Properties

Label 529.4.a.g.1.1
Level $529$
Weight $4$
Character 529.1
Self dual yes
Analytic conductor $31.212$
Analytic rank $1$
Dimension $4$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [529,4,Mod(1,529)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(529, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0])) N = Newforms(chi, 4, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("529.1"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Level: \( N \) \(=\) \( 529 = 23^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 529.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,2,7,20,-14] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(31.2120103930\)
Analytic rank: \(1\)
Dimension: \(4\)
Coefficient field: 4.4.334189.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 2x^{3} - 16x^{2} - 5x + 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 23)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(-0.743529\) of defining polynomial
Character \(\chi\) \(=\) 529.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-5.07751 q^{2} +1.55870 q^{3} +17.7811 q^{4} -10.0635 q^{5} -7.91434 q^{6} -24.3381 q^{7} -49.6639 q^{8} -24.5704 q^{9} +51.0976 q^{10} -1.55839 q^{11} +27.7156 q^{12} +85.6294 q^{13} +123.577 q^{14} -15.6860 q^{15} +109.920 q^{16} +35.1015 q^{17} +124.757 q^{18} +124.400 q^{19} -178.941 q^{20} -37.9359 q^{21} +7.91274 q^{22} -77.4114 q^{24} -23.7259 q^{25} -434.784 q^{26} -80.3831 q^{27} -432.759 q^{28} +130.943 q^{29} +79.6460 q^{30} -82.0830 q^{31} -160.809 q^{32} -2.42907 q^{33} -178.228 q^{34} +244.926 q^{35} -436.891 q^{36} +107.402 q^{37} -631.641 q^{38} +133.471 q^{39} +499.793 q^{40} +35.6655 q^{41} +192.620 q^{42} +227.986 q^{43} -27.7100 q^{44} +247.265 q^{45} -268.071 q^{47} +171.333 q^{48} +249.342 q^{49} +120.469 q^{50} +54.7128 q^{51} +1522.59 q^{52} -567.034 q^{53} +408.146 q^{54} +15.6829 q^{55} +1208.72 q^{56} +193.902 q^{57} -664.866 q^{58} -422.803 q^{59} -278.916 q^{60} +57.0580 q^{61} +416.778 q^{62} +597.997 q^{63} -62.8490 q^{64} -861.732 q^{65} +12.3336 q^{66} +517.544 q^{67} +624.145 q^{68} -1243.62 q^{70} -418.494 q^{71} +1220.26 q^{72} +586.385 q^{73} -545.333 q^{74} -36.9817 q^{75} +2211.97 q^{76} +37.9282 q^{77} -677.700 q^{78} -595.986 q^{79} -1106.18 q^{80} +538.108 q^{81} -181.092 q^{82} -346.074 q^{83} -674.543 q^{84} -353.244 q^{85} -1157.60 q^{86} +204.102 q^{87} +77.3957 q^{88} +322.588 q^{89} -1255.49 q^{90} -2084.05 q^{91} -127.943 q^{93} +1361.13 q^{94} -1251.90 q^{95} -250.654 q^{96} +1102.27 q^{97} -1266.04 q^{98} +38.2903 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 2 q^{2} + 7 q^{3} + 20 q^{4} - 14 q^{5} - 17 q^{6} - 16 q^{7} - 63 q^{8} - 33 q^{9} + 70 q^{10} - 8 q^{11} - 67 q^{12} + 111 q^{13} + 144 q^{14} - 10 q^{15} + 64 q^{16} - 98 q^{17} + 49 q^{18} - 96 q^{19}+ \cdots + 1498 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −5.07751 −1.79517 −0.897586 0.440839i \(-0.854681\pi\)
−0.897586 + 0.440839i \(0.854681\pi\)
\(3\) 1.55870 0.299973 0.149986 0.988688i \(-0.452077\pi\)
0.149986 + 0.988688i \(0.452077\pi\)
\(4\) 17.7811 2.22264
\(5\) −10.0635 −0.900107 −0.450054 0.893002i \(-0.648595\pi\)
−0.450054 + 0.893002i \(0.648595\pi\)
\(6\) −7.91434 −0.538503
\(7\) −24.3381 −1.31413 −0.657066 0.753833i \(-0.728203\pi\)
−0.657066 + 0.753833i \(0.728203\pi\)
\(8\) −49.6639 −2.19486
\(9\) −24.5704 −0.910016
\(10\) 51.0976 1.61585
\(11\) −1.55839 −0.0427156 −0.0213578 0.999772i \(-0.506799\pi\)
−0.0213578 + 0.999772i \(0.506799\pi\)
\(12\) 27.7156 0.666733
\(13\) 85.6294 1.82687 0.913435 0.406984i \(-0.133419\pi\)
0.913435 + 0.406984i \(0.133419\pi\)
\(14\) 123.577 2.35909
\(15\) −15.6860 −0.270008
\(16\) 109.920 1.71750
\(17\) 35.1015 0.500786 0.250393 0.968144i \(-0.419440\pi\)
0.250393 + 0.968144i \(0.419440\pi\)
\(18\) 124.757 1.63364
\(19\) 124.400 1.50207 0.751033 0.660265i \(-0.229556\pi\)
0.751033 + 0.660265i \(0.229556\pi\)
\(20\) −178.941 −2.00062
\(21\) −37.9359 −0.394204
\(22\) 7.91274 0.0766819
\(23\) 0 0
\(24\) −77.4114 −0.658397
\(25\) −23.7259 −0.189807
\(26\) −434.784 −3.27955
\(27\) −80.3831 −0.572953
\(28\) −432.759 −2.92085
\(29\) 130.943 0.838467 0.419234 0.907878i \(-0.362299\pi\)
0.419234 + 0.907878i \(0.362299\pi\)
\(30\) 79.6460 0.484710
\(31\) −82.0830 −0.475566 −0.237783 0.971318i \(-0.576421\pi\)
−0.237783 + 0.971318i \(0.576421\pi\)
\(32\) −160.809 −0.888354
\(33\) −2.42907 −0.0128135
\(34\) −178.228 −0.898997
\(35\) 244.926 1.18286
\(36\) −436.891 −2.02264
\(37\) 107.402 0.477209 0.238604 0.971117i \(-0.423310\pi\)
0.238604 + 0.971117i \(0.423310\pi\)
\(38\) −631.641 −2.69647
\(39\) 133.471 0.548012
\(40\) 499.793 1.97561
\(41\) 35.6655 0.135854 0.0679270 0.997690i \(-0.478361\pi\)
0.0679270 + 0.997690i \(0.478361\pi\)
\(42\) 192.620 0.707664
\(43\) 227.986 0.808548 0.404274 0.914638i \(-0.367524\pi\)
0.404274 + 0.914638i \(0.367524\pi\)
\(44\) −27.7100 −0.0949417
\(45\) 247.265 0.819112
\(46\) 0 0
\(47\) −268.071 −0.831961 −0.415980 0.909374i \(-0.636562\pi\)
−0.415980 + 0.909374i \(0.636562\pi\)
\(48\) 171.333 0.515204
\(49\) 249.342 0.726945
\(50\) 120.469 0.340737
\(51\) 54.7128 0.150222
\(52\) 1522.59 4.06048
