Properties

Label 529.4.a.f.1.1
Level $529$
Weight $4$
Character 529.1
Self dual yes
Analytic conductor $31.212$
Analytic rank $1$
Dimension $2$
CM discriminant -23
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [529,4,Mod(1,529)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(529, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("529.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 529 = 23^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 529.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(31.2120103930\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{69}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 17 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $N(\mathrm{U}(1))$

Embedding invariants

Embedding label 1.1
Root \(4.65331\) of defining polynomial
Character \(\chi\) \(=\) 529.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-5.65331 q^{2} +6.30662 q^{3} +23.9599 q^{4} -35.6533 q^{6} -90.2265 q^{8} +12.7735 q^{9} +151.106 q^{12} -12.8397 q^{13} +318.399 q^{16} -72.2126 q^{18} -569.025 q^{24} -125.000 q^{25} +72.5871 q^{26} -89.7212 q^{27} -257.293 q^{29} +196.920 q^{31} -1078.20 q^{32} +306.052 q^{36} -80.9754 q^{39} -478.812 q^{41} +532.544 q^{47} +2008.02 q^{48} -343.000 q^{49} +706.664 q^{50} -307.639 q^{52} +507.222 q^{54} +1454.56 q^{58} -396.000 q^{59} -1113.25 q^{62} +3548.19 q^{64} -396.948 q^{71} -1152.51 q^{72} +413.641 q^{73} -788.328 q^{75} +457.779 q^{78} -910.722 q^{81} +2706.87 q^{82} -1622.65 q^{87} +1241.90 q^{93} -3010.64 q^{94} -6799.78 q^{96} +1939.09 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 3 q^{2} - 4 q^{3} + 23 q^{4} - 63 q^{6} - 114 q^{8} + 92 q^{9} + 161 q^{12} + 74 q^{13} + 263 q^{16} + 138 q^{18} - 324 q^{24} - 250 q^{25} + 303 q^{26} - 628 q^{27} - 282 q^{29} + 344 q^{31} - 1035 q^{32}+ \cdots + 1029 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −5.65331 −1.99875 −0.999374 0.0353837i \(-0.988735\pi\)
−0.999374 + 0.0353837i \(0.988735\pi\)
\(3\) 6.30662 1.21371 0.606855 0.794812i \(-0.292431\pi\)
0.606855 + 0.794812i \(0.292431\pi\)
\(4\) 23.9599 2.99499
\(5\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(6\) −35.6533 −2.42590
\(7\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(8\) −90.2265 −3.98749
\(9\) 12.7735 0.473093
\(10\) 0 0
\(11\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(12\) 151.106 3.63505
\(13\) −12.8397 −0.273931 −0.136966 0.990576i \(-0.543735\pi\)
−0.136966 + 0.990576i \(0.543735\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 318.399 4.97498
\(17\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(18\) −72.2126 −0.945593
\(19\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 0 0
\(24\) −569.025 −4.83965
\(25\) −125.000 −1.00000
\(26\) 72.5871 0.547519
\(27\) −89.7212 −0.639513
\(28\) 0 0
\(29\) −257.293 −1.64752 −0.823760 0.566939i \(-0.808127\pi\)
−0.823760 + 0.566939i \(0.808127\pi\)
\(30\) 0 0
\(31\) 196.920 1.14090 0.570449 0.821333i \(-0.306769\pi\)
0.570449 + 0.821333i \(0.306769\pi\)
\(32\) −1078.20 −5.95625
\(33\) 0 0
\(34\) 0 0
\(35\) 0 0
\(36\) 306.052 1.41691
\(37\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(38\) 0 0
\(39\) −80.9754 −0.332473
\(40\) 0 0
\(41\) −478.812 −1.82385 −0.911925 0.410356i \(-0.865404\pi\)
−0.911925 + 0.410356i \(0.865404\pi\)
\(42\) 0 0
\(43\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 532.544 1.65276 0.826378 0.563116i \(-0.190398\pi\)
