Properties

Label 529.4.a.e.1.2
Level $529$
Weight $4$
Character 529.1
Self dual yes
Analytic conductor $31.212$
Analytic rank $1$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [529,4,Mod(1,529)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(529, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("529.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 529 = 23^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 529.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(31.2120103930\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{12})^+\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - 3 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(1.73205\) of defining polynomial
Character \(\chi\) \(=\) 529.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-0.267949 q^{2} +4.19615 q^{3} -7.92820 q^{4} -4.12436 q^{5} -1.12436 q^{6} +9.26795 q^{7} +4.26795 q^{8} -9.39230 q^{9} +1.10512 q^{10} +2.87564 q^{11} -33.2679 q^{12} +51.3538 q^{13} -2.48334 q^{14} -17.3064 q^{15} +62.2820 q^{16} -97.0333 q^{17} +2.51666 q^{18} +89.8705 q^{19} +32.6987 q^{20} +38.8897 q^{21} -0.770527 q^{22} +17.9090 q^{24} -107.990 q^{25} -13.7602 q^{26} -152.708 q^{27} -73.4782 q^{28} -194.244 q^{29} +4.63724 q^{30} -23.6462 q^{31} -50.8320 q^{32} +12.0666 q^{33} +26.0000 q^{34} -38.2243 q^{35} +74.4641 q^{36} +334.554 q^{37} -24.0807 q^{38} +215.488 q^{39} -17.6025 q^{40} -200.818 q^{41} -10.4205 q^{42} -132.221 q^{43} -22.7987 q^{44} +38.7372 q^{45} -290.081 q^{47} +261.345 q^{48} -257.105 q^{49} +28.9358 q^{50} -407.167 q^{51} -407.144 q^{52} -681.701 q^{53} +40.9179 q^{54} -11.8602 q^{55} +39.5551 q^{56} +377.110 q^{57} +52.0474 q^{58} -814.491 q^{59} +137.209 q^{60} -242.258 q^{61} +6.33597 q^{62} -87.0474 q^{63} -484.636 q^{64} -211.801 q^{65} -3.23325 q^{66} +513.367 q^{67} +769.300 q^{68} +10.2422 q^{70} +660.404 q^{71} -40.0859 q^{72} -447.218 q^{73} -89.6434 q^{74} -453.141 q^{75} -712.512 q^{76} +26.6513 q^{77} -57.7400 q^{78} +864.638 q^{79} -256.873 q^{80} -387.192 q^{81} +53.8090 q^{82} +1070.55 q^{83} -308.326 q^{84} +400.200 q^{85} +35.4284 q^{86} -815.076 q^{87} +12.2731 q^{88} -1625.68 q^{89} -10.3796 q^{90} +475.945 q^{91} -99.2229 q^{93} +77.7269 q^{94} -370.658 q^{95} -213.299 q^{96} -390.170 q^{97} +68.8911 q^{98} -27.0089 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 4 q^{2} - 2 q^{3} - 2 q^{4} + 16 q^{5} + 22 q^{6} + 22 q^{7} + 12 q^{8} + 2 q^{9} - 74 q^{10} + 30 q^{11} - 70 q^{12} - 22 q^{13} - 50 q^{14} - 142 q^{15} - 14 q^{16} - 104 q^{17} - 40 q^{18} + 10 q^{19}+ \cdots + 282 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.267949 −0.0947343 −0.0473672 0.998878i \(-0.515083\pi\)