\(53\) −567.034 −1.46959 −0.734794 0.678291i \(-0.762721\pi\)
−0.734794 + 0.678291i \(0.762721\pi\)
\(54\) 408.146 1.02855
\(55\) 15.6829 0.0384487
\(56\) 1208.72 2.88433
\(57\) 193.902 0.450579
\(58\) −664.866 −1.50519
\(59\) −422.803 −0.932955 −0.466477 0.884533i \(-0.654477\pi\)
−0.466477 + 0.884533i \(0.654477\pi\)
\(60\) −278.916 −0.600131
\(61\) 57.0580 0.119763 0.0598814 0.998206i \(-0.480928\pi\)
0.0598814 + 0.998206i \(0.480928\pi\)
\(62\) 416.778 0.853723
\(63\) 597.997 1.19588
\(64\) −62.8490 −0.122752
\(65\) −861.732 −1.64438
\(66\) 12.3336 0.0230025
\(67\) 517.544 0.943702 0.471851 0.881678i \(-0.343586\pi\)
0.471851 + 0.881678i \(0.343586\pi\)
\(68\) 624.145 1.11307
\(69\) 0 0
\(70\) −1243.62 −2.12344
\(71\) −418.494 −0.699523 −0.349761 0.936839i \(-0.613737\pi\)
−0.349761 + 0.936839i \(0.613737\pi\)
\(72\) 1220.26 1.99735
\(73\) 586.385 0.940154 0.470077 0.882625i \(-0.344226\pi\)
0.470077 + 0.882625i \(0.344226\pi\)
\(74\) −545.333 −0.856672
\(75\) −36.9817 −0.0569370
\(76\) 2211.97 3.33856
\(77\) 37.9282 0.0561340
\(78\) −677.700 −0.983775
\(79\) −595.986 −0.848781 −0.424390 0.905479i \(-0.639512\pi\)
−0.424390 + 0.905479i \(0.639512\pi\)
\(80\) −1106.18 −1.54593
\(81\) 538.108 0.738146
\(82\) −181.092 −0.243881
\(83\) −346.074 −0.457669 −0.228835 0.973465i \(-0.573492\pi\)
−0.228835 + 0.973465i \(0.573492\pi\)
\(84\) −674.543 −0.876175
\(85\) −353.244 −0.450761
\(86\) −1157.60 −1.45148
\(87\) 204.102 0.251517
\(88\) 77.3957 0.0937547
\(89\) 322.588 0.384206 0.192103 0.981375i \(-0.438469\pi\)
0.192103 + 0.981375i \(0.438469\pi\)
\(90\) −1255.49 −1.47045
\(91\) −2084.05 −2.40075
\(92\) 0 0
\(93\) −127.943 −0.142657
\(94\) 1361.13 1.49351
\(95\) −1251.90 −1.35202
\(96\) −250.654 −0.266482
\(97\) 1102.27 1.15380 0.576900 0.816815i \(-0.304262\pi\)
0.576900 + 0.816815i \(0.304262\pi\)
\(98\) −1266.04 −1.30499
\(99\) 38.2903 0.0388719
\(100\) −421.874 −0.421874
\(101\) −281.413 −0.277244 −0.138622 0.990345i \(-0.544267\pi\)
−0.138622 + 0.990345i \(0.544267\pi\)
\(102\) −277.805 −0.269675
\(103\) −606.665 −0.580354 −0.290177 0.956973i \(-0.593714\pi\)
−0.290177 + 0.956973i \(0.593714\pi\)
\(104\) −4252.69 −4.00972
\(105\) 381.768 0.354826
\(106\) 2879.12 2.63816
\(107\) −758.318 −0.685135 −0.342567 0.939493i \(-0.611296\pi\)
−0.342567 + 0.939493i \(0.611296\pi\)
\(108\) −1429.30 −1.27347
\(109\) −1730.34 −1.52052 −0.760261 0.649618i \(-0.774929\pi\)
−0.760261 + 0.649618i \(0.774929\pi\)
\(110\) −79.6299 −0.0690220
\(111\) 167.407 0.143150
\(112\) −2675.24 −2.25702
\(113\) −1712.46 −1.42561 −0.712807 0.701361i \(-0.752576\pi\)
−0.712807 + 0.701361i \(0.752576\pi\)
\(114\) −984.542 −0.808866
\(115\) 0 0
\(116\) 2328.32 1.86361
\(117\) −2103.95 −1.66248
\(118\) 2146.79 1.67481
\(119\) −854.303 −0.658099
\(120\) 779.029 0.592628
\(121\) −1328.57 −0.998175
\(122\) −289.713 −0.214995
\(123\) 55.5920 0.0407525
\(124\) −1459.53 −1.05701
\(125\) 1496.70 1.07095
\(126\) −3036.34 −2.14681
\(127\) 1008.43 0.704594 0.352297 0.935888i \(-0.385401\pi\)
0.352297 + 0.935888i \(0.385401\pi\)
\(128\) 1605.59 1.10872
\(129\) 355.363 0.242542
\(130\) 4375.45 2.95194
\(131\) −338.615 −0.225839 −0.112920 0.993604i \(-0.536020\pi\)
−0.112920 + 0.993604i \(0.536020\pi\)
\(132\) −43.1916 −0.0284799
\(133\) −3027.65 −1.97391
\(134\) −2627.84 −1.69411
\(135\) 808.935 0.515719
\(136\) −1743.28 −1.09915
\(137\) −341.454 −0.212937 −0.106469 0.994316i \(-0.533954\pi\)
−0.106469 + 0.994316i \(0.533954\pi\)
\(138\) 0 0
\(139\) −510.426 −0.311466 −0.155733 0.987799i \(-0.549774\pi\)
−0.155733 + 0.987799i \(0.549774\pi\)
\(140\) 4355.07 2.62908
\(141\) −417.843 −0.249566
\(142\) 2124.91 1.25576
\(143\) −133.444 −0.0780360
\(144\) −2700.78 −1.56295
\(145\) −1317.75 −0.754710
\(146\) −2977.38 −1.68774
\(147\) 388.651 0.218064
\(148\) 1909.72 1.06066
\(149\) 1989.54 1.09389 0.546944 0.837169i \(-0.315791\pi\)
0.546944 + 0.837169i \(0.315791\pi\)
\(150\) 187.775 0.102212
\(151\) 607.109 0.327191 0.163596 0.986527i \(-0.447691\pi\)
0.163596 + 0.986527i \(0.447691\pi\)
\(152\) −6178.18 −3.29682
\(153\) −862.459 −0.455723
\(154\) −192.581 −0.100770
\(155\) 826.043 0.428060
\(156\) 2373.27 1.21803
\(157\) −1119.43 −0.569045 −0.284523 0.958669i \(-0.591835\pi\)
−0.284523 + 0.958669i \(0.591835\pi\)
\(158\) 3026.13 1.52371
\(159\) −883.839 −0.440836
\(160\) 1618.30 0.799614
\(161\) 0 0
\(162\) −2732.25 −1.32510
\(163\) −2794.13 −1.34266 −0.671328 0.741160i \(-0.734276\pi\)
−0.671328 + 0.741160i \(0.734276\pi\)
\(164\) 634.174 0.301955
\(165\) 24.4449 0.0115335
\(166\) 1757.20 0.821595
\(167\) 2676.11 1.24002 0.620010 0.784594i \(-0.287129\pi\)
0.620010 + 0.784594i \(0.287129\pi\)
\(168\) 1884.04 0.865221
\(169\) 5135.39 2.33746
\(170\) 1793.60 0.809193
\(171\) −3056.55 −1.36690
\(172\) 4053.86 1.79711
\(173\) −60.7346 −0.0266911 −0.0133456 0.999911i \(-0.504248\pi\)
−0.0133456 + 0.999911i \(0.504248\pi\)
\(174\) −1036.33 −0.451517
\(175\) 577.443 0.249432
\(176\) −171.298 −0.0733642
\(177\) −659.026 −0.279861
\(178\) −1637.95 −0.689716
\(179\) −862.735 −0.360245 −0.180123 0.983644i \(-0.557649\pi\)
−0.180123 + 0.983644i \(0.557649\pi\)
\(180\) 4396.65 1.82059
