 −1.05214 −0.526068 0.850442i \(-0.676334\pi\)
−0.526068 + 0.850442i \(0.676334\pi\)
\(90\) 6.50088 0.00761392
\(91\) −256.609 −0.295604
\(92\) 0 0
\(93\) −929.617 −1.03652
\(94\) 16.9710 0.0186215
\(95\) 2272.02 2.45373
\(96\) −39.9111 −0.0424313
\(97\) 71.2938 0.0746266 0.0373133 0.999304i \(-0.488120\pi\)
0.0373133 + 0.999304i \(0.488120\pi\)
\(98\) 4.74929 0.00489542
\(99\) 790.419 0.802425
\(100\) −590.989 −0.590989
\(101\) −942.689 −0.928723 −0.464361 0.885646i \(-0.653716\pi\)
−0.464361 + 0.885646i \(0.653716\pi\)
\(102\) 2.08474 0.00202373
\(103\) 556.624 0.532484 0.266242 0.963906i \(-0.414218\pi\)
0.266242 + 0.963906i \(0.414218\pi\)
\(104\) −9.48668 −0.00894467
\(105\) −1268.87 −1.17932
\(106\) 2.38716 0.00218738
\(107\) −647.477 −0.584990 −0.292495 0.956267i \(-0.594486\pi\)
−0.292495 + 0.956267i \(0.594486\pi\)
\(108\) 655.534 0.584063
\(109\) 1349.13 1.18554 0.592768 0.805373i \(-0.298035\pi\)
0.592768 + 0.805373i \(0.298035\pi\)
\(110\) 25.3466 0.0219700
\(111\) −1164.96 −0.996158
\(112\) 896.348 0.756222
\(113\) 284.549 0.236886 0.118443 0.992961i \(-0.462210\pi\)
0.118443 + 0.992961i \(0.462210\pi\)
\(114\) 33.4950 0.0275184
\(115\) 0 0
\(116\) −1465.28 −1.17283
\(117\) −260.771 −0.206054
\(118\) 4.30247 0.00335656
\(119\) −140.492 −0.108226
\(120\) −46.9093 −0.0356851
\(121\) 1750.81 1.31541
\(122\) 7.66275 0.00568650
\(123\) 499.605 0.366243
\(124\) 1157.94 0.838600
\(125\) 720.878 0.515819
\(126\) −6.45863 −0.00456651
\(127\) −753.553 −0.526512 −0.263256 0.964726i \(-0.584796\pi\)
−0.263256 + 0.964726i \(0.584796\pi\)
\(128\) 66.2835 0.0457710
\(129\) −2024.98 −1.38209
\(130\) −8.36223 −0.00564166
\(131\) −769.226 −0.513035 −0.256518 0.966540i \(-0.582575\pi\)
−0.256518 + 0.966540i \(0.582575\pi\)
\(132\) −2851.58 −1.88029
\(133\) −2257.25 −1.47164
\(134\) 15.9814 0.0103028
\(135\) 1155.74 0.736819
\(136\) −5.19390 −0.00327481
\(137\) 211.638 0.131982 0.0659908 0.997820i \(-0.478979\pi\)
0.0659908 + 0.997820i \(0.478979\pi\)
\(138\) 0 0
\(139\) 1998.54 1.21953 0.609763 0.792584i \(-0.291265\pi\)
0.609763 + 0.792584i \(0.291265\pi\)
\(140\) 1580.52 0.954130
\(141\) −3366.19 −2.01052
\(142\) 26.0967 0.0154224
\(143\) −1016.73 −0.594570
\(144\) 910.886 0.527133
\(145\) −2583.38 −1.47957
\(146\) −32.7614 −0.0185709
\(147\) −942.021 −0.528548
\(148\) 1451.10 0.805941
\(149\) −499.968 −0.274893 −0.137446 0.990509i \(-0.543889\pi\)
−0.137446 + 0.990509i \(0.543889\pi\)
\(150\) −15.3608 −0.00836136
\(151\) 501.652 0.270357 0.135178 0.990821i \(-0.456839\pi\)
0.135178 + 0.990821i \(0.456839\pi\)
\(152\) −83.4491 −0.0445304
\(153\) −142.771 −0.0754400
\(154\) −25.1819 −0.0131767
\(155\) 2041.52 1.05793
\(156\) 940.779 0.482837
\(157\) −1686.36 −0.857237 −0.428619 0.903485i \(-0.641000\pi\)
−0.428619 + 0.903485i \(0.641000\pi\)
\(158\) −19.4055 −0.00977100
\(159\) −473.493 −0.236166
\(160\) 87.6481 0.0433074
\(161\) 0 0
\(162\) 29.4846 0.0142996
\(163\) 3183.54 1.52978 0.764890 0.644161i \(-0.222793\pi\)
0.764890 + 0.644161i \(0.222793\pi\)
\(164\) −622.315 −0.296309
\(165\) −5027.49 −2.37206
\(166\) −20.7931 −0.00972202
\(167\) −3771.37 −1.74753 −0.873764 0.486350i \(-0.838328\pi\)
−0.873764 + 0.486350i \(0.838328\pi\)
\(168\) 46.6044 0.0214024
\(169\) −1861.56 −0.847321
\(170\) −4.57827 −0.00206551
\(171\) −2293.86 −1.02582
\(172\) 2522.35 1.11818
\(173\) 129.941 0.0571052 0.0285526 0.999592i \(-0.490910\pi\)
0.0285526 + 0.999592i \(0.490910\pi\)
\(174\) −38.0852 −0.0165933
\(175\) 1035.17 0.447153
\(176\) 3551.50 1.52105
\(177\) −853.393 −0.362401
\(178\) 28.6006 0.0120433
\(179\) 810.182 0.338301 0.169150 0.985590i \(-0.445898\pi\)
0.169150 + 0.985590i \(0.445898\pi\)
\(180\) 1606.15 0.665086
\(181\) −2430.33 −0.998039 −0.499019 0.866591i \(-0.666306\pi\)
−0.499019 + 0.866591i \(0.666306\pi\)
\(182\) 8.30788 0.00338363
\(183\) −1519.90 −0.613960
\(184\) 0 0
\(185\) 2558.36 1.01673
\(186\) 30.0969 0.0118646
\(187\) −556.656 −0.217683
\(188\) 4192.97 1.62661
\(189\) −1148.23 −0.441913
\(190\) −73.5579 −0.0280866
\(191\) −2462.87 −0.933022 −0.466511 0.884515i \(-0.654489\pi\)
−0.466511 + 0.884515i \(0.654489\pi\)
\(192\) −3285.32 −1.23488
\(193\) 4021.66 1.49992 0.749962 0.661481i \(-0.230072\pi\)
0.749962 + 0.661481i \(0.230072\pi\)
\(194\) −2.30818 −0.000854214 0
\(195\) 1658.65 0.609118
\(196\) 1173.39 0.427622
\(197\) 1811.60 0.655182 0.327591 0.944820i \(-0.393763\pi\)