−0.0473672 + 0.998878i \(0.515083\pi\)
\(3\) 4.19615 0.807550 0.403775 0.914858i \(-0.367698\pi\)
0.403775 + 0.914858i \(0.367698\pi\)
\(4\) −7.92820 −0.991025
\(5\) −4.12436 −0.368894 −0.184447 0.982843i \(-0.559049\pi\)
−0.184447 + 0.982843i \(0.559049\pi\)
\(6\) −1.12436 −0.0765027
\(7\) 9.26795 0.500422 0.250211 0.968191i \(-0.419500\pi\)
0.250211 + 0.968191i \(0.419500\pi\)
\(8\) 4.26795 0.188618
\(9\) −9.39230 −0.347863
\(10\) 1.10512 0.0349469
\(11\) 2.87564 0.0788218 0.0394109 0.999223i \(-0.487452\pi\)
0.0394109 + 0.999223i \(0.487452\pi\)
\(12\) −33.2679 −0.800302
\(13\) 51.3538 1.09561 0.547807 0.836605i \(-0.315463\pi\)
0.547807 + 0.836605i \(0.315463\pi\)
\(14\) −2.48334 −0.0474072
\(15\) −17.3064 −0.297900
\(16\) 62.2820 0.973157
\(17\) −97.0333 −1.38436 −0.692178 0.721727i \(-0.743349\pi\)
−0.692178 + 0.721727i \(0.743349\pi\)
\(18\) 2.51666 0.0329546
\(19\) 89.8705 1.08514 0.542571 0.840010i \(-0.317451\pi\)
0.542571 + 0.840010i \(0.317451\pi\)
\(20\) 32.6987 0.365583
\(21\) 38.8897 0.404116
\(22\) −0.770527 −0.00746713
\(23\) 0 0
\(24\) 17.9090 0.152319
\(25\) −107.990 −0.863918
\(26\) −13.7602 −0.103792
\(27\) −152.708 −1.08847
\(28\) −73.4782 −0.495931
\(29\) −194.244 −1.24380 −0.621899 0.783098i \(-0.713638\pi\)
−0.621899 + 0.783098i \(0.713638\pi\)
\(30\) 4.63724 0.0282214
\(31\) −23.6462 −0.136999 −0.0684996 0.997651i \(-0.521821\pi\)
−0.0684996 + 0.997651i \(0.521821\pi\)
\(32\) −50.8320 −0.280810
\(33\) 12.0666 0.0636525
\(34\) 26.0000 0.131146
\(35\) −38.2243 −0.184603
\(36\) 74.4641 0.344741
\(37\) 334.554 1.48649 0.743247 0.669017i \(-0.233285\pi\)
0.743247 + 0.669017i \(0.233285\pi\)
\(38\) −24.0807 −0.102800
\(39\) 215.488 0.884763
\(40\) −17.6025 −0.0695802
\(41\) −200.818 −0.764939 −0.382469 0.923968i \(-0.624926\pi\)
−0.382469 + 0.923968i \(0.624926\pi\)
\(42\) −10.4205 −0.0382837
\(43\) −132.221 −0.468917 −0.234459 0.972126i \(-0.575332\pi\)
−0.234459 + 0.972126i \(0.575332\pi\)
\(44\) −22.7987 −0.0781144
\(45\) 38.7372 0.128324
\(46\) 0 0
\(47\) −290.081 −0.900269 −0.450134 0.892961i \(-0.648624\pi\)
−0.450134 + 0.892961i \(0.648624\pi\)
\(48\) 261.345 0.785873
\(49\) −257.105 −0.749578
\(50\) 28.9358 0.0818427
\(51\) −407.167 −1.11794
\(52\) −407.144 −1.08578
\(53\) −681.701 −1.76677 −0.883385 0.468647i \(-0.844742\pi\)
−0.883385 + 0.468647i \(0.844742\pi\)
\(54\) 40.9179 0.103115
\(55\) −11.8602 −0.0290768
\(56\) 39.5551 0.0943889
\(57\) 377.110 0.876307
\(58\) 52.0474 0.117830
\(59\) −814.491 −1.79725 −0.898624 0.438719i \(-0.855432\pi\)
−0.898624 + 0.438719i \(0.855432\pi\)
\(60\) 137.209 0.295226
