Properties

Label 529.4.a.f.1.2
Level $529$
Weight $4$
Character 529.1
Self dual yes
Analytic conductor $31.212$
Analytic rank $1$
Dimension $2$
CM discriminant -23
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [529,4,Mod(1,529)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(529, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("529.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 529 = 23^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 529.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(31.2120103930\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{69}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 17 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $N(\mathrm{U}(1))$

Embedding invariants

Embedding label 1.2
Root \(-3.65331\) of defining polynomial
Character \(\chi\) \(=\) 529.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.65331 q^{2} -10.3066 q^{3} -0.959936 q^{4} -27.3467 q^{6} -23.7735 q^{8} +79.2265 q^{9} +9.89370 q^{12} +86.8397 q^{13} -55.3990 q^{16} +210.213 q^{18} +245.025 q^{24} -125.000 q^{25} +230.413 q^{26} -538.279 q^{27} -24.7073 q^{29} +147.080 q^{31} +43.1971 q^{32} -76.0523 q^{36} -895.025 q^{39} +52.8120 q^{41} -580.544 q^{47} +570.977 q^{48} -343.000 q^{49} -331.664 q^{50} -83.3606 q^{52} -1428.22 q^{54} -65.5561 q^{58} -396.000 q^{59} +390.249 q^{62} +557.808 q^{64} -779.052 q^{71} -1883.49 q^{72} +812.359 q^{73} +1288.33 q^{75} -2374.78 q^{78} +3408.72 q^{81} +140.127 q^{82} +254.648 q^{87} -1515.90 q^{93} -1540.36 q^{94} -445.216 q^{96} -910.086 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 3 q^{2} - 4 q^{3} + 23 q^{4} - 63 q^{6} - 114 q^{8} + 92 q^{9} + 161 q^{12} + 74 q^{13} + 263 q^{16} + 138 q^{18} - 324 q^{24} - 250 q^{25} + 303 q^{26} - 628 q^{27} - 282 q^{29} + 344 q^{31} - 1035 q^{32}+ \cdots + 1029 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.65331 0.938087 0.469044 0.883175i \(-0.344599\pi\)
0.469044 + 0.883175i \(0.344599\pi\)
\(3\) −10.3066 −1.98351 −0.991755 0.128146i \(-0.959097\pi\)
−0.991755 + 0.128146i \(0.959097\pi\)
\(4\) −0.959936 −0.119992
\(5\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(6\) −27.3467 −1.86071
\(7\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(8\) −23.7735 −1.05065
\(9\) 79.2265 2.93431
\(10\) 0 0
\(11\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(12\) 9.89370 0.238005
\(13\) 86.8397 1.85269 0.926347 0.376672i \(-0.122932\pi\)
0.926347 + 0.376672i \(0.122932\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) −55.3990 −0.865610
\(17\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(18\) 210.213 2.75264
\(19\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 0 0
\(24\) 245.025 2.08398
\(25\) −125.000 −1.00000
\(26\) 230.413 1.73799
\(27\) −538.279 −3.83673
\(28\) 0 0
\(29\) −24.7073 −0.158208 −0.0791039 0.996866i \(-0.525206\pi\)
−0.0791039 + 0.996866i \(0.525206\pi\)
\(30\) 0 0
\(31\) 147.080 0.852141 0.426070 0.904690i \(-0.359898\pi\)
0.426070 + 0.904690i \(0.359898\pi\)
\(32\) 43.1971 0.238633
\(33\) 0 0
\(34\) 0 0
\(35\) 0 0
\(36\) −76.0523 −0.352094
\(37\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(38\) 0 0
\(39\) −895.025 −3.67484
\(40\) 0 0
\(41\) 52.8120 0.201167 0.100583 0.994929i \(-0.467929\pi\)
0.100583 + 0.994929i \(0.467929\pi\)
\(42\) 0 0
\(43\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −580.544 −1.80172 −0.900862 0.434106i \(-0.857064\pi\)