0.327591 + 0.944820i \(0.393763\pi\)
\(198\) −25.5903 −0.00918497
\(199\) −723.923 −0.257877 −0.128939 0.991653i \(-0.541157\pi\)
−0.128939 + 0.991653i \(0.541157\pi\)
\(200\) 38.2698 0.0135304
\(201\) −3169.90 −1.11238
\(202\) 30.5201 0.0106306
\(203\) 2566.59 0.887385
\(204\) 515.071 0.176775
\(205\) −1097.18 −0.373805
\(206\) −18.0211 −0.00609508
\(207\) 0 0
\(208\) −1171.69 −0.390588
\(209\) −8943.65 −2.96003
\(210\) 41.0804 0.0134991
\(211\) −583.883 −0.190503 −0.0952515 0.995453i \(-0.530366\pi\)
−0.0952515 + 0.995453i \(0.530366\pi\)
\(212\) 589.790 0.191070
\(213\) −5176.27 −1.66513
\(214\) 20.9625 0.00669610
\(215\) 4447.04 1.41063
\(216\) −42.4494 −0.0133718
\(217\) −2028.25 −0.634501
\(218\) −43.6790 −0.0135703
\(219\) 6498.21 2.00506
\(220\) 6262.31 1.91911
\(221\) 183.649 0.0558985
\(222\) 37.7164 0.0114025
\(223\) 3157.57 0.948191 0.474096 0.880473i \(-0.342775\pi\)
0.474096 + 0.880473i \(0.342775\pi\)
\(224\) −87.0785 −0.0259740
\(225\) 1051.96 0.311693
\(226\) −9.21245 −0.00271152
\(227\) 2219.80 0.649044 0.324522 0.945878i \(-0.394797\pi\)
0.324522 + 0.945878i \(0.394797\pi\)
\(228\) 8275.52 2.40377
\(229\) 4398.24 1.26919 0.634593 0.772846i \(-0.281168\pi\)
0.634593 + 0.772846i \(0.281168\pi\)
\(230\) 0 0
\(231\) 4994.82 1.42266
\(232\) 94.8852 0.0268514
\(233\) 2112.84 0.594065 0.297032 0.954867i \(-0.404003\pi\)
0.297032 + 0.954867i \(0.404003\pi\)
\(234\) 8.44262 0.00235860
\(235\) 7392.43 2.05204
\(236\) 1063.00 0.293200
\(237\) 3849.08 1.05496
\(238\) 4.54852 0.00123881
\(239\) −1548.69 −0.419147 −0.209574 0.977793i \(-0.567208\pi\)
−0.209574 + 0.977793i \(0.567208\pi\)
\(240\) −5793.73 −1.55826
\(241\) 2516.92 0.672734 0.336367 0.941731i \(-0.390802\pi\)
0.336367 + 0.941731i \(0.390802\pi\)
\(242\) −56.6834 −0.0150568
\(243\) −3635.55 −0.959757
\(244\) 1893.21 0.496724
\(245\) 2068.76 0.539462
\(246\) −16.1750 −0.00419220
\(247\) 2950.64 0.760101
\(248\) −74.9832 −0.0191993
\(249\) 4124.30 1.04967
\(250\) −23.3389 −0.00590432
\(251\) −386.310 −0.0971461 −0.0485731 0.998820i \(-0.515467\pi\)
−0.0485731 + 0.998820i \(0.515467\pi\)
\(252\) −1595.71 −0.398891
\(253\) 0 0
\(254\) 24.3967 0.00602672
\(255\) 908.099 0.223009
\(256\) 4090.63 0.998690
\(257\) 3816.61 0.926357 0.463178 0.886265i \(-0.346709\pi\)
0.463178 + 0.886265i \(0.346709\pi\)
\(258\) 65.5601 0.0158201
\(259\) −2541.73 −0.609790
\(260\) −2066.03 −0.492807
\(261\) 2608.22 0.618561
\(262\) 24.9042 0.00587246
\(263\) −4510.11 −1.05744 −0.528718 0.848798i \(-0.677327\pi\)
−0.528718 + 0.848798i \(0.677327\pi\)
\(264\) 184.655 0.0430483
\(265\) 1039.83 0.241043
\(266\) 73.0798 0.0168452
\(267\) −5672.92 −1.30029
\(268\) 3948.47 0.899968
\(269\) −550.730 −0.124827 −0.0624137 0.998050i \(-0.519880\pi\)
−0.0624137 + 0.998050i \(0.519880\pi\)
\(270\) −37.4179 −0.00843400
\(271\) −897.873 −0.201262 −0.100631 0.994924i \(-0.532086\pi\)
−0.100631 + 0.994924i \(0.532086\pi\)
\(272\) −641.495 −0.143001
\(273\) −1647.87 −0.365324
\(274\) −6.85192 −0.00151073
\(275\) 4101.56 0.899394
\(276\) 0 0
\(277\) 2288.67 0.496437 0.248219 0.968704i \(-0.420155\pi\)
0.248219 + 0.968704i \(0.420155\pi\)
\(278\) −64.7040 −0.0139593
\(279\) −2061.15 −0.442285
\(280\) −102.347 −0.0218443
\(281\) 2587.28 0.549268 0.274634 0.961549i \(-0.411443\pi\)
0.274634 + 0.961549i \(0.411443\pi\)
\(282\) 108.982 0.0230135
\(283\) −1488.48 −0.312653 −0.156326 0.987705i \(-0.549965\pi\)
−0.156326 + 0.987705i \(0.549965\pi\)
\(284\) 6447.63 1.34717
\(285\) 14590.2 3.03245
\(286\) 32.9174 0.00680576
\(287\) 1090.05 0.224193
\(288\) −88.4908 −0.0181055
\(289\) −4812.45 −0.979535
\(290\) 83.6384 0.0169359
\(291\) 457.827 0.0922278
\(292\) −8094.26 −1.62219
\(293\) 2821.24 0.562522 0.281261 0.959631i \(-0.409247\pi\)
0.281261 + 0.959631i \(0.409247\pi\)
\(294\) 30.4985 0.00605003
\(295\) 1874.12 0.369884
\(296\) −93.9664 −0.0184516
\(297\) −4549.51 −0.888853
\(298\) 16.1868 0.00314656
\(299\) 0 0
\(300\) −3795.15 −0.730377
\(301\) −4418.14 −0.846037
\(302\) −16.2413 −0.00309464
\(303\) −6053.66 −1.14777
\(304\) −10306.7 −1.94451
\(305\) 3337.84 0.626637
\(306\) 4.62229 0.000863525 0
\(307\) −4085.72 −0.759558 −0.379779 0.925077i \(-0.624000\pi\)
−0.379779 + 0.925077i \(0.624000\pi\)
\(308\) −6221.61 −1.15100
\(309\) 3574.47 0.658073
\(310\) −66.0954 −0.0121096
\(311\) 4044.84 0.737498 0.368749 0.929529i \(-0.379786\pi\)