0.826378 + 0.563116i \(0.190398\pi\)
\(48\) 2008.02 6.03819
\(49\) −343.000 −1.00000
\(50\) 706.664 1.99875
\(51\) 0 0
\(52\) −307.639 −0.820421
\(53\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(54\) 507.222 1.27822
\(55\) 0 0
\(56\) 0 0
\(57\) 0 0
\(58\) 1454.56 3.29298
\(59\) −396.000 −0.873810 −0.436905 0.899508i \(-0.643925\pi\)
−0.436905 + 0.899508i \(0.643925\pi\)
\(60\) 0 0
\(61\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(62\) −1113.25 −2.28037
\(63\) 0 0
\(64\) 3548.19 6.93006
\(65\) 0 0
\(66\) 0 0
\(67\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) −396.948 −0.663507 −0.331754 0.943366i \(-0.607640\pi\)
−0.331754 + 0.943366i \(0.607640\pi\)
\(72\) −1152.51 −1.88645
\(73\) 413.641 0.663192 0.331596 0.943421i \(-0.392413\pi\)
0.331596 + 0.943421i \(0.392413\pi\)
\(74\) 0 0
\(75\) −788.328 −1.21371
\(76\) 0 0
\(77\) 0 0
\(78\) 457.779 0.664530
\(79\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(80\) 0 0
\(81\) −910.722 −1.24928
\(82\) 2706.87 3.64542
\(83\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) −1622.65 −1.99961
\(88\) 0 0
\(89\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) 1241.90 1.38472
\(94\) −3010.64 −3.30344
\(95\) 0 0
\(96\) −6799.78 −7.22917
\(97\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(98\) 1939.09 1.99875
\(99\) 0 0
\(100\) −2994.99 −2.99499
\(101\) −1602.00 −1.57827 −0.789133 0.614222i \(-0.789470\pi\)
−0.789133 + 0.614222i \(0.789470\pi\)
\(102\) 0 0
\(103\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(104\) 1158.49 1.09230
\(105\) 0 0
\(106\) 0 0
\(107\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(108\) −2149.71 −1.91534
\(109\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) −6164.72 −4.93431
\(117\) −164.009 −0.129595
\(118\) 2238.71 1.74653
\(119\) 0 0
\(120\) 0 0
\(121\) −1331.00 −1.00000
\(122\) 0 0
\(123\) −3019.69 −2.21363
\(124\) 4718.19 3.41698
\(125\) 0 0
\(126\) 0 0
\(127\) −2325.71 −1.62499 −0.812495 0.582968i \(-0.801891\pi\)
−0.812495 + 0.582968i \(0.801891\pi\)
\(128\) −11433.5 −7.89519
\(129\) 0 0
\(130\) 0 0
\(131\) −459.352 −0.306364 −0.153182 0.988198i \(-0.548952\pi\)
−0.153182 + 0.988198i \(0.548952\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(138\) 0 0
\(139\) 3021.95 1.84401 0.922007 0.387172i \(-0.126548\pi\)
0.922007 + 0.387172i \(0.126548\pi\)
\(140\) 0 0
\(141\) 3358.55 2.00597
\(142\) 2244.07 1.32618
\(143\) 0 0
\(144\) 4067.07 2.35363
\(145\) 0 0
\(146\) −2338.44 −1.32555
\(147\) −2163.17 −1.21371
\(148\) 0 0
\(149\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(150\) 4456.66 2.42590
\(151\) 2530.68 1.36386 0.681932 0.731415i \(-0.261140\pi\)
0.681932 + 0.731415i \(0.261140\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 0 0
\(156\) −1940.17 −0.995754
\(157\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 0 0
\(162\) 5148.60 2.49699
\(163\) 2496.34 1.19956 0.599781 0.800164i \(-0.295254\pi\)
0.599781 + 0.800164i \(0.295254\pi\)
\(164\) −11472.3 −5.46242
\(165\) 0 0
\(166\) 0 0
\(167\) 1800.00 0.834061 0.417030 0.908892i \(-0.363071\pi\)
0.417030 + 0.908892i \(0.363071\pi\)
\(168\) 0 0
\(169\) −2032.14 −0.924962
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) −3510.00 −1.54255 −0.771273 0.636505i \(-0.780380\pi\)
−0.771273 + 0.636505i \(0.780380\pi\)
\(174\) 9173.34 3.99672
\(175\) 0 0
\(176\) 0 0
\(177\) −2497.42 −1.06055
\(178\) 0 0