\(61\) −242.258 −0.508490 −0.254245 0.967140i \(-0.581827\pi\)
−0.254245 + 0.967140i \(0.581827\pi\)
\(62\) 6.33597 0.0129785
\(63\) −87.0474 −0.174078
\(64\) −484.636 −0.946554
\(65\) −211.801 −0.404165
\(66\) −3.23325 −0.00603008
\(67\) 513.367 0.936085 0.468043 0.883706i \(-0.344959\pi\)
0.468043 + 0.883706i \(0.344959\pi\)
\(68\) 769.300 1.37193
\(69\) 0 0
\(70\) 10.2422 0.0174882
\(71\) 660.404 1.10388 0.551940 0.833884i \(-0.313888\pi\)
0.551940 + 0.833884i \(0.313888\pi\)
\(72\) −40.0859 −0.0656134
\(73\) −447.218 −0.717026 −0.358513 0.933525i \(-0.616716\pi\)
−0.358513 + 0.933525i \(0.616716\pi\)
\(74\) −89.6434 −0.140822
\(75\) −453.141 −0.697657
\(76\) −712.512 −1.07540
\(77\) 26.6513 0.0394442
\(78\) −57.7400 −0.0838175
\(79\) 864.638 1.23138 0.615692 0.787987i \(-0.288876\pi\)
0.615692 + 0.787987i \(0.288876\pi\)
\(80\) −256.873 −0.358991
\(81\) −387.192 −0.531128
\(82\) 53.8090 0.0724660
\(83\) 1070.55 1.41577 0.707883 0.706330i \(-0.249650\pi\)
0.707883 + 0.706330i \(0.249650\pi\)
\(84\) −308.326 −0.400489
\(85\) 400.200 0.510680
\(86\) 35.4284 0.0444226
\(87\) −815.076 −1.00443
\(88\) 12.2731 0.0148672
\(89\) −1625.68 −1.93620 −0.968100 0.250564i \(-0.919384\pi\)
−0.968100 + 0.250564i \(0.919384\pi\)
\(90\) −10.3796 −0.0121567
\(91\) 475.945 0.548270
\(92\) 0 0
\(93\) −99.2229 −0.110634
\(94\) 77.7269 0.0852864
\(95\) −370.658 −0.400302
\(96\) −213.299 −0.226768
\(97\) −390.170 −0.408410 −0.204205 0.978928i \(-0.565461\pi\)
−0.204205 + 0.978928i \(0.565461\pi\)
\(98\) 68.8911 0.0710107
\(99\) −27.0089 −0.0274192
\(100\) 856.164 0.856164
\(101\) 80.9512 0.0797519 0.0398760 0.999205i \(-0.487304\pi\)
0.0398760 + 0.999205i \(0.487304\pi\)
\(102\) 109.100 0.105907
\(103\) 308.592 0.295209 0.147604 0.989046i \(-0.452844\pi\)
0.147604 + 0.989046i \(0.452844\pi\)
\(104\) 219.176 0.206653
\(105\) −160.395 −0.149076
\(106\) 182.661 0.167374
\(107\) −1198.89 −1.08319 −0.541595 0.840639i \(-0.682179\pi\)
−0.541595 + 0.840639i \(0.682179\pi\)
\(108\) 1210.70 1.07870
\(109\) −1027.61 −0.902998 −0.451499 0.892272i \(-0.649111\pi\)
−0.451499 + 0.892272i \(0.649111\pi\)
\(110\) 3.17793 0.00275458
\(111\) 1403.84 1.20042
\(112\) 577.227 0.486989
\(113\) 1595.50 1.32825 0.664124 0.747622i \(-0.268804\pi\)
0.664124 + 0.747622i \(0.268804\pi\)
\(114\) −101.046 −0.0830163
\(115\) 0 0
\(116\) 1540.00 1.23263
\(117\) −482.331 −0.381124
\(118\) 218.242 0.170261
\(119\) −899.300 −0.692762
\(120\) −73.8629 −0.0561894
\(121\) −1322.73 −0.993787
\(122\) 64.9127 0.0481715
\(123\) −842.663 −0.617726
\(124\) 187.472 0.135770
\(125\) 960.932 0.687587
\(126\) 23.3243 0.0164912
\(127\) −1097.61 −0.766905 −0.383452 0.923561i \(-0.625265\pi\)