0.368749 + 0.929529i \(0.379786\pi\)
\(312\) −60.9206 −0.0110543
\(313\) −5111.54 −0.923072 −0.461536 0.887122i \(-0.652701\pi\)
−0.461536 + 0.887122i \(0.652701\pi\)
\(314\) 54.5970 0.00981238
\(315\) −2813.33 −0.503217
\(316\) −4794.46 −0.853511
\(317\) −7017.95 −1.24343 −0.621715 0.783244i \(-0.713564\pi\)
−0.621715 + 0.783244i \(0.713564\pi\)
\(318\) 15.3296 0.00270328
\(319\) 10169.3 1.78487
\(320\) 7214.85 1.26038
\(321\) −4157.90 −0.722964
\(322\) 0 0
\(323\) 1615.46 0.278287
\(324\) 7284.69 1.24909
\(325\) −1353.17 −0.230954
\(326\) −103.069 −0.0175106
\(327\) 8663.72 1.46515
\(328\) 40.2983 0.00678385
\(329\) −7344.39 −1.23073
\(330\) 162.768 0.0271518
\(331\) −6537.02 −1.08552 −0.542760 0.839888i \(-0.682621\pi\)
−0.542760 + 0.839888i \(0.682621\pi\)
\(332\) −5137.28 −0.849232
\(333\) −2582.96 −0.425061
\(334\) 122.100 0.0200031
\(335\) 6961.38 1.13535
\(336\) 5756.07 0.934582
\(337\) 838.254 0.135497 0.0677486 0.997702i \(-0.478418\pi\)
0.0677486 + 0.997702i \(0.478418\pi\)
\(338\) 60.2693 0.00969887
\(339\) 1827.29 0.292757
\(340\) −1131.14 −0.180426
\(341\) −8036.32 −1.27622
\(342\) 74.2651 0.0117421
\(343\) −6861.07 −1.08007
\(344\) −163.336 −0.0256002
\(345\) 0 0
\(346\) −4.20691 −0.000653655 0
\(347\) 7101.86 1.09870 0.549348 0.835593i \(-0.314876\pi\)
0.549348 + 0.835593i \(0.314876\pi\)
\(348\) −9409.61 −1.44945
\(349\) −2675.10 −0.410300 −0.205150 0.978731i \(-0.565768\pi\)
−0.205150 + 0.978731i \(0.565768\pi\)
\(350\) −33.5144 −0.00511835
\(351\) 1500.95 0.228248
\(352\) −345.021 −0.0522435
\(353\) −8032.84 −1.21118 −0.605588 0.795778i \(-0.707062\pi\)
−0.605588 + 0.795778i \(0.707062\pi\)
\(354\) 27.6291 0.00414823
\(355\) 11367.5 1.69951
\(356\) 7066.27 1.05200
\(357\) −902.197 −0.133752
\(358\) −26.2301 −0.00387236
\(359\) −4828.72 −0.709889 −0.354944 0.934887i \(-0.615500\pi\)
−0.354944 + 0.934887i \(0.615500\pi\)
\(360\) −104.007 −0.0152268
\(361\) 19096.2 2.78411
\(362\) 78.6834 0.0114241
\(363\) 11243.1 1.62565
\(364\) 2052.60 0.295565
\(365\) −14270.6 −2.04646
\(366\) 49.2079 0.00702769
\(367\) −89.8597 −0.0127810 −0.00639052 0.999980i \(-0.502034\pi\)
−0.00639052 + 0.999980i \(0.502034\pi\)
\(368\) 0 0
\(369\) 1107.72 0.156276
\(370\) −82.8285 −0.0116380
\(371\) −1033.07 −0.144567
\(372\) 7435.96 1.03639
\(373\) −5196.16 −0.721306 −0.360653 0.932700i \(-0.617446\pi\)
−0.360653 + 0.932700i \(0.617446\pi\)
\(374\) 18.0221 0.00249171
\(375\) 4629.26 0.637478
\(376\) −271.518 −0.0372406
\(377\) −3355.01 −0.458333
\(378\) 37.1747 0.00505836
\(379\) −4900.54 −0.664179 −0.332090 0.943248i \(-0.607754\pi\)
−0.332090 + 0.943248i \(0.607754\pi\)
\(380\) −18173.7 −2.45340
\(381\) −4839.09 −0.650693
\(382\) 79.7370 0.0106798
\(383\) −9973.73 −1.33064 −0.665318 0.746560i \(-0.731704\pi\)
−0.665318 + 0.746560i \(0.731704\pi\)
\(384\) 425.653 0.0565664
\(385\) −10969.1 −1.45204
\(386\) −130.204 −0.0171689
\(387\) −4489.79 −0.589739
\(388\) −570.275 −0.0746169
\(389\) 6277.96 0.818266 0.409133 0.912475i \(-0.365831\pi\)
0.409133 + 0.912475i \(0.365831\pi\)
\(390\) −53.6997 −0.00697228
\(391\) 0 0
\(392\) −75.9837 −0.00979019
\(393\) −4939.74 −0.634038
\(394\) −58.6515 −0.00749955
\(395\) −8452.90 −1.07674
\(396\) −6322.52 −0.802320
\(397\) −11309.9 −1.42979 −0.714895 0.699232i \(-0.753526\pi\)
−0.714895 + 0.699232i \(0.753526\pi\)
\(398\) 23.4375 0.00295179
\(399\) −14495.4 −1.81874
\(400\) 4726.67 0.590834
\(401\) 14306.5 1.78163 0.890813 0.454371i \(-0.150136\pi\)
0.890813 + 0.454371i \(0.150136\pi\)
\(402\) 102.628 0.0127328
\(403\) 2651.30 0.327719
\(404\) 7540.52 0.928601
\(405\) 12843.3 1.57578
\(406\) −83.0949 −0.0101575
\(407\) −10070.8 −1.22652
\(408\) −33.3537 −0.00404719
\(409\) 4363.34 0.527514 0.263757 0.964589i \(-0.415038\pi\)
0.263757 + 0.964589i \(0.415038\pi\)
\(410\) 35.5218 0.00427877
\(411\) 1359.08 0.163110
\(412\) −4452.41 −0.532414
\(413\) −1861.94 −0.221841
\(414\) 0 0
\(415\) −9057.32 −1.07134
\(416\) 113.828 0.0134155
\(417\) 12834.0 1.50716
\(418\) 289.556 0.0338820
\(419\) −12304.9 −1.43468 −0.717341 0.696722i \(-0.754641\pi\)
−0.717341 + 0.696722i \(0.754641\pi\)
\(420\) 10149.6 1.17917
\(421\) 8353.05 0.966990 0.483495 0.875347i \(-0.339367\pi\)
0.483495 + 0.875347i \(0.339367\pi\)
\(422\) 18.9036 0.00218059
\(423\) −7463.51 −0.857892
\(424\) −38.1921 −0.00437446
\(425\) −740.850 −0.0845565
\(426\) 167.585 0.0190599
\(427\) −3316.15 −0.375831