\(179\) −2023.41 −0.844898 −0.422449 0.906387i \(-0.638829\pi\)
−0.422449 + 0.906387i \(0.638829\pi\)
\(180\) 0 0
\(181\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 0 0
\(186\) −7020.85 −2.76771
\(187\) 0 0
\(188\) 12759.7 4.94999
\(189\) 0 0
\(190\) 0 0
\(191\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(192\) 22377.1 8.41109
\(193\) −4934.03 −1.84020 −0.920101 0.391681i \(-0.871894\pi\)
−0.920101 + 0.391681i \(0.871894\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) −8218.26 −2.99499
\(197\) 2269.22 0.820685 0.410342 0.911931i \(-0.365409\pi\)
0.410342 + 0.911931i \(0.365409\pi\)
\(198\) 0 0
\(199\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(200\) 11278.3 3.98749
\(201\) 0 0
\(202\) 9056.61 3.15456
\(203\) 0 0
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) 0 0
\(208\) −4088.16 −1.36280
\(209\) 0 0
\(210\) 0 0
\(211\) −2468.00 −0.805233 −0.402616 0.915369i \(-0.631899\pi\)
−0.402616 + 0.915369i \(0.631899\pi\)
\(212\) 0 0
\(213\) −2503.40 −0.805306
\(214\) 0 0
\(215\) 0 0
\(216\) 8095.23 2.55005
\(217\) 0 0
\(218\) 0 0
\(219\) 2608.68 0.804923
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) −4840.00 −1.45341 −0.726705 0.686950i \(-0.758949\pi\)
−0.726705 + 0.686950i \(0.758949\pi\)
\(224\) 0 0
\(225\) −1596.69 −0.473093
\(226\) 0 0
\(227\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(228\) 0 0
\(229\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 23214.6 6.56946
\(233\) 744.688 0.209383 0.104691 0.994505i \(-0.466615\pi\)
0.104691 + 0.994505i \(0.466615\pi\)
\(234\) 927.191 0.259027
\(235\) 0 0
\(236\) −9488.13 −2.61705
\(237\) 0 0
\(238\) 0 0
\(239\) −3193.91 −0.864422 −0.432211 0.901773i \(-0.642266\pi\)
−0.432211 + 0.901773i \(0.642266\pi\)
\(240\) 0 0
\(241\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(242\) 7524.56 1.99875
\(243\) −3321.11 −0.876746
\(244\) 0 0
\(245\) 0 0
\(246\) 17071.2 4.42448
\(247\) 0 0
\(248\) −17767.4 −4.54932
\(249\) 0 0
\(250\) 0 0
\(251\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) 13148.0 3.24795
\(255\) 0 0
\(256\) 36251.4 8.85044
\(257\) 4904.62 1.19043 0.595217 0.803565i \(-0.297066\pi\)
0.595217 + 0.803565i \(0.297066\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) −3286.53 −0.779429
\(262\) 2596.86 0.612345
\(263\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) −8093.25 −1.83440 −0.917202 0.398424i \(-0.869557\pi\)
−0.917202 + 0.398424i \(0.869557\pi\)
\(270\) 0 0
\(271\) −8912.00 −1.99766 −0.998829 0.0483752i \(-0.984596\pi\)
−0.998829 + 0.0483752i \(0.984596\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) −6905.84 −1.49795 −0.748974 0.662599i \(-0.769453\pi\)
−0.748974 + 0.662599i \(0.769453\pi\)
\(278\) −17084.0 −3.68572
\(279\) 2515.36 0.539751
\(280\) 0 0
\(281\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(282\) −18987.0 −4.00942
\(283\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(284\) −9510.84 −1.98720
\(285\) 0 0
\(286\) 0 0
\(287\) 0 0
\(288\) −13772.4 −2.81786
\(289\) −4913.00 −1.00000
\(290\) 0 0
\(291\) 0 0
\(292\) 9910.81 1.98625
\(293\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(294\) 12229.1 2.42590
\(295\) 0 0
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 0 0
\(300\) −18888.3 −3.63505
\(301\) 0 0
\(302\) −14306.7 −2.72602
\(303\) −10103.2 −1.91556
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) 10420.0 1.93714 0.968568 0.248749i \(-0.0800193\pi\)