\(181\) −766.840 −0.314910 −0.157455 0.987526i \(-0.550329\pi\)
−0.157455 + 0.987526i \(0.550329\pi\)
\(182\) 10581.8 4.30976
\(183\) 88.9365 0.0359256
\(184\) 0 0
\(185\) −1080.84 −0.429539
\(186\) 649.633 0.256094
\(187\) −54.7018 −0.0213914
\(188\) −4766.61 −1.84915
\(189\) 1956.37 0.752936
\(190\) 6356.52 2.42711
\(191\) −3786.27 −1.43437 −0.717186 0.696882i \(-0.754570\pi\)
−0.717186 + 0.696882i \(0.754570\pi\)
\(192\) −97.9630 −0.0368222
\(193\) 2713.36 1.01198 0.505990 0.862539i \(-0.331127\pi\)
0.505990 + 0.862539i \(0.331127\pi\)
\(194\) −5596.79 −2.07127
\(195\) −1343.18 −0.493269
\(196\) 4433.59 1.61574
\(197\) −5275.02 −1.90777 −0.953883 0.300180i \(-0.902953\pi\)
−0.953883 + 0.300180i \(0.902953\pi\)
\(198\) −194.420 −0.0697818
\(199\) −2689.93 −0.958212 −0.479106 0.877757i \(-0.659039\pi\)
−0.479106 + 0.877757i \(0.659039\pi\)
\(200\) 1178.32 0.416600
\(201\) 806.697 0.283085
\(202\) 1428.88 0.497701
\(203\) −3186.91 −1.10186
\(204\) 972.857 0.333890
\(205\) −358.920 −0.122283
\(206\) 3080.35 1.04184
\(207\) 0 0
\(208\) 9412.39 3.13765
\(209\) −193.863 −0.0641617
\(210\) −1938.43 −0.636974
\(211\) −2900.32 −0.946285 −0.473143 0.880986i \(-0.656880\pi\)
−0.473143 + 0.880986i \(0.656880\pi\)
\(212\) −10082.5 −3.26637
\(213\) −652.309 −0.209838
\(214\) 3850.37 1.22993
\(215\) −2294.34 −0.727780
\(216\) 3992.14 1.25755
\(217\) 1997.74 0.624957
\(218\) 8785.84 2.72960
\(219\) 914.002 0.282021
\(220\) 278.859 0.0854576
\(221\) 3005.72 0.914871
\(222\) −850.013 −0.256978
\(223\) 6307.92 1.89421 0.947106 0.320920i \(-0.103992\pi\)
0.947106 + 0.320920i \(0.103992\pi\)
\(224\) 3913.79 1.16742
\(225\) 582.956 0.172728
\(226\) 8695.02 2.55922
\(227\) 5454.59 1.59486 0.797431 0.603410i \(-0.206192\pi\)
0.797431 + 0.603410i \(0.206192\pi\)
\(228\) 3447.81 1.00148
\(229\) −1535.31 −0.443039 −0.221520 0.975156i \(-0.571102\pi\)
−0.221520 + 0.975156i \(0.571102\pi\)
\(230\) 0 0
\(231\) 59.1189 0.0168387
\(232\) −6503.15 −1.84031
\(233\) −2808.98 −0.789795 −0.394897 0.918725i \(-0.629220\pi\)
−0.394897 + 0.918725i \(0.629220\pi\)
\(234\) 10682.8 2.98444
\(235\) 2697.73 0.748854
\(236\) −7517.93 −2.07363
\(237\) −928.966 −0.254611
\(238\) 4337.73 1.18140
\(239\) −3051.86 −0.825978 −0.412989 0.910736i \(-0.635515\pi\)
−0.412989 + 0.910736i \(0.635515\pi\)
\(240\) −1724.21 −0.463738
\(241\) −994.590 −0.265839 −0.132919 0.991127i \(-0.542435\pi\)
−0.132919 + 0.991127i \(0.542435\pi\)
\(242\) 6745.84 1.79190
\(243\) 3009.09 0.794377
\(244\) 1014.56 0.266190
\(245\) −2509.25 −0.654328
\(246\) −282.269 −0.0731578
\(247\) 10652.3 2.74408
\(248\) 4076.56 1.04380
\(249\) −539.427 −0.137288
\(250\) −7599.53 −1.92255
\(251\) −6960.36 −1.75034 −0.875168 0.483820i \(-0.839249\pi\)
−0.875168 + 0.483820i \(0.839249\pi\)
\(252\) 10633.1 2.65802
\(253\) 0 0
\(254\) −5120.30 −1.26487
\(255\) −550.603 −0.135216
\(256\) −7649.62 −1.86758
\(257\) 528.738 0.128334 0.0641669 0.997939i \(-0.479561\pi\)
0.0641669 + 0.997939i \(0.479561\pi\)
\(258\) −1804.36 −0.435405
\(259\) −2613.95 −0.627116
\(260\) −15322.6 −3.65487
\(261\) −3217.33 −0.763019
\(262\) 1719.32 0.405420
\(263\) 620.103 0.145389 0.0726943 0.997354i \(-0.476840\pi\)
0.0726943 + 0.997354i \(0.476840\pi\)
\(264\) 120.637 0.0281239
\(265\) 5706.35 1.32279
\(266\) 15372.9 3.54351
\(267\) 502.820 0.115251
\(268\) 9202.52 2.09751
\(269\) −2448.16 −0.554895 −0.277448 0.960741i \(-0.589488\pi\)
−0.277448 + 0.960741i \(0.589488\pi\)
\(270\) −4107.38 −0.925804
\(271\) −904.980 −0.202855 −0.101427 0.994843i \(-0.532341\pi\)
−0.101427 + 0.994843i \(0.532341\pi\)
\(272\) 3858.36 0.860100
\(273\) −3248.43 −0.720160
\(274\) 1733.74 0.382259
\(275\) 36.9742 0.00810774
\(276\) 0 0
\(277\) 5045.12 1.09434 0.547169 0.837022i \(-0.315705\pi\)
0.547169 + 0.837022i \(0.315705\pi\)
\(278\) 2591.69 0.559135
\(279\) 2016.82 0.432773
\(280\) −12164.0 −2.59621
\(281\) −3192.77 −0.677811 −0.338905 0.940820i \(-0.610057\pi\)
−0.338905 + 0.940820i \(0.610057\pi\)
\(282\) 2121.60 0.448013
\(283\) −239.398 −0.0502853 −0.0251426 0.999684i \(-0.508004\pi\)
−0.0251426 + 0.999684i \(0.508004\pi\)
\(284\) −7441.31 −1.55479
\(285\) −1951.34 −0.405569
\(286\) 677.563 0.140088
\(287\) −868.030 −0.178530
\(288\) 3951.16 0.808417
\(289\) −3680.89 −0.749213
\(290\) 6690.88 1.35483
\(291\) 1718.11 0.346108
\(292\) 10426.6 2.08963
\(293\) −4584.70 −0.914134 −0.457067 0.889432i \(-0.651100\pi\)
−0.457067 + 0.889432i \(0.651100\pi\)
\(294\) −1973.38 −0.391462
\(295\) 4254.88 0.839759
\(296\) −5333.99 −1.04740
\(297\) 125.268 0.0244741
\(298\) −10101.9 −1.96372
\(299\) 0 0
\(300\) −657.577 −0.126551
\(301\) −5548.75 −1.06254
\(302\) −3082.61 −0.587365
\(303\) −438.640 −0.0831657
\(304\) 13674.0 2.57980
\(305\) −574.203 −0.107799
\(306\) 4379.15 0.818102
\(307\) 483.762 0.0899340 0.0449670 0.998988i \(-0.485682\pi\)
0.0449670 + 0.998988i \(0.485682\pi\)
\(308\) 674.407 0.124766
\(309\) −945.611 −0.174090
\(310\) −4194.24 −0.768442
\(311\) 1131.39 0.206286 0.103143 0.994667i \(-0.467110\pi\)
0.103143 + 0.994667i \(0.467110\pi\)
\(312\) −6628.69 −1.20281
\(313\) −8678.30 −1.56718 −0.783589 0.621280i \(-0.786613\pi\)
−0.783589 + 0.621280i \(0.786613\pi\)