\(428\) 5179.14 0.584914
\(429\) −6529.16 −0.734803
\(430\) −143.976 −0.0161468
\(431\) 15959.9 1.78367 0.891835 0.452361i \(-0.149418\pi\)
0.891835 + 0.452361i \(0.149418\pi\)
\(432\) −5242.90 −0.583910
\(433\) −5779.60 −0.641454 −0.320727 0.947172i \(-0.603927\pi\)
−0.320727 + 0.947172i \(0.603927\pi\)
\(434\) 65.6659 0.00726282
\(435\) −16589.7 −1.82854
\(436\) −10791.6 −1.18538
\(437\) 0 0
\(438\) −210.384 −0.0229509
\(439\) 795.488 0.0864842 0.0432421 0.999065i \(-0.486231\pi\)
0.0432421 + 0.999065i \(0.486231\pi\)
\(440\) −405.519 −0.0439372
\(441\) −2088.65 −0.225532
\(442\) −5.94575 −0.000639843 0
\(443\) 7357.81 0.789120 0.394560 0.918870i \(-0.370897\pi\)
0.394560 + 0.918870i \(0.370897\pi\)
\(444\) 9318.49 0.996027
\(445\) 12458.2 1.32714
\(446\) −102.228 −0.0108535
\(447\) −3210.65 −0.339728
\(448\) −7167.96 −0.755925
\(449\) −6672.34 −0.701308 −0.350654 0.936505i \(-0.614041\pi\)
−0.350654 + 0.936505i \(0.614041\pi\)
\(450\) −34.0580 −0.00356780
\(451\) 4318.97 0.450936
\(452\) −2276.09 −0.236855
\(453\) 3221.46 0.334122
\(454\) −71.8673 −0.00742929
\(455\) 3618.86 0.372867
\(456\) −535.885 −0.0550331
\(457\) 6324.72 0.647392 0.323696 0.946161i \(-0.395075\pi\)
0.323696 + 0.946161i \(0.395075\pi\)
\(458\) −142.396 −0.0145278
\(459\) 821.763 0.0835656
\(460\) 0 0
\(461\) −641.556 −0.0648162 −0.0324081 0.999475i \(-0.510318\pi\)
−0.0324081 + 0.999475i \(0.510318\pi\)
\(462\) −161.710 −0.0162845
\(463\) 714.350 0.0717034 0.0358517 0.999357i \(-0.488586\pi\)
0.0358517 + 0.999357i \(0.488586\pi\)
\(464\) 11719.2 1.17252
\(465\) 13110.0 1.30745
\(466\) −68.4047 −0.00679997
\(467\) −3937.64 −0.390176 −0.195088 0.980786i \(-0.562499\pi\)
−0.195088 + 0.980786i \(0.562499\pi\)
\(468\) 2085.89 0.206027
\(469\) −6916.13 −0.680933
\(470\) −239.335 −0.0234887
\(471\) −10829.3 −1.05942
\(472\) −68.8349 −0.00671268
\(473\) −17505.5 −1.70170
\(474\) −124.616 −0.0120756
\(475\) −11903.1 −1.14979
\(476\) 1123.79 0.108212
\(477\) −1049.83 −0.100772
\(478\) 50.1397 0.00479777
\(479\) 2252.09 0.214824 0.107412 0.994215i \(-0.465744\pi\)
0.107412 + 0.994215i \(0.465744\pi\)
\(480\) 562.850 0.0535218
\(481\) 3322.52 0.314956
\(482\) −81.4868 −0.00770046
\(483\) 0 0
\(484\) −14004.6 −1.31523
\(485\) −1005.43 −0.0941322
\(486\) 117.703 0.0109859
\(487\) 11821.8 1.09999 0.549995 0.835168i \(-0.314630\pi\)
0.549995 + 0.835168i \(0.314630\pi\)
\(488\) −122.596 −0.0113723
\(489\) 20443.7 1.89059
\(490\) −66.9773 −0.00617496
\(491\) 20198.1 1.85647 0.928235 0.371993i \(-0.121326\pi\)
0.928235 + 0.371993i \(0.121326\pi\)
\(492\) −3996.32 −0.366195
\(493\) −1836.85 −0.167804
\(494\) −95.5289 −0.00870051
\(495\) −11147.0 −1.01216
\(496\) −9261.12 −0.838380
\(497\) −11293.7 −1.01930
\(498\) −133.527 −0.0120150
\(499\) −633.684 −0.0568488 −0.0284244 0.999596i \(-0.509049\pi\)
−0.0284244 + 0.999596i \(0.509049\pi\)
\(500\) −5766.27 −0.515751
\(501\) −24218.6 −2.15969
\(502\) 12.5070 0.00111198
\(503\) −10068.6 −0.892518 −0.446259 0.894904i \(-0.647244\pi\)
−0.446259 + 0.894904i \(0.647244\pi\)
\(504\) 103.331 0.00913242
\(505\) 13294.4 1.17147
\(506\) 0 0
\(507\) −11954.4 −1.04717
\(508\) 6027.63 0.526443
\(509\) −4287.40 −0.373351 −0.186675 0.982422i \(-0.559771\pi\)
−0.186675 + 0.982422i \(0.559771\pi\)
\(510\) −29.4003 −0.00255268
\(511\) 14177.9 1.22738
\(512\) −662.705 −0.0572026
\(513\) 13203.1 1.13631
\(514\) −123.565 −0.0106035
\(515\) −7849.85 −0.671662
\(516\) 16197.7 1.38191
\(517\) −29099.9 −2.47546
\(518\) 82.2902 0.00697997
\(519\) 834.439 0.0705738
\(520\) 133.787 0.0112826
\(521\) 19842.9 1.66858 0.834291 0.551324i \(-0.185877\pi\)
0.834291 + 0.551324i \(0.185877\pi\)
\(522\) −84.4426 −0.00708037
\(523\) 10894.9 0.910897 0.455448 0.890262i \(-0.349479\pi\)
0.455448 + 0.890262i \(0.349479\pi\)
\(524\) 6153.00 0.512968
\(525\) 6647.58 0.552617
\(526\) 146.018 0.0121039
\(527\) 1451.57 0.119984
\(528\) 22806.7 1.87980
\(529\) 0 0
\(530\) −33.6652 −0.00275910
\(531\) −1892.14 −0.154637
\(532\) 18055.6 1.47145
\(533\) −1424.89 −0.115795
\(534\) 183.664 0.0148838
\(535\) 9131.11 0.737892
\(536\) −255.685 −0.0206043
\(537\) 5202.74 0.418091
\(538\) 17.8302 0.00142884
\(539\) −8143.54 −0.650774
\(540\) −9244.73 −0.736722
\(541\) 4405.04 0.350069 0.175035 0.984562i \(-0.443996\pi\)
0.175035 + 0.984562i \(0.443996\pi\)
\(542\) 29.0692 0.00230374
\(543\) −15606.8 −1.23343
\(544\) 62.3200 0.00491167