−0.383452 + 0.923561i \(0.625265\pi\)
\(128\) 536.514 0.370481
\(129\) −554.818 −0.378674
\(130\) 56.7520 0.0382883
\(131\) 415.583 0.277173 0.138587 0.990350i \(-0.455744\pi\)
0.138587 + 0.990350i \(0.455744\pi\)
\(132\) −95.6668 −0.0630813
\(133\) 832.915 0.543029
\(134\) −137.556 −0.0886794
\(135\) 629.821 0.401528
\(136\) −414.133 −0.261115
\(137\) −769.914 −0.480133 −0.240066 0.970756i \(-0.577169\pi\)
−0.240066 + 0.970756i \(0.577169\pi\)
\(138\) 0 0
\(139\) −2174.74 −1.32705 −0.663523 0.748156i \(-0.730939\pi\)
−0.663523 + 0.748156i \(0.730939\pi\)
\(140\) 303.050 0.182946
\(141\) −1217.22 −0.727012
\(142\) −176.955 −0.104575
\(143\) 147.675 0.0863583
\(144\) −584.972 −0.338525
\(145\) 801.130 0.458829
\(146\) 119.832 0.0679270
\(147\) −1078.85 −0.605321
\(148\) −2652.41 −1.47315
\(149\) −143.252 −0.0787631 −0.0393815 0.999224i \(-0.512539\pi\)
−0.0393815 + 0.999224i \(0.512539\pi\)
\(150\) 121.419 0.0660920
\(151\) 1352.55 0.728932 0.364466 0.931217i \(-0.381252\pi\)
0.364466 + 0.931217i \(0.381252\pi\)
\(152\) 383.563 0.204678
\(153\) 911.367 0.481566
\(154\) −7.14120 −0.00373672
\(155\) 97.5252 0.0505382
\(156\) −1708.44 −0.876823
\(157\) −1021.83 −0.519434 −0.259717 0.965685i \(-0.583629\pi\)
−0.259717 + 0.965685i \(0.583629\pi\)
\(158\) −231.679 −0.116654
\(159\) −2860.52 −1.42676
\(160\) 209.649 0.103589
\(161\) 0 0
\(162\) 103.748 0.0503161
\(163\) −1912.66 −0.919089 −0.459544 0.888155i \(-0.651987\pi\)
−0.459544 + 0.888155i \(0.651987\pi\)
\(164\) 1592.13 0.758074
\(165\) −49.7671 −0.0234810
\(166\) −286.854 −0.134122
\(167\) 1522.44 0.705447 0.352723 0.935728i \(-0.385256\pi\)
0.352723 + 0.935728i \(0.385256\pi\)
\(168\) 165.979 0.0762237
\(169\) 440.216 0.200371
\(170\) −107.233 −0.0483789
\(171\) −844.091 −0.377481
\(172\) 1048.27 0.464709
\(173\) 1160.61 0.510055 0.255028 0.966934i \(-0.417915\pi\)
0.255028 + 0.966934i \(0.417915\pi\)
\(174\) 218.399 0.0951539
\(175\) −1000.84 −0.432324
\(176\) 179.101 0.0767059
\(177\) −3417.73 −1.45137
\(178\) 435.600 0.183425
\(179\) 3498.95 1.46103 0.730514 0.682898i \(-0.239280\pi\)
0.730514 + 0.682898i \(0.239280\pi\)
\(180\) −307.116 −0.127173
\(181\) 2362.06 0.970002 0.485001 0.874514i \(-0.338819\pi\)
0.485001 + 0.874514i \(0.338819\pi\)
\(182\) −127.529 −0.0519400
\(183\) −1016.55 −0.410631
\(184\) 0 0
\(185\) −1379.82 −0.548358
\(186\) 26.5867 0.0104808
\(187\) −279.033 −0.109117
\(188\) 2299.82 0.892189
\(189\) −1415.29 −0.544693
\(190\) 99.3175 0.0379224
\(191\) 611.522 0.231666 0.115833 0.993269i \(-0.463046\pi\)
0.115833 + 0.993269i \(0.463046\pi\)
\(192\) −2033.61 −0.764390
\(193\) 115.085 0.0429224 0.0214612 0.999770i \(-0.493168\pi\)