\(314\) 5683.91 1.02153
\(315\) −6017.95 −1.07642
\(316\) −10597.3 −1.88654
\(317\) 5835.70 1.03396 0.516981 0.855997i \(-0.327056\pi\)
0.516981 + 0.855997i \(0.327056\pi\)
\(318\) 4487.70 0.791377
\(319\) −204.061 −0.0358157
\(320\) 632.481 0.110490
\(321\) −1181.99 −0.205522
\(322\) 0 0
\(323\) 4366.61 0.752213
\(324\) 9568.19 1.64064
\(325\) −2031.64 −0.346754
\(326\) 14187.2 2.41030
\(327\) −2697.09 −0.456115
\(328\) −1771.29 −0.298180
\(329\) 6524.33 1.09331
\(330\) −124.119 −0.0207047
\(331\) −4804.86 −0.797882 −0.398941 0.916977i \(-0.630622\pi\)
−0.398941 + 0.916977i \(0.630622\pi\)
\(332\) −6153.59 −1.01724
\(333\) −2638.91 −0.434268
\(334\) −13588.0 −2.22605
\(335\) −5208.30 −0.849433
\(336\) −4169.91 −0.677046
\(337\) −308.081 −0.0497989 −0.0248995 0.999690i \(-0.507927\pi\)
−0.0248995 + 0.999690i \(0.507927\pi\)
\(338\) −26075.0 −4.19614
\(339\) −2669.21 −0.427645
\(340\) −6281.08 −1.00188
\(341\) 127.917 0.0203141
\(342\) 15519.7 2.45383
\(343\) 2279.45 0.358831
\(344\) −11322.7 −1.77465
\(345\) 0 0
\(346\) 308.381 0.0479151
\(347\) 2133.10 0.330003 0.165001 0.986293i \(-0.447237\pi\)
0.165001 + 0.986293i \(0.447237\pi\)
\(348\) 3629.16 0.559033
\(349\) −10534.3 −1.61573 −0.807864 0.589369i \(-0.799376\pi\)
−0.807864 + 0.589369i \(0.799376\pi\)
\(350\) −2931.98 −0.447774
\(351\) −6883.15 −1.04671
\(352\) 250.604 0.0379466
\(353\) 3551.48 0.535485 0.267742 0.963491i \(-0.413722\pi\)
0.267742 + 0.963491i \(0.413722\pi\)
\(354\) 3346.21 0.502399
\(355\) 4211.52 0.629645
\(356\) 5735.99 0.853952
\(357\) −1331.61 −0.197412
\(358\) 4380.55 0.646702
\(359\) −11547.3 −1.69761 −0.848804 0.528707i \(-0.822677\pi\)
−0.848804 + 0.528707i \(0.822677\pi\)
\(360\) −12280.1 −1.79783
\(361\) 8616.28 1.25620
\(362\) 3893.64 0.565318
\(363\) −2070.85 −0.299425
\(364\) −37056.9 −5.33601
\(365\) −5901.09 −0.846239
\(366\) −451.576 −0.0644926
\(367\) 7553.39 1.07434 0.537171 0.843473i \(-0.319493\pi\)
0.537171 + 0.843473i \(0.319493\pi\)
\(368\) 0 0
\(369\) −876.317 −0.123629
\(370\) 5487.96 0.771096
\(371\) 13800.5 1.93123
\(372\) −2274.98 −0.317075
\(373\) 7766.30 1.07808 0.539040 0.842280i \(-0.318787\pi\)
0.539040 + 0.842280i \(0.318787\pi\)
\(374\) 277.749 0.0384012
\(375\) 2332.92 0.321257
\(376\) 13313.5 1.82603
\(377\) 11212.6 1.53177
\(378\) −9933.49 −1.35165
\(379\) 1196.96 0.162226 0.0811132 0.996705i \(-0.474152\pi\)
0.0811132 + 0.996705i \(0.474152\pi\)
\(380\) −22260.2 −3.00506
\(381\) 1571.84 0.211359
\(382\) 19224.8 2.57494
\(383\) −489.495 −0.0653055 −0.0326528 0.999467i \(-0.510396\pi\)
−0.0326528 + 0.999467i \(0.510396\pi\)
\(384\) 2502.64 0.332584
\(385\) −381.691 −0.0505266
\(386\) −13777.1 −1.81668
\(387\) −5601.72 −0.735792
\(388\) 19599.6 2.56448
\(389\) −4892.37 −0.637668 −0.318834 0.947810i \(-0.603291\pi\)
−0.318834 + 0.947810i \(0.603291\pi\)
\(390\) 6820.04 0.885503
\(391\) 0 0
\(392\) −12383.3 −1.59554
\(393\) −527.801 −0.0677456
\(394\) 26784.0 3.42477
\(395\) 5997.71 0.763993
\(396\) 680.846 0.0863985
\(397\) 9231.40 1.16703 0.583515 0.812102i \(-0.301677\pi\)
0.583515 + 0.812102i \(0.301677\pi\)
\(398\) 13658.2 1.72016
\(399\) −4719.21 −0.592120
\(400\) −2607.95 −0.325994
\(401\) 4350.38 0.541765 0.270883 0.962612i \(-0.412685\pi\)
0.270883 + 0.962612i \(0.412685\pi\)
\(402\) −4096.02 −0.508186
\(403\) −7028.72 −0.868798
\(404\) −5003.85 −0.616215
\(405\) −5415.26 −0.664410
\(406\) 16181.6 1.97802
\(407\) −167.374 −0.0203843
\(408\) −2717.25 −0.329716
\(409\) −2058.13 −0.248822 −0.124411 0.992231i \(-0.539704\pi\)
−0.124411 + 0.992231i \(0.539704\pi\)
\(410\) 1822.42 0.219519
\(411\) −532.226 −0.0638753
\(412\) −10787.2 −1.28992
\(413\) 10290.2 1.22603
\(414\) 0 0
\(415\) 3482.72 0.411951
\(416\) −13770.0 −1.62291
\(417\) −795.603 −0.0934313
\(418\) 984.343 0.115181
\(419\) 15060.4 1.75596 0.877982 0.478694i \(-0.158890\pi\)
0.877982 + 0.478694i \(0.158890\pi\)
\(420\) 6788.27 0.788651
\(421\) −1109.01 −0.128385 −0.0641923 0.997938i \(-0.520447\pi\)
−0.0641923 + 0.997938i \(0.520447\pi\)
\(422\) 14726.4 1.69874
\(423\) 6586.62 0.757098
\(424\) 28161.1 3.22553
\(425\) −832.815 −0.0950528
\(426\) 3312.11 0.376695
\(427\) −1388.68 −0.157384
\(428\) −13483.8 −1.52281
\(429\) −208.000 −0.0234087
\(430\) 11649.5 1.30649
\(431\) 7453.68 0.833019 0.416509 0.909131i \(-0.363253\pi\)
0.416509 + 0.909131i \(0.363253\pi\)
\(432\) −8835.71 −0.984047
\(433\) 3360.65 0.372985 0.186493 0.982456i \(-0.440288\pi\)
0.186493 + 0.982456i \(0.440288\pi\)
\(434\) −10143.6 −1.12191
\(435\) −2053.98 −0.226392
\(436\) −30767.5 −3.37958
\(437\) 0 0
\(438\) −4640.86 −0.506275
\(439\) 11073.4 1.20389 0.601943 0.798539i \(-0.294393\pi\)
0.601943 + 0.798539i \(0.294393\pi\)
\(440\) −778.872 −0.0843892
\(441\) −6126.45 −0.661532
\(442\) −15261.6 −1.64235
\(443\) −15911.1 −1.70646 −0.853229 0.521536i \(-0.825359\pi\)
−0.853229 + 0.521536i \(0.825359\pi\)
\(444\) 2976.70 0.318171
\(445\) −3246.37 −0.345826
\(446\) −32028.5 −3.40044
\(447\) 3101.10 0.328136
\(448\) 1529.62 0.161312
\(449\) −14842.1 −1.56001 −0.780003 0.625776i \(-0.784783\pi\)
−0.780003 + 0.625776i \(0.784783\pi\)
\(450\) −2959.97 −0.310076
\(451\) −55.5807 −0.00580309