\(545\) −19026.3 −1.49541
\(546\) 53.3507 0.00418168
\(547\) 10031.2 0.784099 0.392050 0.919944i \(-0.371766\pi\)
0.392050 + 0.919944i \(0.371766\pi\)
\(548\) −1692.88 −0.131964
\(549\) −3369.93 −0.261977
\(550\) −132.790 −0.0102949
\(551\) −29512.2 −2.28178
\(552\) 0 0
\(553\) 8397.97 0.645783
\(554\) −74.0972 −0.00568247
\(555\) 16429.0 1.25653
\(556\) −15986.2 −1.21937
\(557\) −23278.3 −1.77079 −0.885396 0.464837i \(-0.846113\pi\)
−0.885396 + 0.464837i \(0.846113\pi\)
\(558\) 66.7309 0.00506262
\(559\) 5775.32 0.436977
\(560\) −12640.8 −0.953880
\(561\) −3574.68 −0.269025
\(562\) −83.7648 −0.00628720
\(563\) 20989.8 1.57125 0.785625 0.618702i \(-0.212341\pi\)
0.785625 + 0.618702i \(0.212341\pi\)
\(564\) 26926.0 2.01026
\(565\) −4012.88 −0.298802
\(566\) 48.1904 0.00357878
\(567\) −12759.8 −0.945084
\(568\) −417.520 −0.0308428
\(569\) 11942.2 0.879868 0.439934 0.898030i \(-0.355002\pi\)
0.439934 + 0.898030i \(0.355002\pi\)
\(570\) −472.367 −0.0347110
\(571\) 13981.9 1.02473 0.512367 0.858767i \(-0.328769\pi\)
0.512367 + 0.858767i \(0.328769\pi\)
\(572\) 8132.81 0.594492
\(573\) −15815.8 −1.15308
\(574\) −35.2909 −0.00256623
\(575\) 0 0
\(576\) −7284.22 −0.526926
\(577\) −5024.27 −0.362501 −0.181251 0.983437i \(-0.558015\pi\)
−0.181251 + 0.983437i \(0.558015\pi\)
\(578\) 155.806 0.0112123
\(579\) 25825.9 1.85369
\(580\) 20664.3 1.47938
\(581\) 8998.45 0.642545
\(582\) −14.8224 −0.00105569
\(583\) −4093.24 −0.290780
\(584\) 524.148 0.0371393
\(585\) 3677.55 0.259911
\(586\) −91.3395 −0.00643891
\(587\) −22464.4 −1.57957 −0.789784 0.613385i \(-0.789807\pi\)
−0.789784 + 0.613385i \(0.789807\pi\)
\(588\) 7535.18 0.528479
\(589\) 23322.0 1.63152
\(590\) −60.6760 −0.00423388
\(591\) 11633.5 0.809710
\(592\) −11605.7 −0.805730
\(593\) 14073.1 0.974561 0.487281 0.873245i \(-0.337989\pi\)
0.487281 + 0.873245i \(0.337989\pi\)
\(594\) 147.293 0.0101743
\(595\) 1981.30 0.136513
\(596\) 3999.22 0.274857
\(597\) −4648.82 −0.318699
\(598\) 0 0
\(599\) −8952.63 −0.610675 −0.305338 0.952244i \(-0.598769\pi\)
−0.305338 + 0.952244i \(0.598769\pi\)
\(600\) 245.757 0.0167216
\(601\) −20522.5 −1.39290 −0.696449 0.717607i \(-0.745238\pi\)
−0.696449 + 0.717607i \(0.745238\pi\)
\(602\) 143.040 0.00968417
\(603\) −7028.31 −0.474651
\(604\) −4012.69 −0.270321
\(605\) −24690.9 −1.65922
\(606\) 195.991 0.0131379
\(607\) 23022.8 1.53949 0.769743 0.638353i \(-0.220384\pi\)
0.769743 + 0.638353i \(0.220384\pi\)
\(608\) 1001.28 0.0667883
\(609\) 16481.8 1.09668
\(610\) −108.065 −0.00717281
\(611\) 9600.48 0.635669
\(612\) 1142.02 0.0754301
\(613\) 6159.74 0.405856 0.202928 0.979194i \(-0.434954\pi\)
0.202928 + 0.979194i \(0.434954\pi\)
\(614\) 132.278 0.00869429
\(615\) −7045.73 −0.461970
\(616\) 402.884 0.0263517
\(617\) −26889.1 −1.75448 −0.877241 0.480050i \(-0.840619\pi\)
−0.877241 + 0.480050i \(0.840619\pi\)
\(618\) −115.726 −0.00753264
\(619\) 6478.47 0.420665 0.210333 0.977630i \(-0.432545\pi\)
0.210333 + 0.977630i \(0.432545\pi\)
\(620\) −16330.0 −1.05779
\(621\) 0 0
\(622\) −130.954 −0.00844178
\(623\) −12377.3 −0.795962
\(624\) −7524.26 −0.482711
\(625\) −19401.7 −1.24171
\(626\) 165.489 0.0105659
\(627\) −57433.4 −3.65817
\(628\) 13489.1 0.857125
\(629\) 1819.06 0.115311
\(630\) 91.0834 0.00576008
\(631\) −2956.54 −0.186526 −0.0932630 0.995642i \(-0.529730\pi\)
−0.0932630 + 0.995642i \(0.529730\pi\)
\(632\) 310.468 0.0195407
\(633\) −3749.52 −0.235434
\(634\) 227.210 0.0142329
\(635\) 10627.1 0.664129
\(636\) 3787.45 0.236135
\(637\) 2686.68 0.167111
\(638\) −329.238 −0.0204305
\(639\) −11476.8 −0.710511
\(640\) −934.770 −0.0577344
\(641\) −20604.4 −1.26961 −0.634807 0.772670i \(-0.718921\pi\)
−0.634807 + 0.772670i \(0.718921\pi\)
\(642\) 134.615 0.00827541
\(643\) 23773.4 1.45806 0.729030 0.684482i \(-0.239972\pi\)
0.729030 + 0.684482i \(0.239972\pi\)
\(644\) 0 0
\(645\) 28557.5 1.74334
\(646\) −52.3015 −0.00318541
\(647\) −24907.8 −1.51349 −0.756744 0.653712i \(-0.773211\pi\)
−0.756744 + 0.653712i \(0.773211\pi\)
\(648\) −471.723 −0.0285973
\(649\) −7377.38 −0.446206
\(650\) 43.8096 0.00264362
\(651\) −13024.8 −0.784152
\(652\) −25465.0 −1.52958
\(653\) −18523.9 −1.11010 −0.555050 0.831817i \(-0.687301\pi\)
−0.555050 + 0.831817i \(0.687301\pi\)
\(654\) −280.493 −0.0167709
\(655\) 10848.1 0.647130
\(656\) 4977.22 0.296231
\(657\) 14407.8 0.855560
\(658\) 237.779 0.0140875