−0.900862 + 0.434106i \(0.857064\pi\)
\(48\) 570.977 1.71695
\(49\) −343.000 −1.00000
\(50\) −331.664 −0.938087
\(51\) 0 0
\(52\) −83.3606 −0.222308
\(53\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(54\) −1428.22 −3.59919
\(55\) 0 0
\(56\) 0 0
\(57\) 0 0
\(58\) −65.5561 −0.148413
\(59\) −396.000 −0.873810 −0.436905 0.899508i \(-0.643925\pi\)
−0.436905 + 0.899508i \(0.643925\pi\)
\(60\) 0 0
\(61\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(62\) 390.249 0.799383
\(63\) 0 0
\(64\) 557.808 1.08947
\(65\) 0 0
\(66\) 0 0
\(67\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) −779.052 −1.30220 −0.651102 0.758990i \(-0.725693\pi\)
−0.651102 + 0.758990i \(0.725693\pi\)
\(72\) −1883.49 −3.08294
\(73\) 812.359 1.30246 0.651229 0.758881i \(-0.274254\pi\)
0.651229 + 0.758881i \(0.274254\pi\)
\(74\) 0 0
\(75\) 1288.33 1.98351
\(76\) 0 0
\(77\) 0 0
\(78\) −2374.78 −3.44732
\(79\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(80\) 0 0
\(81\) 3408.72 4.67589
\(82\) 140.127 0.188712
\(83\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) 254.648 0.313807
\(88\) 0 0
\(89\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) −1515.90 −1.69023
\(94\) −1540.36 −1.69017
\(95\) 0 0
\(96\) −445.216 −0.473330
\(97\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(98\) −910.086 −0.938087
\(99\) 0 0
\(100\) 119.992 0.119992
\(101\) −1602.00 −1.57827 −0.789133 0.614222i \(-0.789470\pi\)
−0.789133 + 0.614222i \(0.789470\pi\)
\(102\) 0 0
\(103\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(104\) −2064.49 −1.94653
\(105\) 0 0
\(106\) 0 0
\(107\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(108\) 516.713 0.460377
\(109\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 23.7174 0.0189837
\(117\) 6880.01 5.43638
\(118\) −1050.71 −0.819710
\(119\) 0 0
\(120\) 0 0
\(121\) −1331.00 −1.00000
\(122\) 0 0
\(123\) −544.313 −0.399017
\(124\) −141.187 −0.102250
\(125\) 0 0
\(126\) 0 0
\(127\) −282.285 −0.197234 −0.0986172 0.995125i \(-0.531442\pi\)
−0.0986172 + 0.995125i \(0.531442\pi\)
\(128\) 1134.46 0.783384
\(129\) 0 0
\(130\) 0 0
\(131\) −2336.65 −1.55843 −0.779213 0.626759i \(-0.784381\pi\)
−0.779213 + 0.626759i \(0.784381\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(138\) 0 0
\(139\) −2609.95 −1.59261 −0.796305 0.604896i \(-0.793215\pi\)
−0.796305 + 0.604896i \(0.793215\pi\)
\(140\) 0 0
\(141\) 5983.45 3.57374
\(142\) −2067.07 −1.22158
\(143\) 0 0
\(144\) −4389.07 −2.53997
\(145\) 0 0
\(146\) 2155.44 1.22182
\(147\) 3535.17 1.98351
\(148\) 0 0
\(149\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(150\) 3418.34 1.86071
\(151\) 1085.32 0.584917 0.292458 0.956278i \(-0.405527\pi\)
0.292458 + 0.956278i \(0.405527\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 0 0
\(156\) 859.166 0.440951
\(157\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 0 0
\(162\) 9044.40 4.38639
\(163\) −4132.34 −1.98571 −0.992853 0.119344i \(-0.961921\pi\)
−0.992853 + 0.119344i \(0.961921\pi\)
\(164\) −50.6961 −0.0241384
\(165\) 0 0
\(166\) 0 0
\(167\) 1800.00 0.834061 0.417030 0.908892i \(-0.363071\pi\)
0.417030 + 0.908892i \(0.363071\pi\)
\(168\) 0 0
\(169\) 5344.14 2.43247
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) −3510.00 −1.54255 −0.771273 0.636505i \(-0.780380\pi\)
−0.771273 + 0.636505i \(0.780380\pi\)
\(174\) 675.662 0.294378
\(175\) 0 0
\(176\) 0 0
\(177\) 4081.42 1.73321
\(178\) 0 0