\(452\) −30449.4 −3.16863
\(453\) 946.304 0.0981484
\(454\) −27695.7 −2.86305
\(455\) 20972.9 2.16093
\(456\) −9629.95 −0.988955
\(457\) −14903.8 −1.52554 −0.762771 0.646669i \(-0.776161\pi\)
−0.762771 + 0.646669i \(0.776161\pi\)
\(458\) 7795.55 0.795332
\(459\) −2821.56 −0.286927
\(460\) 0 0
\(461\) 9271.90 0.936736 0.468368 0.883533i \(-0.344842\pi\)
0.468368 + 0.883533i \(0.344842\pi\)
\(462\) −300.177 −0.0302283
\(463\) −6157.42 −0.618055 −0.309028 0.951053i \(-0.600004\pi\)
−0.309028 + 0.951053i \(0.600004\pi\)
\(464\) 14393.3 1.44007
\(465\) 1287.56 0.128406
\(466\) 14262.6 1.41782
\(467\) −3030.18 −0.300257 −0.150129 0.988666i \(-0.547969\pi\)
−0.150129 + 0.988666i \(0.547969\pi\)
\(468\) −37410.7 −3.69511
\(469\) −12596.0 −1.24015
\(470\) −13697.8 −1.34432
\(471\) −1744.86 −0.170698
\(472\) 20998.1 2.04770
\(473\) −355.291 −0.0345376
\(474\) 4716.84 0.457071
\(475\) −2951.50 −0.285103
\(476\) −15190.5 −1.46272
\(477\) 13932.3 1.33735
\(478\) 15495.9 1.48277
\(479\) 11390.0 1.08648 0.543240 0.839577i \(-0.317197\pi\)
0.543240 + 0.839577i \(0.317197\pi\)
\(480\) 2522.46 0.239862
\(481\) 9196.74 0.871799
\(482\) 5050.04 0.477227
\(483\) 0 0
\(484\) −23623.5 −2.21859
\(485\) −11092.7 −1.03854
\(486\) −15278.7 −1.42604
\(487\) −6027.22 −0.560820 −0.280410 0.959880i \(-0.590470\pi\)
−0.280410 + 0.959880i \(0.590470\pi\)
\(488\) −2833.72 −0.262862
\(489\) −4355.22 −0.402760
\(490\) 12740.8 1.17463
\(491\) 6253.16 0.574748 0.287374 0.957818i \(-0.407218\pi\)
0.287374 + 0.957818i \(0.407218\pi\)
\(492\) 988.489 0.0905783
\(493\) 4596.30 0.419892
\(494\) −54087.0 −4.92610
\(495\) −385.335 −0.0349889
\(496\) −9022.57 −0.816785
\(497\) 10185.3 0.919266
\(498\) 2738.95 0.246456
\(499\) −12372.4 −1.10995 −0.554973 0.831868i \(-0.687271\pi\)
−0.554973 + 0.831868i \(0.687271\pi\)
\(500\) 26613.1 2.38035
\(501\) 4171.26 0.371972
\(502\) 35341.3 3.14215
\(503\) −15826.3 −1.40290 −0.701450 0.712719i \(-0.747463\pi\)
−0.701450 + 0.712719i \(0.747463\pi\)
\(504\) −29698.9 −2.62479
\(505\) 2832.00 0.249549
\(506\) 0 0
\(507\) 8004.56 0.701173
\(508\) 17931.0 1.56606
\(509\) 1293.91 0.112675 0.0563373 0.998412i \(-0.482058\pi\)
0.0563373 + 0.998412i \(0.482058\pi\)
\(510\) 2795.69 0.242736
\(511\) −14271.5 −1.23549
\(512\) 25996.3 2.24392
\(513\) −9999.63 −0.860613
\(514\) −2684.68 −0.230381
\(515\) 6105.18 0.522381
\(516\) 6318.76 0.539085
\(517\) 417.759 0.0355377
\(518\) 13272.4 1.12578
\(519\) −94.6672 −0.00800661
\(520\) 42797.0 3.60918
\(521\) 16165.7 1.35937 0.679684 0.733505i \(-0.262117\pi\)
0.679684 + 0.733505i \(0.262117\pi\)
\(522\) 16336.1 1.36975
\(523\) −19513.2 −1.63146 −0.815729 0.578435i \(-0.803664\pi\)
−0.815729 + 0.578435i \(0.803664\pi\)
\(524\) −6020.97 −0.501960
\(525\) 900.063 0.0748228
\(526\) −3148.58 −0.260998
\(527\) −2881.24 −0.238157
\(528\) −267.003 −0.0220073
\(529\) 0 0
\(530\) −28974.1 −2.37463
\(531\) 10388.5 0.849004
\(532\) −53835.1 −4.38731
\(533\) 3054.02 0.248188
\(534\) −2553.08 −0.206896
\(535\) 7631.34 0.616694
\(536\) −25703.2 −2.07129
\(537\) −1344.75 −0.108064
\(538\) 12430.6 0.996132
\(539\) −388.572 −0.0310519
\(540\) 14383.8 1.14626
\(541\) −3124.23 −0.248283 −0.124141 0.992265i \(-0.539618\pi\)
−0.124141 + 0.992265i \(0.539618\pi\)
\(542\) 4595.05 0.364159
\(543\) −1195.28 −0.0944645
\(544\) −5644.65 −0.444875
\(545\) 17413.3 1.36863
\(546\) 16493.9 1.29281
\(547\) −1818.46 −0.142142 −0.0710709 0.997471i \(-0.522642\pi\)
−0.0710709 + 0.997471i \(0.522642\pi\)
\(548\) −6071.44 −0.473283
\(549\) −1401.94 −0.108986
\(550\) −187.737 −0.0145548
\(551\) 16289.3 1.25943
\(552\) 0 0
\(553\) 14505.2 1.11541
\(554\) −25616.7 −1.96453
\(555\) −1684.70 −0.128850
\(556\) −9075.96 −0.692278
\(557\) −20165.9 −1.53404 −0.767018 0.641626i \(-0.778260\pi\)
−0.767018 + 0.641626i \(0.778260\pi\)
\(558\) −10240.4 −0.776902
\(559\) 19522.3 1.47711
\(560\) 26922.3 2.03156
\(561\) −85.2639 −0.00641683
\(562\) 16211.3 1.21679
\(563\) 3770.72 0.282268 0.141134 0.989991i \(-0.454925\pi\)
0.141134 + 0.989991i \(0.454925\pi\)
\(564\) −7429.73 −0.554695
\(565\) 17233.3 1.28320
\(566\) 1215.55 0.0902707
\(567\) −13096.5 −0.970022
\(568\) 20784.1 1.53535
\(569\) 23371.9 1.72197 0.860986 0.508629i \(-0.169848\pi\)
0.860986 + 0.508629i \(0.169848\pi\)
\(570\) 9907.94 0.728066
\(571\) −5535.00 −0.405661 −0.202830 0.979214i \(-0.565014\pi\)
−0.202830 + 0.979214i \(0.565014\pi\)
\(572\) −2372.79 −0.173446
\(573\) −5901.67 −0.430272
\(574\) 4407.43 0.320493
\(575\) 0 0
\(576\) 1544.23 0.111706
\(577\) 8409.03 0.606711 0.303356 0.952877i \(-0.401893\pi\)
0.303356 + 0.952877i \(0.401893\pi\)
\(578\) 18689.7 1.34497
\(579\) 4229.33 0.303567
\(580\) −23431.1 −1.67745
\(581\) 8422.78 0.601438
\(582\) −8723.74 −0.621324
\(583\) 883.660 0.0627744
\(584\) −29122.2 −2.06350
\(585\) 21173.1 1.49641
\(586\) 23278.9 1.64103
\(587\) 22796.7 1.60293 0.801467 0.598039i \(-0.204053\pi\)
0.801467 + 0.598039i \(0.204053\pi\)
\(588\) 6910.65 0.484678
\(589\) −10211.1 −0.714331
\(590\) −21604.2 −1.50751
\(591\) −8222.20 −0.572278
\(592\) 11805.6 0.819606
\(593\) −22303.3 −1.54450 −0.772249 0.635320i \(-0.780868\pi\)
−0.772249 + 0.635320i \(0.780868\pi\)