\(659\) −24408.5 −1.44282 −0.721411 0.692507i \(-0.756506\pi\)
−0.721411 + 0.692507i \(0.756506\pi\)
\(660\) 40214.7 2.37175
\(661\) −20341.7 −1.19697 −0.598487 0.801133i \(-0.704231\pi\)
−0.598487 + 0.801133i \(0.704231\pi\)
\(662\) 211.640 0.0124254
\(663\) 1179.34 0.0690826
\(664\) 332.667 0.0194428
\(665\) 31833.1 1.85629
\(666\) 83.6249 0.00486546
\(667\) 0 0
\(668\) 30167.0 1.74730
\(669\) 20277.0 1.17183
\(670\) −225.379 −0.0129957
\(671\) −13139.2 −0.755937
\(672\) −559.192 −0.0321001
\(673\) 12282.3 0.703490 0.351745 0.936096i \(-0.385588\pi\)
0.351745 + 0.936096i \(0.385588\pi\)
\(674\) −27.1390 −0.00155097
\(675\) −6054.92 −0.345265
\(676\) 14890.6 0.847210
\(677\) −21868.0 −1.24144 −0.620721 0.784031i \(-0.713160\pi\)
−0.620721 + 0.784031i \(0.713160\pi\)
\(678\) −59.1596 −0.00335105
\(679\) 998.893 0.0564565
\(680\) 73.2475 0.00413076
\(681\) 14254.9 0.802125
\(682\) 260.181 0.0146083
\(683\) −22877.0 −1.28165 −0.640823 0.767688i \(-0.721407\pi\)
−0.640823 + 0.767688i \(0.721407\pi\)
\(684\) 18348.5 1.02569
\(685\) −2984.65 −0.166478
\(686\) 222.131 0.0123630
\(687\) 28244.2 1.56853
\(688\) −20173.5 −1.11789
\(689\) 1350.42 0.0746689
\(690\) 0 0
\(691\) 24499.1 1.34875 0.674376 0.738388i \(-0.264413\pi\)
0.674376 + 0.738388i \(0.264413\pi\)
\(692\) −1039.39 −0.0570977
\(693\) 11074.5 0.607051
\(694\) −229.927 −0.0125762
\(695\) −28184.6 −1.53828
\(696\) 609.324 0.0331844
\(697\) −780.120 −0.0423948
\(698\) 86.6080 0.00469650
\(699\) 13568.0 0.734178
\(700\) −8280.31 −0.447095
\(701\) 25020.5 1.34809 0.674044 0.738691i \(-0.264556\pi\)
0.674044 + 0.738691i \(0.264556\pi\)
\(702\) −48.5943 −0.00261264
\(703\) 29226.4 1.56799
\(704\) −28400.8 −1.52045
\(705\) 47472.0 2.53603
\(706\) 260.068 0.0138637
\(707\) −13208.0 −0.702597
\(708\) 6826.25 0.362353
\(709\) 15069.4 0.798225 0.399112 0.916902i \(-0.369318\pi\)
0.399112 + 0.916902i \(0.369318\pi\)
\(710\) −368.031 −0.0194535
\(711\) 8534.17 0.450150
\(712\) −457.579 −0.0240850
\(713\) 0 0
\(714\) 29.2092 0.00153099
\(715\) 14338.6 0.749976
\(716\) −6480.61 −0.338256
\(717\) −9945.19 −0.518006
\(718\) 156.333 0.00812575
\(719\) −23894.6 −1.23938 −0.619692 0.784845i \(-0.712743\pi\)
−0.619692 + 0.784845i \(0.712743\pi\)
\(720\) −12845.9 −0.664912
\(721\) 7798.83 0.402835
\(722\) −618.251 −0.0318683
\(723\) 16162.9 0.831403
\(724\) 19440.1 0.997908
\(725\) 13534.3 0.693311
\(726\) −364.004 −0.0186081
\(727\) −32641.3 −1.66520 −0.832598 0.553877i \(-0.813148\pi\)
−0.832598 + 0.553877i \(0.813148\pi\)
\(728\) −132.917 −0.00676682
\(729\) 1242.61 0.0631312
\(730\) 462.020 0.0234249
\(731\) 3161.96 0.159985
\(732\) 12157.6 0.613879
\(733\) 628.010 0.0316454 0.0158227 0.999875i \(-0.494963\pi\)
0.0158227 + 0.999875i \(0.494963\pi\)
\(734\) 2.90926 0.000146298 0
\(735\) 13284.9 0.666697
\(736\) 0 0
\(737\) −27403.0 −1.36961
\(738\) −35.8633 −0.00178881
\(739\) −20111.4 −1.00109 −0.500547 0.865709i \(-0.666868\pi\)
−0.500547 + 0.865709i \(0.666868\pi\)
\(740\) −20464.2 −1.01659
\(741\) 18948.1 0.939376
\(742\) 33.4464 0.00165479
\(743\) −19508.4 −0.963251 −0.481625 0.876377i \(-0.659953\pi\)
−0.481625 + 0.876377i \(0.659953\pi\)
\(744\) −481.519 −0.0237276
\(745\) 7050.85 0.346743
\(746\) 168.229 0.00825643
\(747\) 9144.40 0.447893
\(748\) 4452.66 0.217654
\(749\) −9071.77 −0.442557
\(750\) −149.875 −0.00729689
\(751\) −5494.75 −0.266986 −0.133493 0.991050i \(-0.542619\pi\)
−0.133493 + 0.991050i \(0.542619\pi\)
\(752\) −33534.9 −1.62619
\(753\) −2480.77 −0.120059
\(754\) 108.620 0.00524632
\(755\) −7074.60 −0.341021
\(756\) 9184.65 0.441855
\(757\) 3411.29 0.163785 0.0818926 0.996641i \(-0.473904\pi\)
0.0818926 + 0.996641i \(0.473904\pi\)
\(758\) 158.658 0.00760253
\(759\) 0 0
\(760\) 1176.85 0.0561695
\(761\) −15927.5 −0.758700 −0.379350 0.925253i \(-0.623852\pi\)
−0.379350 + 0.925253i \(0.623852\pi\)
\(762\) 156.668 0.00744816
\(763\) 18902.6 0.896882
\(764\) 19700.4 0.932899
\(765\) 2013.44 0.0951581
\(766\) 322.906 0.0152311
\(767\) 2433.91 0.114581
\(768\) 26268.8 1.23424
\(769\) −20621.3 −0.967000 −0.483500 0.875344i \(-0.660635\pi\)
−0.483500 + 0.875344i \(0.660635\pi\)
\(770\) 355.130 0.0166208
\(771\) 24509.1 1.14484
\(772\) −32169.1 −1.49973
\(773\) −18163.8 −0.845156 −0.422578 0.906326i \(-0.638875\pi\)
−0.422578 + 0.906326i \(0.638875\pi\)
\(774\) 145.360 0.00675045
\(775\) −10695.5 −0.495733
\(776\) 36.9284 0.00170832