0.968568 + 0.248749i \(0.0800193\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 10960.5 1.99843 0.999217 0.0395544i \(-0.0125938\pi\)
0.999217 + 0.0395544i \(0.0125938\pi\)
\(312\) 7306.13 1.32573
\(313\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 1530.00 0.271083 0.135542 0.990772i \(-0.456723\pi\)
0.135542 + 0.990772i \(0.456723\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 0 0
\(324\) −21820.8 −3.74157
\(325\) 1604.97 0.273931
\(326\) −14112.6 −2.39762
\(327\) 0 0
\(328\) 43201.5 7.27258
\(329\) 0 0
\(330\) 0 0
\(331\) 6046.92 1.00414 0.502068 0.864828i \(-0.332573\pi\)
0.502068 + 0.864828i \(0.332573\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) −10176.0 −1.66708
\(335\) 0 0
\(336\) 0 0
\(337\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(338\) 11488.3 1.84877
\(339\) 0 0
\(340\) 0 0
\(341\) 0 0
\(342\) 0 0
\(343\) 0 0
\(344\) 0 0
\(345\) 0 0
\(346\) 19843.1 3.08316
\(347\) 9180.00 1.42020 0.710098 0.704103i \(-0.248650\pi\)
0.710098 + 0.704103i \(0.248650\pi\)
\(348\) −38878.6 −5.98882
\(349\) 2664.80 0.408721 0.204360 0.978896i \(-0.434489\pi\)
0.204360 + 0.978896i \(0.434489\pi\)
\(350\) 0 0
\(351\) 1152.00 0.175182
\(352\) 0 0
\(353\) 12810.6 1.93156 0.965782 0.259355i \(-0.0835101\pi\)
0.965782 + 0.259355i \(0.0835101\pi\)
\(354\) 14118.7 2.11978
\(355\) 0 0
\(356\) 0 0
\(357\) 0 0
\(358\) 11439.0 1.68874
\(359\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(360\) 0 0
\(361\) −6859.00 −1.00000
\(362\) 0 0
\(363\) −8394.12 −1.21371
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(368\) 0 0
\(369\) −6116.11 −0.862850
\(370\) 0 0
\(371\) 0 0
\(372\) 29755.8 4.14723
\(373\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) −48049.6 −6.59034
\(377\) 3303.57 0.451307
\(378\) 0 0
\(379\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(380\) 0 0
\(381\) −14667.4 −1.97227
\(382\) 0 0
\(383\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(384\) −72106.5 −9.58248
\(385\) 0 0
\(386\) 27893.6 3.67810
\(387\) 0 0
\(388\) 0 0
\(389\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 30947.7 3.98749
\(393\) −2896.96 −0.371838
\(394\) −12828.6 −1.64034
\(395\) 0 0
\(396\) 0 0
\(397\) 3404.30 0.430370 0.215185 0.976573i \(-0.430965\pi\)
0.215185 + 0.976573i \(0.430965\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) −39799.9 −4.97498
\(401\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(402\) 0 0
\(403\) −2528.40 −0.312528
\(404\) −38383.8 −4.72690
\(405\) 0 0
\(406\) 0 0
\(407\) 0 0
\(408\) 0 0
\(409\) 16157.1 1.95334 0.976671 0.214742i \(-0.0688912\pi\)
0.976671 + 0.214742i \(0.0688912\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) 0 0
\(416\) 13843.8 1.63160
\(417\) 19058.3 2.23810
\(418\) 0 0
\(419\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(420\) 0 0
\(421\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(422\) 13952.4 1.60946
\(423\) 6802.45 0.781907
\(424\) 0 0
\(425\) 0 0
\(426\) 14152.5 1.60960
\(427\) 0 0
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(432\) −28567.1 −3.18157
\(433\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 0 0
\(438\) −14747.7 −1.60884
\(439\) 18272.0 1.98650 0.993250 0.115995i \(-0.0370058\pi\)
0.993250 + 0.115995i \(0.0370058\pi\)
\(440\) 0 0
\(441\) −4381.31 −0.473093
\(442\) 0 0
\(443\) 13724.1 1.47191 0.735953 0.677033i \(-0.236735\pi\)
0.735953 + 0.677033i \(0.236735\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 27362.0 2.90500