\(179\) 4771.41 1.99236 0.996178 0.0873419i \(-0.0278373\pi\)
0.996178 + 0.0873419i \(0.0278373\pi\)
\(180\) 0 0
\(181\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 0 0
\(186\) −4022.15 −1.58558
\(187\) 0 0
\(188\) 557.285 0.216192
\(189\) 0 0
\(190\) 0 0
\(191\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(192\) −5749.11 −2.16097
\(193\) 648.026 0.241689 0.120844 0.992671i \(-0.461440\pi\)
0.120844 + 0.992671i \(0.461440\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 329.258 0.119992
\(197\) 3232.78 1.16917 0.584585 0.811333i \(-0.301257\pi\)
0.584585 + 0.811333i \(0.301257\pi\)
\(198\) 0 0
\(199\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(200\) 2971.69 1.05065
\(201\) 0 0
\(202\) −4250.61 −1.48055
\(203\) 0 0
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) 0 0
\(208\) −4810.84 −1.60371
\(209\) 0 0
\(210\) 0 0
\(211\) −2468.00 −0.805233 −0.402616 0.915369i \(-0.631899\pi\)
−0.402616 + 0.915369i \(0.631899\pi\)
\(212\) 0 0
\(213\) 8029.40 2.58294
\(214\) 0 0
\(215\) 0 0
\(216\) 12796.8 4.03107
\(217\) 0 0
\(218\) 0 0
\(219\) −8372.68 −2.58344
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) −4840.00 −1.45341 −0.726705 0.686950i \(-0.758949\pi\)
−0.726705 + 0.686950i \(0.758949\pi\)
\(224\) 0 0
\(225\) −9903.31 −2.93431
\(226\) 0 0
\(227\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(228\) 0 0
\(229\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 587.378 0.166221
\(233\) −6498.69 −1.82722 −0.913612 0.406587i \(-0.866719\pi\)
−0.913612 + 0.406587i \(0.866719\pi\)
\(234\) 18254.8 5.09980
\(235\) 0 0
\(236\) 380.135 0.104850
\(237\) 0 0
\(238\) 0 0
\(239\) −4174.09 −1.12970 −0.564852 0.825192i \(-0.691067\pi\)
−0.564852 + 0.825192i \(0.691067\pi\)
\(240\) 0 0
\(241\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(242\) −3531.56 −0.938087
\(243\) −20598.9 −5.43794
\(244\) 0 0
\(245\) 0 0
\(246\) −1444.23 −0.374313
\(247\) 0 0
\(248\) −3496.61 −0.895302
\(249\) 0 0
\(250\) 0 0
\(251\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) −748.991 −0.185023
\(255\) 0 0
\(256\) −1452.38 −0.354586
\(257\) −8186.62 −1.98703 −0.993516 0.113691i \(-0.963733\pi\)
−0.993516 + 0.113691i \(0.963733\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) −1957.47 −0.464231
\(262\) −6199.86 −1.46194
\(263\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 7091.25 1.60729 0.803646 0.595108i \(-0.202891\pi\)
0.803646 + 0.595108i \(0.202891\pi\)
\(270\) 0 0
\(271\) −8912.00 −1.99766 −0.998829 0.0483752i \(-0.984596\pi\)
−0.998829 + 0.0483752i \(0.984596\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) 8743.84 1.89663 0.948315 0.317331i \(-0.102787\pi\)
0.948315 + 0.317331i \(0.102787\pi\)
\(278\) −6925.00 −1.49401
\(279\) 11652.6 2.50045
\(280\) 0 0
\(281\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(282\) 15876.0 3.35248
\(283\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(284\) 747.840 0.156254
\(285\) 0 0
\(286\) 0 0
\(287\) 0 0
\(288\) 3422.36 0.700223
\(289\) −4913.00 −1.00000
\(290\) 0 0
\(291\) 0 0
\(292\) −779.812 −0.156284
\(293\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(294\) 9379.91 1.86071
\(295\) 0 0
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 0 0
\(300\) −1236.71 −0.238005
\(301\) 0 0
\(302\) 2879.70 0.548703
\(303\) 16511.2 3.13051
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) 10420.0 1.93714 0.968568 0.248749i \(-0.0800193\pi\)