\(777\) −16322.2 −0.753613
\(778\) −203.253 −0.00936628
\(779\) −12534.0 −0.576479
\(780\) −13267.4 −0.609039
\(781\) −44747.6 −2.05019
\(782\) 0 0
\(783\) −15012.4 −0.685186
\(784\) −9384.69 −0.427510
\(785\) 23782.1 1.08130
\(786\) 159.927 0.00725752
\(787\) 30750.8 1.39282 0.696408 0.717646i \(-0.254780\pi\)
0.696408 + 0.717646i \(0.254780\pi\)
\(788\) −14490.9 −0.655096
\(789\) −28962.6 −1.30684
\(790\) 273.668 0.0123249
\(791\) 3986.80 0.179209
\(792\) 409.418 0.0183687
\(793\) 4334.82 0.194116
\(794\) 366.164 0.0163661
\(795\) 6677.49 0.297894
\(796\) 5790.63 0.257843
\(797\) 32871.8 1.46095 0.730475 0.682939i \(-0.239299\pi\)
0.730475 + 0.682939i \(0.239299\pi\)
\(798\) 469.297 0.0208182
\(799\) 5256.21 0.232730
\(800\) −459.187 −0.0202934
\(801\) −12578.0 −0.554834
\(802\) −463.181 −0.0203934
\(803\) 56175.5 2.46873
\(804\) 25355.9 1.11223
\(805\) 0 0
\(806\) −85.8375 −0.00375124
\(807\) −3536.62 −0.154269
\(808\) −488.290 −0.0212599
\(809\) −2591.22 −0.112611 −0.0563055 0.998414i \(-0.517932\pi\)
−0.0563055 + 0.998414i \(0.517932\pi\)
\(810\) −415.810 −0.0180371
\(811\) 37339.5 1.61673 0.808364 0.588683i \(-0.200353\pi\)
0.808364 + 0.588683i \(0.200353\pi\)
\(812\) −20530.0 −0.887269
\(813\) −5765.87 −0.248730
\(814\) 326.050 0.0140393
\(815\) −44896.2 −1.92963
\(816\) −4119.49 −0.176729
\(817\) 50802.4 2.17546
\(818\) −141.266 −0.00603819
\(819\) −3653.65 −0.155884
\(820\) 8776.26 0.373756
\(821\) 20494.9 0.871226 0.435613 0.900134i \(-0.356532\pi\)
0.435613 + 0.900134i \(0.356532\pi\)
\(822\) −44.0009 −0.00186704
\(823\) −13568.2 −0.574675 −0.287338 0.957829i \(-0.592770\pi\)
−0.287338 + 0.957829i \(0.592770\pi\)
\(824\) 288.318 0.0121894
\(825\) 26339.0 1.11152
\(826\) 60.2816 0.00253930
\(827\) 39430.4 1.65796 0.828978 0.559281i \(-0.188923\pi\)
0.828978 + 0.559281i \(0.188923\pi\)
\(828\) 0 0
\(829\) 14439.0 0.604931 0.302465 0.953160i \(-0.402190\pi\)
0.302465 + 0.953160i \(0.402190\pi\)
\(830\) 293.236 0.0122631
\(831\) 14697.2 0.613525
\(832\) 9369.86 0.390434
\(833\) 1470.94 0.0611825
\(834\) −415.510 −0.0172517
\(835\) 53186.1 2.20429
\(836\) 71539.8 2.95964
\(837\) 11863.6 0.489924
\(838\) 398.378 0.0164221
\(839\) −33140.6 −1.36369 −0.681847 0.731495i \(-0.738823\pi\)
−0.681847 + 0.731495i \(0.738823\pi\)
\(840\) −657.243 −0.0269965
\(841\) 9167.56 0.375889
\(842\) −270.435 −0.0110687
\(843\) 16614.7 0.678816
\(844\) 4670.45 0.190478
\(845\) 26252.9 1.06879
\(846\) 241.636 0.00981986
\(847\) 24530.4 0.995131
\(848\) −4717.08 −0.191020
\(849\) −9558.55 −0.386394
\(850\) 23.9855 0.000967877 0
\(851\) 0 0
\(852\) 41404.7 1.66491
\(853\) 27379.7 1.09902 0.549510 0.835487i \(-0.314815\pi\)
0.549510 + 0.835487i \(0.314815\pi\)
\(854\) 107.362 0.00430195
\(855\) 32349.4 1.29395
\(856\) −335.378 −0.0133913
\(857\) 20497.8 0.817025 0.408513 0.912753i \(-0.366048\pi\)
0.408513 + 0.912753i \(0.366048\pi\)
\(858\) 211.385 0.00841093
\(859\) −26376.7 −1.04768 −0.523842 0.851816i \(-0.675502\pi\)
−0.523842 + 0.851816i \(0.675502\pi\)
\(860\) −35571.6 −1.41045
\(861\) 6999.94 0.277070
\(862\) −516.712 −0.0204168
\(863\) −32543.2 −1.28364 −0.641821 0.766854i \(-0.721821\pi\)
−0.641821 + 0.766854i \(0.721821\pi\)
\(864\) 509.337 0.0200556
\(865\) −1832.50 −0.0720311
\(866\) 187.118 0.00734241
\(867\) −30904.1 −1.21056
\(868\) 16223.9 0.634418
\(869\) 33274.3 1.29891
\(870\) 537.101 0.0209304
\(871\) 9040.67 0.351701
\(872\) 698.818 0.0271387
\(873\) 1015.09 0.0393536
\(874\) 0 0
\(875\) 10100.2 0.390227
\(876\) −51978.9 −2.00480
\(877\) 6671.86 0.256890 0.128445 0.991717i \(-0.459001\pi\)
0.128445 + 0.991717i \(0.459001\pi\)
\(878\) −25.7544 −0.000989942 0
\(879\) 18117.2 0.695196
\(880\) −50085.4 −1.91861
\(881\) 25432.9 0.972595 0.486298 0.873793i \(-0.338347\pi\)
0.486298 + 0.873793i \(0.338347\pi\)
\(882\) 67.6213 0.00258155
\(883\) 16292.4 0.620933 0.310467 0.950584i \(-0.399515\pi\)
0.310467 + 0.950584i \(0.399515\pi\)
\(884\) −1469.00 −0.0558912
\(885\) 12035.1 0.457123
\(886\) −238.214 −0.00903267
\(887\) 8139.80 0.308126 0.154063 0.988061i \(-0.450764\pi\)
0.154063 + 0.988061i \(0.450764\pi\)
\(888\) −603.423 −0.0228036
\(889\) −10558.0 −0.398317
\(890\) −403.343 −0.0151911
\(891\) −50556.9 −1.90092
\(892\) −25257.3 −0.948067
\(893\) 84450.2 3.16463
\(894\) 103.947 0.00388870
\(895\) −11425.7 −0.426724
\(896\) 928.695 0.0346267
\(897\) 0 0
\(898\) 216.021 0.00802753