\(447\) 0 0
\(448\) 0 0
\(449\) −18414.0 −1.93544 −0.967718 0.252037i \(-0.918900\pi\)
−0.967718 + 0.252037i \(0.918900\pi\)
\(450\) 9026.58 0.945593
\(451\) 0 0
\(452\) 0 0
\(453\) 15960.0 1.65534
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) −15365.9 −1.55241 −0.776205 0.630480i \(-0.782858\pi\)
−0.776205 + 0.630480i \(0.782858\pi\)
\(462\) 0 0
\(463\) −11680.0 −1.17239 −0.586194 0.810171i \(-0.699374\pi\)
−0.586194 + 0.810171i \(0.699374\pi\)
\(464\) −81921.8 −8.19638
\(465\) 0 0
\(466\) −4209.95 −0.418503
\(467\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(468\) −3929.63 −0.388135
\(469\) 0 0
\(470\) 0 0
\(471\) 0 0
\(472\) 35729.7 3.48431
\(473\) 0 0
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) 0 0
\(478\) 18056.2 1.72776
\(479\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(480\) 0 0
\(481\) 0 0
\(482\) 0 0
\(483\) 0 0
\(484\) −31890.7 −2.99499
\(485\) 0 0
\(486\) 18775.3 1.75239
\(487\) 2335.12 0.217278 0.108639 0.994081i \(-0.465351\pi\)
0.108639 + 0.994081i \(0.465351\pi\)
\(488\) 0 0
\(489\) 15743.5 1.45592
\(490\) 0 0
\(491\) 16210.8 1.48998 0.744992 0.667073i \(-0.232453\pi\)
0.744992 + 0.667073i \(0.232453\pi\)
\(492\) −72351.5 −6.62979
\(493\) 0 0
\(494\) 0 0
\(495\) 0 0
\(496\) 62699.1 5.67595
\(497\) 0 0
\(498\) 0 0
\(499\) 21525.2 1.93106 0.965530 0.260292i \(-0.0838188\pi\)
0.965530 + 0.260292i \(0.0838188\pi\)
\(500\) 0 0
\(501\) 11351.9 1.01231
\(502\) 0 0
\(503\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) −12815.9 −1.12264
\(508\) −55724.0 −4.86683
\(509\) 14675.7 1.27797 0.638986 0.769218i \(-0.279354\pi\)
0.638986 + 0.769218i \(0.279354\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) −113473. −9.79459
\(513\) 0 0
\(514\) −27727.3 −2.37938
\(515\) 0 0
\(516\) 0 0
\(517\) 0 0
\(518\) 0 0
\(519\) −22136.2 −1.87220
\(520\) 0 0
\(521\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(522\) 18579.8 1.55788
\(523\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(524\) −11006.0 −0.917559
\(525\) 0 0
\(526\) 0 0
\(527\) 0 0
\(528\) 0 0
\(529\) 0 0
\(530\) 0 0
\(531\) −5058.31 −0.413393
\(532\) 0 0
\(533\) 6147.82 0.499609
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) −12760.9 −1.02546
\(538\) 45753.7 3.66651
\(539\) 0 0
\(540\) 0 0
\(541\) −21313.0 −1.69375 −0.846873 0.531796i \(-0.821517\pi\)
−0.846873 + 0.531796i \(0.821517\pi\)
\(542\) 50382.3 3.99282
\(543\) 0 0
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) −1569.66 −0.122694 −0.0613471 0.998116i \(-0.519540\pi\)
−0.0613471 + 0.998116i \(0.519540\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 0 0
\(552\) 0 0
\(553\) 0 0
\(554\) 39040.9 2.99402
\(555\) 0 0
\(556\) 72405.6 5.52281
\(557\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(558\) −14220.1 −1.07883
\(559\) 0 0
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(564\) 80470.7 6.00785
\(565\) 0 0
\(566\) 0 0
\(567\) 0 0
\(568\) 35815.2 2.64573
\(569\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(570\) 0 0
\(571\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 0 0
\(576\) 45322.9 3.27856
\(577\) 25741.2 1.85723 0.928615 0.371044i \(-0.121000\pi\)
0.928615 + 0.371044i \(0.121000\pi\)
\(578\) 27774.7 1.99875
\(579\) −31117.0 −2.23347
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) 0 0
\(584\) −37321.4 −2.64447
\(585\) 0 0
\(586\) 0 0
\(587\) 23488.7 1.65159 0.825794 0.563972i \(-0.190728\pi\)