0.968568 + 0.248749i \(0.0800193\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) −5104.51 −0.930707 −0.465354 0.885125i \(-0.654073\pi\)
−0.465354 + 0.885125i \(0.654073\pi\)
\(312\) 21277.9 3.86097
\(313\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 1530.00 0.271083 0.135542 0.990772i \(-0.456723\pi\)
0.135542 + 0.990772i \(0.456723\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 0 0
\(324\) −3272.15 −0.561069
\(325\) −10855.0 −1.85269
\(326\) −10964.4 −1.86277
\(327\) 0 0
\(328\) −1255.53 −0.211356
\(329\) 0 0
\(330\) 0 0
\(331\) 5997.08 0.995859 0.497930 0.867218i \(-0.334094\pi\)
0.497930 + 0.867218i \(0.334094\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 4775.96 0.782422
\(335\) 0 0
\(336\) 0 0
\(337\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(338\) 14179.7 2.28187
\(339\) 0 0
\(340\) 0 0
\(341\) 0 0
\(342\) 0 0
\(343\) 0 0
\(344\) 0 0
\(345\) 0 0
\(346\) −9313.12 −1.44704
\(347\) 9180.00 1.42020 0.710098 0.704103i \(-0.248650\pi\)
0.710098 + 0.704103i \(0.248650\pi\)
\(348\) −244.446 −0.0376543
\(349\) −12386.8 −1.89986 −0.949929 0.312467i \(-0.898845\pi\)
−0.949929 + 0.312467i \(0.898845\pi\)
\(350\) 0 0
\(351\) −46744.0 −7.10829
\(352\) 0 0
\(353\) −9384.65 −1.41500 −0.707499 0.706714i \(-0.750177\pi\)
−0.707499 + 0.706714i \(0.750177\pi\)
\(354\) 10829.3 1.62590
\(355\) 0 0
\(356\) 0 0
\(357\) 0 0
\(358\) 12660.0 1.86900
\(359\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(360\) 0 0
\(361\) −6859.00 −1.00000
\(362\) 0 0
\(363\) 13718.1 1.98351
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(368\) 0 0
\(369\) 4184.11 0.590287
\(370\) 0 0
\(371\) 0 0
\(372\) 1455.17 0.202814
\(373\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 13801.6 1.89298
\(377\) −2145.57 −0.293110
\(378\) 0 0
\(379\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(380\) 0 0
\(381\) 2909.41 0.391217
\(382\) 0 0
\(383\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(384\) −11692.5 −1.55385
\(385\) 0 0
\(386\) 1719.41 0.226725
\(387\) 0 0
\(388\) 0 0
\(389\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 8154.31 1.05065
\(393\) 24083.0 3.09116
\(394\) 8577.58 1.09678
\(395\) 0 0
\(396\) 0 0
\(397\) 11677.7 1.47629 0.738145 0.674642i \(-0.235702\pi\)
0.738145 + 0.674642i \(0.235702\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 6924.88 0.865610
\(401\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(402\) 0 0
\(403\) 12772.4 1.57876
\(404\) 1537.82 0.189379
\(405\) 0 0
\(406\) 0 0
\(407\) 0 0
\(408\) 0 0
\(409\) −11155.1 −1.34862 −0.674308 0.738451i \(-0.735558\pi\)
−0.674308 + 0.738451i \(0.735558\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) 0 0
\(416\) 3751.23 0.442113
\(417\) 26899.7 3.15896
\(418\) 0 0
\(419\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(420\) 0 0
\(421\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(422\) −6548.37 −0.755379
\(423\) −45994.5 −5.28682
\(424\) 0 0
\(425\) 0 0
\(426\) 21304.5 2.42302
\(427\) 0 0
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(432\) 29820.1 3.32111
\(433\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 0 0
\(438\) −22215.3 −2.42349
\(439\) −10984.0 −1.19416 −0.597080 0.802182i \(-0.703672\pi\)
−0.597080 + 0.802182i \(0.703672\pi\)
\(440\) 0 0
\(441\) −27174.7 −2.93431
\(442\) 0 0
\(443\) 4071.85 0.436703 0.218352 0.975870i \(-0.429932\pi\)
0.218352 + 0.975870i \(0.429932\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) −12842.0 −1.36343