\(899\) −26518.1 −0.983793
\(900\) −8414.61 −0.311652
\(901\) 739.347 0.0273376
\(902\) −139.829 −0.00516164
\(903\) −28371.9 −1.04558
\(904\) 147.390 0.00542268
\(905\) 34274.0 1.25890
\(906\) −104.297 −0.00382453
\(907\) −16087.6 −0.588954 −0.294477 0.955659i \(-0.595145\pi\)
−0.294477 + 0.955659i \(0.595145\pi\)
\(908\) −17756.0 −0.648959
\(909\) −13422.2 −0.489753
\(910\) −117.163 −0.00426803
\(911\) 36379.0 1.32304 0.661521 0.749927i \(-0.269911\pi\)
0.661521 + 0.749927i \(0.269911\pi\)
\(912\) −66186.8 −2.40314
\(913\) 35653.6 1.29240
\(914\) −204.767 −0.00741037
\(915\) 21434.6 0.774433
\(916\) −35181.3 −1.26902
\(917\) −10777.6 −0.388121
\(918\) −26.6051 −0.000956534 0
\(919\) 10077.9 0.361739 0.180869 0.983507i \(-0.442109\pi\)
0.180869 + 0.983507i \(0.442109\pi\)
\(920\) 0 0
\(921\) −26237.2 −0.938704
\(922\) 20.7708 0.000741919 0
\(923\) 14762.9 0.526465
\(924\) −39953.3 −1.42248
\(925\) −13403.2 −0.476427
\(926\) −23.1275 −0.000820753 0
\(927\) 7925.32 0.280800
\(928\) −1138.50 −0.0402726
\(929\) −7768.50 −0.274355 −0.137178 0.990546i \(-0.543803\pi\)
−0.137178 + 0.990546i \(0.543803\pi\)
\(930\) −424.445 −0.0149657
\(931\) 23633.2 0.831952
\(932\) −16900.5 −0.593987
\(933\) 25974.8 0.911442
\(934\) 127.484 0.00446615
\(935\) 7850.30 0.274580
\(936\) −135.073 −0.00471688
\(937\) 1611.36 0.0561804 0.0280902 0.999605i \(-0.491057\pi\)
0.0280902 + 0.999605i \(0.491057\pi\)
\(938\) 223.914 0.00779430
\(939\) −32824.8 −1.14078
\(940\) −59131.7 −2.05177
\(941\) 1974.16 0.0683909 0.0341954 0.999415i \(-0.489113\pi\)
0.0341954 + 0.999415i \(0.489113\pi\)
\(942\) 350.605 0.0121267
\(943\) 0 0
\(944\) −8501.76 −0.293124
\(945\) 16193.1 0.557418
\(946\) 566.751 0.0194785
\(947\) 57242.2 1.96422 0.982112 0.188297i \(-0.0602969\pi\)
0.982112 + 0.188297i \(0.0602969\pi\)
\(948\) −30788.6 −1.05482
\(949\) −18533.1 −0.633942
\(950\) 385.369 0.0131611
\(951\) −45067.1 −1.53670
\(952\) −72.7715 −0.00247746
\(953\) 14723.4 0.500458 0.250229 0.968187i \(-0.419494\pi\)
0.250229 + 0.968187i \(0.419494\pi\)
\(954\) 33.9889 0.00115349
\(955\) 34732.9 1.17689
\(956\) 12387.9 0.419092
\(957\) 65304.2 2.20584
\(958\) −72.9128 −0.00245898
\(959\) 2965.25 0.0998467
\(960\) 46331.6 1.55765
\(961\) −8834.99 −0.296566
\(962\) −107.569 −0.00360515
\(963\) −9218.90 −0.308489
\(964\) −20132.7 −0.672646
\(965\) −56715.9 −1.89197
\(966\) 0 0
\(967\) −46140.9 −1.53443 −0.767214 0.641391i \(-0.778358\pi\)
−0.767214 + 0.641391i \(0.778358\pi\)
\(968\) 906.875 0.0301117
\(969\) 10374.0 0.343922
\(970\) 32.5513 0.00107748
\(971\) −15349.8 −0.507310 −0.253655 0.967295i \(-0.581633\pi\)
−0.253655 + 0.967295i \(0.581633\pi\)
\(972\) 29080.6 0.959631
\(973\) 28001.5 0.922596
\(974\) −382.737 −0.0125910
\(975\) −8689.62 −0.285426
\(976\) −15141.7 −0.496594
\(977\) 1517.18 0.0496815 0.0248407 0.999691i \(-0.492092\pi\)
0.0248407 + 0.999691i \(0.492092\pi\)
\(978\) −661.879 −0.0216406
\(979\) −49041.0 −1.60098
\(980\) −16547.9 −0.539391
\(981\) 19209.2 0.625181
\(982\) −653.926 −0.0212501
\(983\) −22648.4 −0.734866 −0.367433 0.930050i \(-0.619763\pi\)
−0.367433 + 0.930050i \(0.619763\pi\)
\(984\) 258.783 0.00838386
\(985\) −25548.2 −0.826430
\(986\) 59.4691 0.00192077
\(987\) −47163.4 −1.52100
\(988\) −23602.1 −0.760002
\(989\) 0 0
\(990\) 360.890 0.0115857
\(991\) 12346.4 0.395760 0.197880 0.980226i \(-0.436594\pi\)
0.197880 + 0.980226i \(0.436594\pi\)
\(992\) 899.700 0.0287959
\(993\) −41978.8 −1.34155
\(994\) 365.639 0.0116674
\(995\) 10209.2 0.325280
\(996\) −32990.1 −1.04953
\(997\) −43566.0 −1.38390 −0.691950 0.721945i \(-0.743248\pi\)
−0.691950 + 0.721945i \(0.743248\pi\)
\(998\) 20.5159 0.000650721 0
\(999\) 14867.1 0.470844
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 529.4.a.g.1.2 4
23.22 odd 2 23.4.a.b.1.2 4
69.68 even 2 207.4.a.e.1.3 4
92.91 even 2 368.4.a.l.1.1 4
115.22 even 4 575.4.b.g.24.4 8
115.68 even 4 575.4.b.g.24.5 8
115.114 odd 2 575.4.a.i.1.3 4
161.160 even 2 1127.4.a.c.1.2 4
184.45 odd 2 1472.4.a.y.1.1 4
184.91 even 2 1472.4.a.bf.1.4 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
23.4.a.b.1.2 4 23.22 odd 2
207.4.a.e.1.3 4 69.68 even 2
368.4.a.l.1.1 4 92.91 even 2
529.4.a.g.1.2 4 1.1 even 1 trivial
575.4.a.i.1.3 4 115.114 odd 2
575.4.b.g.24.4 8 115.22 even 4
575.4.b.g.24.5 8 115.68 even 4
1127.4.a.c.1.2 4 161.160 even 2
1472.4.a.y.1.1 4 184.45 odd 2
1472.4.a.bf.1.4 4 184.91 even 2