0.825794 + 0.563972i \(0.190728\pi\)
\(588\) −51829.5 −3.63505
\(589\) 0 0
\(590\) 0 0
\(591\) 14311.1 0.996074
\(592\) 0 0
\(593\) 26370.0 1.82611 0.913057 0.407831i \(-0.133715\pi\)
0.913057 + 0.407831i \(0.133715\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 24336.0 1.66000 0.830002 0.557761i \(-0.188339\pi\)
0.830002 + 0.557761i \(0.188339\pi\)
\(600\) 71128.1 4.83965
\(601\) −25680.9 −1.74301 −0.871504 0.490388i \(-0.836855\pi\)
−0.871504 + 0.490388i \(0.836855\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 60634.8 4.08476
\(605\) 0 0
\(606\) 57116.6 3.82872
\(607\) 8840.00 0.591111 0.295556 0.955326i \(-0.404495\pi\)
0.295556 + 0.955326i \(0.404495\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −6837.73 −0.452741
\(612\) 0 0
\(613\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(614\) −58907.5 −3.87185
\(615\) 0 0
\(616\) 0 0
\(617\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(618\) 0 0
\(619\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) −61963.2 −3.99437
\(623\) 0 0
\(624\) −25782.5 −1.65405
\(625\) 15625.0 1.00000
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 0 0
\(630\) 0 0
\(631\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(632\) 0 0
\(633\) −15564.7 −0.977319
\(634\) −8649.57 −0.541827
\(635\) 0 0
\(636\) 0 0
\(637\) 4404.03 0.273931
\(638\) 0 0
\(639\) −5070.41 −0.313901
\(640\) 0 0
\(641\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(642\) 0 0
\(643\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 207.659 0.0126181 0.00630906 0.999980i \(-0.497992\pi\)
0.00630906 + 0.999980i \(0.497992\pi\)
\(648\) 82171.3 4.98147
\(649\) 0 0
\(650\) −9073.38 −0.547519
\(651\) 0 0
\(652\) 59812.2 3.59268
\(653\) −10700.5 −0.641261 −0.320631 0.947204i \(-0.603895\pi\)
−0.320631 + 0.947204i \(0.603895\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) −152453. −9.07363
\(657\) 5283.65 0.313751
\(658\) 0 0
\(659\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(660\) 0 0
\(661\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(662\) −34185.1 −2.00701
\(663\) 0 0
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 0 0
\(668\) 43127.9 2.49801
\(669\) −30524.1 −1.76402
\(670\) 0 0
\(671\) 0 0
\(672\) 0 0
\(673\) −25066.4 −1.43572 −0.717859 0.696188i \(-0.754878\pi\)
−0.717859 + 0.696188i \(0.754878\pi\)
\(674\) 0 0
\(675\) 11215.1 0.639513
\(676\) −48690.0 −2.77025
\(677\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) −21910.1 −1.22748 −0.613738 0.789510i \(-0.710335\pi\)
−0.613738 + 0.789510i \(0.710335\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 0 0
\(690\) 0 0
\(691\) 6028.00 0.331861 0.165930 0.986137i \(-0.446937\pi\)
0.165930 + 0.986137i \(0.446937\pi\)
\(692\) −84099.4 −4.61991
\(693\) 0 0
\(694\) −51897.4 −2.83861
\(695\) 0 0
\(696\) 146406. 7.97342
\(697\) 0 0
\(698\) −15065.0 −0.816930
\(699\) 4696.47 0.254130
\(700\) 0 0
\(701\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(702\) −6512.60 −0.350145
\(703\) 0 0
\(704\) 0 0
\(705\) 0 0
\(706\) −72422.6 −3.86071
\(707\) 0 0
\(708\) −59838.1 −3.17635
\(709\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 0 0
\(714\) 0 0
\(715\) 0 0
\(716\) −48480.8 −2.53046
\(717\) −20142.8 −1.04916
\(718\) 0 0
\(719\) −37944.0 −1.96811 −0.984056 0.177859i \(-0.943083\pi\)
−0.984056 + 0.177859i \(0.943083\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 38776.1 1.99875
\(723\) 0 0
\(724\) 0 0