\(447\) 0 0
\(448\) 0 0
\(449\) −18414.0 −1.93544 −0.967718 0.252037i \(-0.918900\pi\)
−0.967718 + 0.252037i \(0.918900\pi\)
\(450\) −26276.6 −2.75264
\(451\) 0 0
\(452\) 0 0
\(453\) −11186.0 −1.16019
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 18491.9 1.86823 0.934115 0.356973i \(-0.116191\pi\)
0.934115 + 0.356973i \(0.116191\pi\)
\(462\) 0 0
\(463\) −11680.0 −1.17239 −0.586194 0.810171i \(-0.699374\pi\)
−0.586194 + 0.810171i \(0.699374\pi\)
\(464\) 1368.76 0.136946
\(465\) 0 0
\(466\) −17243.0 −1.71410
\(467\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(468\) −6604.37 −0.652323
\(469\) 0 0
\(470\) 0 0
\(471\) 0 0
\(472\) 9414.31 0.918069
\(473\) 0 0
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) 0 0
\(478\) −11075.2 −1.05976
\(479\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(480\) 0 0
\(481\) 0 0
\(482\) 0 0
\(483\) 0 0
\(484\) 1277.67 0.119992
\(485\) 0 0
\(486\) −54655.3 −5.10126
\(487\) 17336.9 1.61316 0.806580 0.591125i \(-0.201316\pi\)
0.806580 + 0.591125i \(0.201316\pi\)
\(488\) 0 0
\(489\) 42590.5 3.93867
\(490\) 0 0
\(491\) 4465.22 0.410412 0.205206 0.978719i \(-0.434214\pi\)
0.205206 + 0.978719i \(0.434214\pi\)
\(492\) 522.506 0.0478788
\(493\) 0 0
\(494\) 0 0
\(495\) 0 0
\(496\) −8148.10 −0.737622
\(497\) 0 0
\(498\) 0 0
\(499\) −5737.17 −0.514691 −0.257346 0.966319i \(-0.582848\pi\)
−0.257346 + 0.966319i \(0.582848\pi\)
\(500\) 0 0
\(501\) −18551.9 −1.65437
\(502\) 0 0
\(503\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) −55080.1 −4.82483
\(508\) 270.976 0.0236665
\(509\) −22637.7 −1.97131 −0.985656 0.168769i \(-0.946021\pi\)
−0.985656 + 0.168769i \(0.946021\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) −12929.3 −1.11602
\(513\) 0 0
\(514\) −21721.7 −1.86401
\(515\) 0 0
\(516\) 0 0
\(517\) 0 0
\(518\) 0 0
\(519\) 36176.2 3.05966
\(520\) 0 0
\(521\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(522\) −5193.78 −0.435490
\(523\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(524\) 2243.03 0.186999
\(525\) 0 0
\(526\) 0 0
\(527\) 0 0
\(528\) 0 0
\(529\) 0 0
\(530\) 0 0
\(531\) −31373.7 −2.56403
\(532\) 0 0
\(533\) 4586.18 0.372701
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) −49177.1 −3.95186
\(538\) 18815.3 1.50778
\(539\) 0 0
\(540\) 0 0
\(541\) 22247.0 1.76797 0.883985 0.467515i \(-0.154851\pi\)
0.883985 + 0.467515i \(0.154851\pi\)
\(542\) −23646.3 −1.87398
\(543\) 0 0
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) 22901.7 1.79014 0.895068 0.445930i \(-0.147127\pi\)
0.895068 + 0.445930i \(0.147127\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 0 0
\(552\) 0 0
\(553\) 0 0
\(554\) 23200.1 1.77920
\(555\) 0 0
\(556\) 2505.38 0.191100
\(557\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(558\) 30918.1 2.34564
\(559\) 0 0
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(564\) −5743.72 −0.428820
\(565\) 0 0
\(566\) 0 0
\(567\) 0 0
\(568\) 18520.8 1.36816
\(569\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(570\) 0 0
\(571\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 0 0
\(576\) 44193.1 3.19684
\(577\) −3963.24 −0.285948 −0.142974 0.989726i \(-0.545667\pi\)
−0.142974 + 0.989726i \(0.545667\pi\)
\(578\) −13035.7 −0.938087
\(579\) −6678.96 −0.479392
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) 0 0
\(584\) −19312.6 −1.36843
\(585\) 0 0
\(586\) 0 0
\(587\) −25636.7 −1.80262 −0.901311 0.433172i \(-0.857394\pi\)