\(594\) −636.051 −0.0439351
\(595\) 8597.28 0.592360
\(596\) 35376.3 2.43132
\(597\) −4192.81 −0.287437
\(598\) 0 0
\(599\) 2650.30 0.180782 0.0903910 0.995906i \(-0.471188\pi\)
0.0903910 + 0.995906i \(0.471188\pi\)
\(600\) 1836.66 0.124969
\(601\) 16837.0 1.14275 0.571376 0.820688i \(-0.306410\pi\)
0.571376 + 0.820688i \(0.306410\pi\)
\(602\) 28173.8 1.90744
\(603\) −12716.3 −0.858784
\(604\) 10795.1 0.727229
\(605\) 13370.1 0.898465
\(606\) 2227.20 0.149297
\(607\) −18425.8 −1.23209 −0.616046 0.787711i \(-0.711266\pi\)
−0.616046 + 0.787711i \(0.711266\pi\)
\(608\) −20004.6 −1.33437
\(609\) −4967.44 −0.330527
\(610\) 2915.52 0.193518
\(611\) −22954.7 −1.51988
\(612\) −15335.5 −1.01291
\(613\) 15686.0 1.03352 0.516762 0.856129i \(-0.327137\pi\)
0.516762 + 0.856129i \(0.327137\pi\)
\(614\) −2456.31 −0.161447
\(615\) −559.450 −0.0366816
\(616\) −1883.66 −0.123206
\(617\) 19489.5 1.27167 0.635833 0.771827i \(-0.280657\pi\)
0.635833 + 0.771827i \(0.280657\pi\)
\(618\) 4801.36 0.312522
\(619\) −7827.43 −0.508257 −0.254128 0.967171i \(-0.581789\pi\)
−0.254128 + 0.967171i \(0.581789\pi\)
\(620\) 14688.0 0.951425
\(621\) 0 0
\(622\) −5744.63 −0.370319
\(623\) −7851.18 −0.504897
\(624\) 14671.1 0.941210
\(625\) −12096.3 −0.774166
\(626\) 44064.2 2.81335
\(627\) −302.175 −0.0192468
\(628\) −19904.7 −1.26478
\(629\) 3769.96 0.238979
\(630\) 30556.2 1.93236
\(631\) −30686.2 −1.93597 −0.967986 0.251003i \(-0.919240\pi\)
−0.967986 + 0.251003i \(0.919240\pi\)
\(632\) 29599.0 1.86295
\(633\) −4520.74 −0.283860
\(634\) −29630.9 −1.85614
\(635\) −10148.3 −0.634210
\(636\) −15715.7 −0.979822
\(637\) 21351.0 1.32803
\(638\) 1036.12 0.0642953
\(639\) 10282.6 0.636577
\(640\) −16157.9 −0.997962
\(641\) 26453.5 1.63003 0.815016 0.579439i \(-0.196728\pi\)
0.815016 + 0.579439i \(0.196728\pi\)
\(642\) 6001.59 0.368947
\(643\) 19559.5 1.19961 0.599807 0.800145i \(-0.295244\pi\)
0.599807 + 0.800145i \(0.295244\pi\)
\(644\) 0 0
\(645\) −3576.20 −0.218314
\(646\) −22171.5 −1.35035
\(647\) −7463.15 −0.453488 −0.226744 0.973954i \(-0.572808\pi\)
−0.226744 + 0.973954i \(0.572808\pi\)
\(648\) −26724.6 −1.62012
\(649\) 658.892 0.0398518
\(650\) 10315.7 0.622482
\(651\) 3113.89 0.187470
\(652\) −49682.8 −2.98425
\(653\) 3667.38 0.219779 0.109890 0.993944i \(-0.464950\pi\)
0.109890 + 0.993944i \(0.464950\pi\)
\(654\) 13694.5 0.818805
\(655\) 3407.65 0.203279
\(656\) 3920.35 0.233329
\(657\) −14407.7 −0.855555
\(658\) −33127.4 −1.96267
\(659\) −11117.2 −0.657155 −0.328578 0.944477i \(-0.606569\pi\)
−0.328578 + 0.944477i \(0.606569\pi\)
\(660\) 434.659 0.0256350
\(661\) −10886.9 −0.640622 −0.320311 0.947312i \(-0.603787\pi\)
−0.320311 + 0.947312i \(0.603787\pi\)
\(662\) 24396.7 1.43234
\(663\) 4685.03 0.274436
\(664\) 17187.4 1.00452
\(665\) 30468.8 1.77673
\(666\) 13399.1 0.779585
\(667\) 0 0
\(668\) 47584.2 2.75612
\(669\) 9832.18 0.568212
\(670\) 26445.2 1.52488
\(671\) −88.9186 −0.00511574
\(672\) 6100.44 0.350193
\(673\) −5441.92 −0.311695 −0.155848 0.987781i \(-0.549811\pi\)
−0.155848 + 0.987781i \(0.549811\pi\)
\(674\) 1564.29 0.0893977
\(675\) 1907.16 0.108751
\(676\) 91313.2 5.19533
\(677\) −28579.1 −1.62243 −0.811215 0.584749i \(-0.801193\pi\)
−0.811215 + 0.584749i \(0.801193\pi\)
\(678\) 13553.0 0.767697
\(679\) −26827.1 −1.51625
\(680\) 17543.5 0.989355
\(681\) 8502.09 0.478415
\(682\) −649.502 −0.0364673
\(683\) −26971.1 −1.51101 −0.755504 0.655144i \(-0.772608\pi\)
−0.755504 + 0.655144i \(0.772608\pi\)
\(684\) −54349.1 −3.03814
\(685\) 3436.22 0.191666
\(686\) −11574.0 −0.644163
\(687\) −2393.09 −0.132900
\(688\) 25060.3 1.38868
\(689\) −48554.8 −2.68475
\(690\) 0 0
\(691\) −27966.0 −1.53962 −0.769810 0.638273i \(-0.779649\pi\)
−0.769810 + 0.638273i \(0.779649\pi\)
\(692\) −1079.93 −0.0593248
\(693\) −931.913 −0.0510829
\(694\) −10830.9 −0.592412
\(695\) 5136.67 0.280353
\(696\) −10136.5 −0.552044
\(697\) 1251.91 0.0680338
\(698\) 53488.1 2.90051
\(699\) −4378.36 −0.236917
\(700\) 10267.6 0.554399
\(701\) −2681.30 −0.144467 −0.0722336 0.997388i \(-0.523013\pi\)
−0.0722336 + 0.997388i \(0.523013\pi\)
\(702\) 34949.3 1.87903
\(703\) 13360.7 0.716799
\(704\) 97.9432 0.00524343
\(705\) 4204.97 0.224636
\(706\) −18032.7 −0.961287
\(707\) 6849.06 0.364336
\(708\) −11718.2 −0.622031
\(709\) −31519.3 −1.66958 −0.834790 0.550569i \(-0.814411\pi\)
−0.834790 + 0.550569i \(0.814411\pi\)
\(710\) −21384.0 −1.13032
\(711\) 14643.6 0.772404
\(712\) −16021.0 −0.843276
\(713\) 0 0
\(714\) 6761.24 0.354388
\(715\) 1342.91 0.0702407
\(716\) −15340.4 −0.800696
\(717\) −4756.95 −0.247771
\(718\) 58631.4 3.04750
\(719\) −5550.14 −0.287880 −0.143940 0.989586i \(-0.545977\pi\)
−0.143940 + 0.989586i \(0.545977\pi\)
\(720\) 27179.4 1.40683
\(721\) 14765.1 0.762662
\(722\) −43749.3 −2.25510
\(723\) −1550.27 −0.0797444
\(724\) −13635.3 −0.699933
\(725\) −3106.75 −0.159147
\(726\) 10514.8 0.537520
\(727\) −9562.34 −0.487823 −0.243912 0.969797i \(-0.578431\pi\)
−0.243912 + 0.969797i \(0.578431\pi\)
\(728\) 103502. 5.26930
\(729\) −9838.64 −0.499855
\(730\) 29962.9 1.51914
\(731\) 8002.65 0.404909
\(732\) 1581.39 0.0798497
\(733\) −15084.1 −0.760087 −0.380043 0.924969i \(-0.624091\pi\)