\(725\) 32161.6 1.64752
\(726\) 47454.6 2.42590
\(727\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(728\) 0 0
\(729\) 3644.50 0.185160
\(730\) 0 0
\(731\) 0 0
\(732\) 0 0
\(733\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 0 0
\(738\) 34576.3 1.72462
\(739\) −37876.3 −1.88539 −0.942695 0.333656i \(-0.891718\pi\)
−0.942695 + 0.333656i \(0.891718\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(744\) −112052. −5.52155
\(745\) 0 0
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(752\) 169561. 8.22243
\(753\) 0 0
\(754\) −18676.1 −0.902048
\(755\) 0 0
\(756\) 0 0
\(757\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −6372.08 −0.303532 −0.151766 0.988416i \(-0.548496\pi\)
−0.151766 + 0.988416i \(0.548496\pi\)
\(762\) 82919.4 3.94207
\(763\) 0 0
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 5084.54 0.239364
\(768\) 228624. 10.7419
\(769\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(770\) 0 0
\(771\) 30931.6 1.44484
\(772\) −118219. −5.51139
\(773\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(774\) 0 0
\(775\) −24615.0 −1.14090
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 0 0
\(780\) 0 0
\(781\) 0 0
\(782\) 0 0
\(783\) 23084.6 1.05361
\(784\) −109211. −4.97498
\(785\) 0 0
\(786\) 16377.4 0.743209
\(787\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(788\) 54370.3 2.45794
\(789\) 0 0
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) 0 0
\(794\) −19245.6 −0.860201
\(795\) 0 0
\(796\) 0 0
\(797\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) 134775. 5.95625
\(801\) 0 0
\(802\) 0 0
\(803\) 0 0
\(804\) 0 0
\(805\) 0 0
\(806\) 14293.8 0.624664
\(807\) −51041.1 −2.22643
\(808\) 144543. 6.29332
\(809\) 27846.0 1.21015 0.605076 0.796168i \(-0.293143\pi\)
0.605076 + 0.796168i \(0.293143\pi\)
\(810\) 0 0
\(811\) −41578.7 −1.80028 −0.900139 0.435602i \(-0.856536\pi\)
−0.900139 + 0.435602i \(0.856536\pi\)
\(812\) 0 0
\(813\) −56204.6 −2.42458
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) 0 0
\(818\) −91341.1 −3.90424
\(819\) 0 0
\(820\) 0 0
\(821\) 24462.0 1.03987 0.519933 0.854207i \(-0.325957\pi\)
0.519933 + 0.854207i \(0.325957\pi\)
\(822\) 0 0
\(823\) −46745.0 −1.97986 −0.989931 0.141548i \(-0.954792\pi\)
−0.989931 + 0.141548i \(0.954792\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(828\) 0 0
\(829\) −4966.00 −0.208053 −0.104027 0.994575i \(-0.533173\pi\)
−0.104027 + 0.994575i \(0.533173\pi\)
\(830\) 0 0
\(831\) −43552.5 −1.81808
\(832\) −45557.9 −1.89836
\(833\) 0 0
\(834\) −107742. −4.47340
\(835\) 0 0
\(836\) 0 0
\(837\) −17667.9 −0.729619
\(838\) 0 0
\(839\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(840\) 0 0
\(841\) 41810.6 1.71432
\(842\) 0 0
\(843\) 0 0
\(844\) −59133.1 −2.41167
\(845\) 0 0
\(846\) −38456.4 −1.56283
\(847\) 0 0
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 0 0
\(852\) −59981.3 −2.41188
\(853\) 24590.0 0.987041 0.493520 0.869734i \(-0.335710\pi\)
0.493520 + 0.869734i \(0.335710\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 50108.5 1.99728 0.998642 0.0520955i \(-0.0165900\pi\)
0.998642 + 0.0520955i \(0.0165900\pi\)
\(858\) 0 0
\(859\) −24600.8 −0.977148 −0.488574 0.872523i \(-0.662483\pi\)
−0.488574 + 0.872523i \(0.662483\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 5226.84 0.206169 0.103084 0.994673i \(-0.467129\pi\)
0.103084 + 0.994673i \(0.467129\pi\)
\(864\) 96737.1 3.80910
\(865\) 0 0
\(866\) 0 0