−0.901311 + 0.433172i \(0.857394\pi\)
\(588\) −3393.54 −0.238005
\(589\) 0 0
\(590\) 0 0
\(591\) −33319.1 −2.31906
\(592\) 0 0
\(593\) 26370.0 1.82611 0.913057 0.407831i \(-0.133715\pi\)
0.913057 + 0.407831i \(0.133715\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 24336.0 1.66000 0.830002 0.557761i \(-0.188339\pi\)
0.830002 + 0.557761i \(0.188339\pi\)
\(600\) −30628.1 −2.08398
\(601\) 25354.9 1.72088 0.860441 0.509550i \(-0.170188\pi\)
0.860441 + 0.509550i \(0.170188\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) −1041.84 −0.0701853
\(605\) 0 0
\(606\) 43809.4 2.93669
\(607\) 8840.00 0.591111 0.295556 0.955326i \(-0.404495\pi\)
0.295556 + 0.955326i \(0.404495\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −50414.3 −3.33804
\(612\) 0 0
\(613\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(614\) 27647.5 1.81720
\(615\) 0 0
\(616\) 0 0
\(617\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(618\) 0 0
\(619\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) −13543.8 −0.873085
\(623\) 0 0
\(624\) 49583.5 3.18098
\(625\) 15625.0 1.00000
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 0 0
\(630\) 0 0
\(631\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(632\) 0 0
\(633\) 25436.7 1.59719
\(634\) 4059.57 0.254300
\(635\) 0 0
\(636\) 0 0
\(637\) −29786.0 −1.85269
\(638\) 0 0
\(639\) −61721.6 −3.82108
\(640\) 0 0
\(641\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(642\) 0 0
\(643\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 28400.3 1.72571 0.862854 0.505454i \(-0.168675\pi\)
0.862854 + 0.505454i \(0.168675\pi\)
\(648\) −81037.3 −4.91272
\(649\) 0 0
\(650\) −28801.6 −1.73799
\(651\) 0 0
\(652\) 3966.78 0.238269
\(653\) 32726.5 1.96124 0.980618 0.195928i \(-0.0627719\pi\)
0.980618 + 0.195928i \(0.0627719\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) −2925.73 −0.174132
\(657\) 64360.4 3.82182
\(658\) 0 0
\(659\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(660\) 0 0
\(661\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(662\) 15912.1 0.934203
\(663\) 0 0
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 0 0
\(668\) −1727.88 −0.100081
\(669\) 49884.1 2.88285
\(670\) 0 0
\(671\) 0 0
\(672\) 0 0
\(673\) −8519.60 −0.487974 −0.243987 0.969778i \(-0.578455\pi\)
−0.243987 + 0.969778i \(0.578455\pi\)
\(674\) 0 0
\(675\) 67284.9 3.83673
\(676\) −5130.03 −0.291877
\(677\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) −13453.9 −0.753734 −0.376867 0.926267i \(-0.622999\pi\)
−0.376867 + 0.926267i \(0.622999\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 0 0
\(690\) 0 0
\(691\) 6028.00 0.331861 0.165930 0.986137i \(-0.446937\pi\)
0.165930 + 0.986137i \(0.446937\pi\)
\(692\) 3369.37 0.185093
\(693\) 0 0
\(694\) 24357.4 1.33227
\(695\) 0 0
\(696\) −6053.89 −0.329701
\(697\) 0 0
\(698\) −32866.0 −1.78223
\(699\) 66979.5 3.62432
\(700\) 0 0
\(701\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(702\) −124026. −6.66820
\(703\) 0 0
\(704\) 0 0
\(705\) 0 0
\(706\) −24900.4 −1.32739
\(707\) 0 0
\(708\) −3917.90 −0.207972
\(709\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 0 0
\(714\) 0 0
\(715\) 0 0
\(716\) −4580.25 −0.239067
\(717\) 43020.8 2.24078
\(718\) 0 0
\(719\) −37944.0 −1.96811 −0.984056 0.177859i \(-0.943083\pi\)
−0.984056 + 0.177859i \(0.943083\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) −18199.1 −0.938087
\(723\) 0 0
\(724\) 0 0