−0.380043 + 0.924969i \(0.624091\pi\)
\(734\) −38352.4 −1.92863
\(735\) −3911.19 −0.196281
\(736\) 0 0
\(737\) −806.534 −0.0403108
\(738\) 4449.51 0.221936
\(739\) −14657.3 −0.729607 −0.364803 0.931085i \(-0.618864\pi\)
−0.364803 + 0.931085i \(0.618864\pi\)
\(740\) −19218.5 −0.954712
\(741\) 16603.7 0.823149
\(742\) −70072.4 −3.46690
\(743\) −25211.2 −1.24483 −0.622416 0.782687i \(-0.713849\pi\)
−0.622416 + 0.782687i \(0.713849\pi\)
\(744\) 6354.16 0.313111
\(745\) −20021.7 −0.984616
\(746\) −39433.5 −1.93534
\(747\) 8503.19 0.416487
\(748\) −972.660 −0.0475454
\(749\) 18456.0 0.900358
\(750\) −11845.4 −0.576712
\(751\) −16991.7 −0.825614 −0.412807 0.910818i \(-0.635452\pi\)
−0.412807 + 0.910818i \(0.635452\pi\)
\(752\) −29466.4 −1.42889
\(753\) −10849.1 −0.525053
\(754\) −56932.1 −2.74979
\(755\) −6109.65 −0.294507
\(756\) 34786.5 1.67351
\(757\) −27649.0 −1.32750 −0.663751 0.747954i \(-0.731036\pi\)
−0.663751 + 0.747954i \(0.731036\pi\)
\(758\) −6077.59 −0.291224
\(759\) 0 0
\(760\) 62174.1 2.96749
\(761\) 18471.8 0.879896 0.439948 0.898023i \(-0.354997\pi\)
0.439948 + 0.898023i \(0.354997\pi\)
\(762\) −7981.04 −0.379426
\(763\) 42113.2 1.99817
\(764\) −67324.2 −3.18810
\(765\) 8679.36 0.410200
\(766\) 2485.42 0.117235
\(767\) −36204.4 −1.70439
\(768\) −11923.5 −0.560224
\(769\) 2326.91 0.109117 0.0545583 0.998511i \(-0.482625\pi\)
0.0545583 + 0.998511i \(0.482625\pi\)
\(770\) 1938.04 0.0907040
\(771\) 824.146 0.0384966
\(772\) 48246.7 2.24927
\(773\) 40624.7 1.89026 0.945129 0.326698i \(-0.105936\pi\)
0.945129 + 0.326698i \(0.105936\pi\)
\(774\) 28442.8 1.32087
\(775\) 1947.49 0.0902659
\(776\) −54743.0 −2.53242
\(777\) −4074.37 −0.188118
\(778\) 24841.1 1.14472
\(779\) 4436.78 0.204062
\(780\) −23883.4 −1.09636
\(781\) 652.177 0.0298806
\(782\) 0 0
\(783\) −10525.6 −0.480402
\(784\) 27407.7 1.24853
\(785\) 11265.4 0.512202
\(786\) 2679.92 0.121615
\(787\) 10522.2 0.476588 0.238294 0.971193i \(-0.423412\pi\)
0.238294 + 0.971193i \(0.423412\pi\)
\(788\) −93796.0 −4.24028
\(789\) 966.558 0.0436126
\(790\) −30453.4 −1.37150
\(791\) 41677.9 1.87345
\(792\) −1901.65 −0.0853183
\(793\) 4885.84 0.218791
\(794\) −46872.6 −2.09502
\(795\) 8894.51 0.396800
\(796\) −47830.1 −2.12976
\(797\) 34463.9 1.53171 0.765856 0.643013i \(-0.222316\pi\)
0.765856 + 0.643013i \(0.222316\pi\)
\(798\) 23961.9 1.06296
\(799\) −9409.69 −0.416634
\(800\) 3815.35 0.168616
\(801\) −7926.14 −0.349634
\(802\) −22089.1 −0.972562
\(803\) −913.817 −0.0401593
\(804\) 14344.0 0.629197
\(805\) 0 0
\(806\) 35688.4 1.55964
\(807\) −3815.95 −0.166453
\(808\) 13976.1 0.608511
\(809\) 4092.42 0.177851 0.0889257 0.996038i \(-0.471657\pi\)
0.0889257 + 0.996038i \(0.471657\pi\)
\(810\) 27496.0 1.19273
\(811\) −5684.59 −0.246132 −0.123066 0.992398i \(-0.539273\pi\)
−0.123066 + 0.992398i \(0.539273\pi\)
\(812\) −56666.9 −2.44904
\(813\) −1410.60 −0.0608509
\(814\) 849.842 0.0365933
\(815\) 28118.7 1.20853
\(816\) 6014.04 0.258007
\(817\) 28361.4 1.21449
\(818\) 10450.2 0.446678
\(819\) 51206.2 2.18472
\(820\) −6382.01 −0.271792
\(821\) −4718.22 −0.200569 −0.100284 0.994959i \(-0.531975\pi\)
−0.100284 + 0.994959i \(0.531975\pi\)
\(822\) 2702.38 0.114667
\(823\) −26909.4 −1.13974 −0.569868 0.821736i \(-0.693006\pi\)
−0.569868 + 0.821736i \(0.693006\pi\)
\(824\) 30129.4 1.27379
\(825\) 57.6319 0.00243210
\(826\) −52248.8 −2.20093
\(827\) 14401.1 0.605532 0.302766 0.953065i \(-0.402090\pi\)
0.302766 + 0.953065i \(0.402090\pi\)
\(828\) 0 0
\(829\) −16061.0 −0.672883 −0.336442 0.941704i \(-0.609223\pi\)
−0.336442 + 0.941704i \(0.609223\pi\)
\(830\) −17683.5 −0.739524
\(831\) 7863.85 0.328272
\(832\) −5381.72 −0.224252
\(833\) 8752.28 0.364044
\(834\) 4039.69 0.167725
\(835\) −26931.0 −1.11615
\(836\) −3447.11 −0.142609
\(837\) 6598.08 0.272477
\(838\) −76469.4 −3.15226
\(839\) −34894.5 −1.43587 −0.717934 0.696112i \(-0.754912\pi\)
−0.717934 + 0.696112i \(0.754912\pi\)
\(840\) −18960.1 −0.778792
\(841\) −7242.88 −0.296973
\(842\) 5631.02 0.230472
\(843\) −4976.59 −0.203325
\(844\) −51571.0 −2.10325
\(845\) −51680.0 −2.10396
\(846\) −33443.7 −1.35912
\(847\) 32334.9 1.31173
\(848\) −62328.4 −2.52402
\(849\) −373.151 −0.0150842
\(850\) 4228.63 0.170636
\(851\) 0 0
\(852\) −11598.8 −0.466395
\(853\) −26275.4 −1.05469 −0.527346 0.849651i \(-0.676813\pi\)
−0.527346 + 0.849651i \(0.676813\pi\)
\(854\) 7051.05 0.282532
\(855\) 30759.6 1.23036
\(856\) 37661.1 1.50377
\(857\) 25459.0 1.01478 0.507389 0.861717i \(-0.330611\pi\)
0.507389 + 0.861717i \(0.330611\pi\)
\(858\) 1056.12 0.0420226
\(859\) −1582.86 −0.0628715 −0.0314357 0.999506i \(-0.510008\pi\)
−0.0314357 + 0.999506i \(0.510008\pi\)
\(860\) −40796.0 −1.61760
\(861\) −1353.00 −0.0535542
\(862\) −37846.2 −1.49541
\(863\) −4277.66 −0.168729 −0.0843645 0.996435i \(-0.526886\pi\)
−0.0843645 + 0.996435i \(0.526886\pi\)
\(864\) 12926.3 0.508985
\(865\) 611.202 0.0240249
\(866\) −17063.8 −0.669573
\(867\) −5737.41 −0.224744
\(868\) 35522.2 1.38906
\(869\) 928.778 0.0362562
\(870\) 10429.1 0.406413
\(871\) 44316.9 1.72402
\(872\) 85935.6 3.33733
\(873\) −27083.3 −1.04998
\(874\) 0 0
\(875\) −36426.9 −1.40738
\(876\) 16252.0 0.626831