\(867\) −30984.4 −1.21371
\(868\) 0 0
\(869\) 0 0
\(870\) 0 0
\(871\) 0 0
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 0 0
\(876\) 62503.8 2.41074
\(877\) 34090.0 1.31259 0.656293 0.754506i \(-0.272124\pi\)
0.656293 + 0.754506i \(0.272124\pi\)
\(878\) −103297. −3.97051
\(879\) 0 0
\(880\) 0 0
\(881\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(882\) 24768.9 0.945593
\(883\) 2860.00 0.109000 0.0544998 0.998514i \(-0.482644\pi\)
0.0544998 + 0.998514i \(0.482644\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) −77586.9 −2.94197
\(887\) 46875.4 1.77443 0.887215 0.461355i \(-0.152637\pi\)
0.887215 + 0.461355i \(0.152637\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0 0
\(891\) 0 0
\(892\) −115966. −4.35295
\(893\) 0 0
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 0 0
\(898\) 104100. 3.86845
\(899\) −50666.1 −1.87965
\(900\) −38256.5 −1.41691
\(901\) 0 0
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 0 0
\(906\) −90227.0 −3.30860
\(907\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(908\) 0 0
\(909\) −20463.2 −0.746667
\(910\) 0 0
\(911\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(912\) 0 0
\(913\) 0 0
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 0 0
\(918\) 0 0
\(919\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(920\) 0 0
\(921\) 65715.0 2.35112
\(922\) 86868.2 3.10288
\(923\) 5096.71 0.181755
\(924\) 0 0
\(925\) 0 0
\(926\) 66030.7 2.34331
\(927\) 0 0
\(928\) 277412. 9.81304
\(929\) −48618.9 −1.71704 −0.858521 0.512778i \(-0.828616\pi\)
−0.858521 + 0.512778i \(0.828616\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 17842.7 0.627099
\(933\) 69123.8 2.42552
\(934\) 0 0
\(935\) 0 0
\(936\) 14797.9 0.516757
\(937\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(942\) 0 0
\(943\) 0 0
\(944\) −126086. −4.34719
\(945\) 0 0
\(946\) 0 0
\(947\) 57261.1 1.96487 0.982437 0.186594i \(-0.0597450\pi\)
0.982437 + 0.186594i \(0.0597450\pi\)
\(948\) 0 0
\(949\) −5311.04 −0.181669
\(950\) 0 0
\(951\) 9649.13 0.329016
\(952\) 0 0
\(953\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) −76525.9 −2.58894
\(957\) 0 0
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) 8986.44 0.301649
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) −55815.2 −1.85615 −0.928075 0.372394i \(-0.878537\pi\)
−0.928075 + 0.372394i \(0.878537\pi\)
\(968\) 120091. 3.98749
\(969\) 0 0
\(970\) 0 0
\(971\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(972\) −79573.6 −2.62585
\(973\) 0 0
\(974\) −13201.2 −0.434284
\(975\) 10121.9 0.332473
\(976\) 0 0
\(977\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(978\) −89002.9 −2.91002
\(979\) 0 0
\(980\) 0 0
\(981\) 0 0
\(982\) −91644.6 −2.97810
\(983\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(984\) 272456. 8.82680
\(985\) 0 0
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 0 0
\(990\) 0 0
\(991\) −9128.00 −0.292594 −0.146297 0.989241i \(-0.546735\pi\)
−0.146297 + 0.989241i \(0.546735\pi\)
\(992\) −212318. −6.79548
\(993\) 38135.6 1.21873
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) −60190.0 −1.91197 −0.955986 0.293412i \(-0.905209\pi\)
−0.955986 + 0.293412i \(0.905209\pi\)
\(998\) −121688. −3.85970
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 529.4.a.f.1.1 2
23.22 odd 2 CM 529.4.a.f.1.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
529.4.a.f.1.1 2 1.1 even 1 trivial
529.4.a.f.1.1 2 23.22 odd 2 CM