\(725\) 3088.41 0.158208
\(726\) 36398.4 1.86071
\(727\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(728\) 0 0
\(729\) 120269. 6.11032
\(730\) 0 0
\(731\) 0 0
\(732\) 0 0
\(733\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 0 0
\(738\) 11101.7 0.553741
\(739\) 7328.32 0.364786 0.182393 0.983226i \(-0.441616\pi\)
0.182393 + 0.983226i \(0.441616\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(744\) 36038.2 1.77584
\(745\) 0 0
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(752\) 32161.6 1.55959
\(753\) 0 0
\(754\) −5692.87 −0.274963
\(755\) 0 0
\(756\) 0 0
\(757\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −32753.9 −1.56022 −0.780111 0.625641i \(-0.784837\pi\)
−0.780111 + 0.625641i \(0.784837\pi\)
\(762\) 7719.57 0.366995
\(763\) 0 0
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −34388.5 −1.61890
\(768\) 14969.2 0.703324
\(769\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(770\) 0 0
\(771\) 84376.4 3.94130
\(772\) −622.063 −0.0290007
\(773\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(774\) 0 0
\(775\) −18385.0 −0.852141
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 0 0
\(780\) 0 0
\(781\) 0 0
\(782\) 0 0
\(783\) 13299.4 0.607001
\(784\) 19001.9 0.865610
\(785\) 0 0
\(786\) 63899.6 2.89978
\(787\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(788\) −3103.27 −0.140291
\(789\) 0 0
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) 0 0
\(794\) 30984.6 1.38489
\(795\) 0 0
\(796\) 0 0
\(797\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) −5399.64 −0.238633
\(801\) 0 0
\(802\) 0 0
\(803\) 0 0
\(804\) 0 0
\(805\) 0 0
\(806\) 33889.2 1.48101
\(807\) −73086.9 −3.18808
\(808\) 38085.2 1.65821
\(809\) 27846.0 1.21015 0.605076 0.796168i \(-0.293143\pi\)
0.605076 + 0.796168i \(0.293143\pi\)
\(810\) 0 0
\(811\) 38214.7 1.65462 0.827312 0.561743i \(-0.189869\pi\)
0.827312 + 0.561743i \(0.189869\pi\)
\(812\) 0 0
\(813\) 91852.6 3.96238
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) 0 0
\(818\) −29597.9 −1.26512
\(819\) 0 0
\(820\) 0 0
\(821\) 24462.0 1.03987 0.519933 0.854207i \(-0.325957\pi\)
0.519933 + 0.854207i \(0.325957\pi\)
\(822\) 0 0
\(823\) 29161.0 1.23510 0.617550 0.786532i \(-0.288125\pi\)
0.617550 + 0.786532i \(0.288125\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(828\) 0 0
\(829\) −4966.00 −0.208053 −0.104027 0.994575i \(-0.533173\pi\)
−0.104027 + 0.994575i \(0.533173\pi\)
\(830\) 0 0
\(831\) −90119.5 −3.76199
\(832\) 48439.9 2.01845
\(833\) 0 0
\(834\) 71373.4 2.96338
\(835\) 0 0
\(836\) 0 0
\(837\) −79170.1 −3.26944
\(838\) 0 0
\(839\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(840\) 0 0
\(841\) −23778.6 −0.974970
\(842\) 0 0
\(843\) 0 0
\(844\) 2369.12 0.0966215
\(845\) 0 0
\(846\) −122038. −4.95950
\(847\) 0 0
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 0 0
\(852\) −7707.71 −0.309932
\(853\) 24590.0 0.987041 0.493520 0.869734i \(-0.335710\pi\)
0.493520 + 0.869734i \(0.335710\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −22790.5 −0.908410 −0.454205 0.890897i \(-0.650077\pi\)
−0.454205 + 0.890897i \(0.650077\pi\)
\(858\) 0 0
\(859\) −25747.2 −1.02268 −0.511340 0.859379i \(-0.670851\pi\)
−0.511340 + 0.859379i \(0.670851\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) −46290.8 −1.82591 −0.912954 0.408063i \(-0.866205\pi\)
−0.912954 + 0.408063i \(0.866205\pi\)
\(864\) −23252.1 −0.915570
\(865\) 0 0
\(866\) 0 0