\(877\) −16453.2 −0.633505 −0.316753 0.948508i \(-0.602593\pi\)
−0.316753 + 0.948508i \(0.602593\pi\)
\(878\) −56225.5 −2.16118
\(879\) −7146.20 −0.274215
\(880\) 1723.86 0.0660356
\(881\) 3452.74 0.132038 0.0660191 0.997818i \(-0.478970\pi\)
0.0660191 + 0.997818i \(0.478970\pi\)
\(882\) 31107.1 1.18756
\(883\) 21075.1 0.803210 0.401605 0.915813i \(-0.368452\pi\)
0.401605 + 0.915813i \(0.368452\pi\)
\(884\) 53445.1 2.03343
\(885\) 6632.10 0.251905
\(886\) 80789.0 3.06339
\(887\) 41611.9 1.57519 0.787594 0.616195i \(-0.211327\pi\)
0.787594 + 0.616195i \(0.211327\pi\)
\(888\) −8314.11 −0.314193
\(889\) −24543.2 −0.925930
\(890\) 16483.5 0.620818
\(891\) −838.583 −0.0315304
\(892\) 112162. 4.21016
\(893\) −33347.9 −1.24966
\(894\) −15745.9 −0.589061
\(895\) 8682.14 0.324259
\(896\) −39077.0 −1.45700
\(897\) 0 0
\(898\) 75361.1 2.80048
\(899\) −10748.2 −0.398746
\(900\) 10365.6 0.383912
\(901\) −19903.7 −0.735949
\(902\) 282.212 0.0104176
\(903\) −8648.85 −0.318733
\(904\) 85047.3 3.12902
\(905\) 7717.09 0.283453
\(906\) −4804.87 −0.176193
\(907\) −3328.73 −0.121862 −0.0609310 0.998142i \(-0.519407\pi\)
−0.0609310 + 0.998142i \(0.519407\pi\)
\(908\) 96988.8 3.54481
\(909\) 6914.45 0.252297
\(910\) −106490. −3.87925
\(911\) −39768.1 −1.44630 −0.723149 0.690692i \(-0.757306\pi\)
−0.723149 + 0.690692i \(0.757306\pi\)
\(912\) 21313.8 0.773869
\(913\) 539.318 0.0195496
\(914\) 75674.5 2.73861
\(915\) −895.013 −0.0323368
\(916\) −27299.5 −0.984718
\(917\) 8241.24 0.296783
\(918\) 14326.5 0.515083
\(919\) 2917.02 0.104705 0.0523524 0.998629i \(-0.483328\pi\)
0.0523524 + 0.998629i \(0.483328\pi\)
\(920\) 0 0
\(921\) 754.041 0.0269777
\(922\) −47078.2 −1.68160
\(923\) −35835.4 −1.27794
\(924\) 1051.20 0.0374264
\(925\) −2548.20 −0.0905777
\(926\) 31264.4 1.10952
\(927\) 14906.0 0.528132
\(928\) −21056.9 −0.744856
\(929\) −1564.80 −0.0552632 −0.0276316 0.999618i \(-0.508797\pi\)
−0.0276316 + 0.999618i \(0.508797\pi\)
\(930\) −6537.58 −0.230512
\(931\) 31018.1 1.09192
\(932\) −49946.8 −1.75543
\(933\) 1763.50 0.0618802
\(934\) 15385.8 0.539014
\(935\) 550.491 0.0192545
\(936\) 104491. 3.64891
\(937\) −21786.7 −0.759596 −0.379798 0.925069i \(-0.624007\pi\)
−0.379798 + 0.925069i \(0.624007\pi\)
\(938\) 63956.5 2.22628
\(939\) −13526.9 −0.470110
\(940\) 47968.8 1.66444
\(941\) 34207.7 1.18506 0.592530 0.805549i \(-0.298129\pi\)
0.592530 + 0.805549i \(0.298129\pi\)
\(942\) 8859.54 0.306432
\(943\) 0 0
\(944\) −46474.6 −1.60235
\(945\) −19687.9 −0.677723
\(946\) 1804.00 0.0620010
\(947\) 17863.6 0.612976 0.306488 0.951875i \(-0.400846\pi\)
0.306488 + 0.951875i \(0.400846\pi\)
\(948\) −16518.1 −0.565910
\(949\) 50211.8 1.71754
\(950\) 14986.3 0.511809
\(951\) 9096.14 0.310160
\(952\) 42428.0 1.44443
\(953\) 2205.70 0.0749733 0.0374867 0.999297i \(-0.488065\pi\)
0.0374867 + 0.999297i \(0.488065\pi\)
\(954\) −70741.3 −2.40077
\(955\) 38103.1 1.29109
\(956\) −54265.7 −1.83585
\(957\) −318.070 −0.0107437
\(958\) −57833.1 −1.95042
\(959\) 8310.33 0.279828
\(960\) 985.851 0.0331440
\(961\) −23053.4 −0.773837
\(962\) −46696.6 −1.56503
\(963\) 18632.2 0.623484
\(964\) −17684.9 −0.590865
\(965\) −27305.9 −0.910891
\(966\) 0 0
\(967\) −55599.4 −1.84897 −0.924487 0.381215i \(-0.875506\pi\)
−0.924487 + 0.381215i \(0.875506\pi\)
\(968\) 65982.1 2.19085
\(969\) 6806.26 0.225643
\(970\) 56323.3 1.86436
\(971\) −46743.5 −1.54487 −0.772435 0.635094i \(-0.780961\pi\)
−0.772435 + 0.635094i \(0.780961\pi\)
\(972\) 53505.2 1.76562
\(973\) 12422.8 0.409308
\(974\) 30603.3 1.00677
\(975\) −3166.72 −0.104017
\(976\) 6271.82 0.205693
\(977\) 35978.0 1.17814 0.589068 0.808084i \(-0.299495\pi\)
0.589068 + 0.808084i \(0.299495\pi\)
\(978\) 22113.7 0.723024
\(979\) −502.718 −0.0164116
\(980\) −44617.4 −1.45434
\(981\) 42515.3 1.38370
\(982\) −31750.5 −1.03177
\(983\) 25329.0 0.821840 0.410920 0.911671i \(-0.365208\pi\)
0.410920 + 0.911671i \(0.365208\pi\)
\(984\) −2760.92 −0.0894459
\(985\) 53085.2 1.71719
\(986\) −23337.8 −0.753779
\(987\) 10169.5 0.327962
\(988\) 189410. 6.09911
\(989\) 0 0
\(990\) 1956.54 0.0628111
\(991\) −7490.70 −0.240111 −0.120055 0.992767i \(-0.538307\pi\)
−0.120055 + 0.992767i \(0.538307\pi\)
\(992\) 13199.7 0.422471
\(993\) −7489.35 −0.239343
\(994\) −51716.2 −1.65024
\(995\) 27070.1 0.862493
\(996\) −9591.63 −0.305143
\(997\) 34489.1 1.09557 0.547784 0.836620i \(-0.315472\pi\)
0.547784 + 0.836620i \(0.315472\pi\)
\(998\) 62820.9 1.99254
\(999\) −8633.27 −0.273418
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 529.4.a.g.1.1 4
23.22 odd 2 23.4.a.b.1.1 4
69.68 even 2 207.4.a.e.1.4 4
92.91 even 2 368.4.a.l.1.3 4
115.22 even 4 575.4.b.g.24.1 8
115.68 even 4 575.4.b.g.24.8 8
115.114 odd 2 575.4.a.i.1.4 4
161.160 even 2 1127.4.a.c.1.1 4
184.45 odd 2 1472.4.a.y.1.3 4
184.91 even 2 1472.4.a.bf.1.2 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
23.4.a.b.1.1 4 23.22 odd 2
207.4.a.e.1.4 4 69.68 even 2
368.4.a.l.1.3 4 92.91 even 2
529.4.a.g.1.1 4 1.1 even 1 trivial
575.4.a.i.1.4 4 115.114 odd 2
575.4.b.g.24.1 8 115.22 even 4
575.4.b.g.24.8 8 115.68 even 4
1127.4.a.c.1.1 4 161.160 even 2
1472.4.a.y.1.3 4 184.45 odd 2
1472.4.a.bf.1.2 4 184.91 even 2