\(867\) 50636.4 1.98351
\(868\) 0 0
\(869\) 0 0
\(870\) 0 0
\(871\) 0 0
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 0 0
\(876\) 8037.23 0.309992
\(877\) 34090.0 1.31259 0.656293 0.754506i \(-0.272124\pi\)
0.656293 + 0.754506i \(0.272124\pi\)
\(878\) −29143.9 −1.12023
\(879\) 0 0
\(880\) 0 0
\(881\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(882\) −72102.9 −2.75264
\(883\) 2860.00 0.109000 0.0544998 0.998514i \(-0.482644\pi\)
0.0544998 + 0.998514i \(0.482644\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 10803.9 0.409666
\(887\) −44547.4 −1.68631 −0.843153 0.537673i \(-0.819303\pi\)
−0.843153 + 0.537673i \(0.819303\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0 0
\(891\) 0 0
\(892\) 4646.09 0.174398
\(893\) 0 0
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 0 0
\(898\) −48858.1 −1.81561
\(899\) −3633.95 −0.134815
\(900\) 9506.54 0.352094
\(901\) 0 0
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 0 0
\(906\) −29680.0 −1.08836
\(907\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(908\) 0 0
\(909\) −126921. −4.63113
\(910\) 0 0
\(911\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(912\) 0 0
\(913\) 0 0
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 0 0
\(918\) 0 0
\(919\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(920\) 0 0
\(921\) −107395. −3.84233
\(922\) 49064.8 1.75256
\(923\) −67652.7 −2.41258
\(924\) 0 0
\(925\) 0 0
\(926\) −30990.7 −1.09980
\(927\) 0 0
\(928\) −1067.28 −0.0377535
\(929\) −839.150 −0.0296357 −0.0148179 0.999890i \(-0.504717\pi\)
−0.0148179 + 0.999890i \(0.504717\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 6238.32 0.219252
\(933\) 52610.2 1.84607
\(934\) 0 0
\(935\) 0 0
\(936\) −163562. −5.71174
\(937\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(942\) 0 0
\(943\) 0 0
\(944\) 21938.0 0.756379
\(945\) 0 0
\(946\) 0 0
\(947\) −38049.1 −1.30563 −0.652814 0.757518i \(-0.726412\pi\)
−0.652814 + 0.757518i \(0.726412\pi\)
\(948\) 0 0
\(949\) 70545.0 2.41305
\(950\) 0 0
\(951\) −15769.1 −0.537696
\(952\) 0 0
\(953\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 4006.86 0.135556
\(957\) 0 0
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) −8158.44 −0.273856
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) 47303.2 1.57308 0.786540 0.617539i \(-0.211870\pi\)
0.786540 + 0.617539i \(0.211870\pi\)
\(968\) 31642.5 1.05065
\(969\) 0 0
\(970\) 0 0
\(971\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(972\) 19773.6 0.652509
\(973\) 0 0
\(974\) 46000.2 1.51329
\(975\) 111878. 3.67484
\(976\) 0 0
\(977\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(978\) 113006. 3.69482
\(979\) 0 0
\(980\) 0 0
\(981\) 0 0
\(982\) 11847.6 0.385003
\(983\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(984\) 12940.2 0.419227
\(985\) 0 0
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 0 0
\(990\) 0 0
\(991\) −9128.00 −0.292594 −0.146297 0.989241i \(-0.546735\pi\)
−0.146297 + 0.989241i \(0.546735\pi\)
\(992\) 6353.44 0.203349
\(993\) −61809.6 −1.97530
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) −60190.0 −1.91197 −0.955986 0.293412i \(-0.905209\pi\)
−0.955986 + 0.293412i \(0.905209\pi\)
\(998\) −15222.5 −0.482825
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 529.4.a.f.1.2 2
23.22 odd 2 CM 529.4.a.f.1.2 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
529.4.a.f.1.2 2 1.1 even 1 trivial
529.4.a.f.1.2 2 23.22 odd 2 CM