0.0214612 + 0.999770i \(0.493168\pi\)
\(194\) 104.546 0.0386905
\(195\) −888.751 −0.326384
\(196\) 2038.38 0.742850
\(197\) −2852.51 −1.03164 −0.515820 0.856697i \(-0.672513\pi\)
−0.515820 + 0.856697i \(0.672513\pi\)
\(198\) 7.23702 0.00259754
\(199\) 4888.70 1.74146 0.870731 0.491760i \(-0.163646\pi\)
0.870731 + 0.491760i \(0.163646\pi\)
\(200\) −460.895 −0.162951
\(201\) 2154.16 0.755935
\(202\) −21.6908 −0.00755525
\(203\) −1800.24 −0.622424
\(204\) 3228.10 1.10790
\(205\) 828.245 0.282181
\(206\) −82.6870 −0.0279664
\(207\) 0 0
\(208\) 3198.42 1.06620
\(209\) 258.436 0.0855328
\(210\) 42.9777 0.0141226
\(211\) 4455.48 1.45369 0.726844 0.686803i \(-0.240986\pi\)
0.726844 + 0.686803i \(0.240986\pi\)
\(212\) 5404.67 1.75091
\(213\) 2771.15 0.891438
\(214\) 321.243 0.102615
\(215\) 545.325 0.172981
\(216\) −651.749 −0.205305
\(217\) −219.152 −0.0685575
\(218\) 275.346 0.0855450
\(219\) −1876.59 −0.579034
\(220\) 94.0299 0.0288159
\(221\) −4983.03 −1.51672
\(222\) −376.157 −0.113721
\(223\) −2451.97 −0.736305 −0.368153 0.929765i \(-0.620010\pi\)
−0.368153 + 0.929765i \(0.620010\pi\)
\(224\) −471.109 −0.140523
\(225\) 1014.27 0.300525
\(226\) −427.513 −0.125831
\(227\) −5033.70 −1.47180 −0.735900 0.677090i \(-0.763241\pi\)
−0.735900 + 0.677090i \(0.763241\pi\)
\(228\) −2989.81 −0.868442
\(229\) −3125.95 −0.902047 −0.451024 0.892512i \(-0.648941\pi\)
−0.451024 + 0.892512i \(0.648941\pi\)
\(230\) 0 0
\(231\) 111.833 0.0318531
\(232\) −829.022 −0.234603
\(233\) 2213.32 0.622315 0.311158 0.950358i \(-0.399283\pi\)
0.311158 + 0.950358i \(0.399283\pi\)
\(234\) 129.240 0.0361055
\(235\) 1196.40 0.332103
\(236\) 6457.45 1.78112
\(237\) 3628.15 0.994405
\(238\) 240.967 0.0656284
\(239\) 5609.27 1.51813 0.759066 0.651014i \(-0.225656\pi\)
0.759066 + 0.651014i \(0.225656\pi\)
\(240\) −1077.88 −0.289903
\(241\) −4455.81 −1.19097 −0.595486 0.803366i \(-0.703040\pi\)
−0.595486 + 0.803366i \(0.703040\pi\)
\(242\) 354.425 0.0941458
\(243\) 2498.39 0.659554
\(244\) 1920.67 0.503927
\(245\) 1060.39 0.276514
\(246\) 225.791 0.0585199
\(247\) 4615.19 1.18890
\(248\) −100.921 −0.0258406
\(249\) 4492.21 1.14330
\(250\) −257.481 −0.0651381
\(251\) 1132.59 0.284816 0.142408 0.989808i \(-0.454516\pi\)
0.142408 + 0.989808i \(0.454516\pi\)
\(252\) 690.130 0.172516
\(253\) 0 0
\(254\) 294.103 0.0726522
\(255\) 1679.30 0.412399
\(256\) 3733.33 0.911457
\(257\) −1125.45 −0.273165 −0.136582 0.990629i \(-0.543612\pi\)
−0.136582 + 0.990629i \(0.543612\pi\)
\(258\) 148.663 0.0358734
\(259\) 3100.63 0.743875
\(260\) 1679.20 0.400538
\(261\) 1824.39 0.432671
\(262\) −111.355 −0.0262578
\(263\) 3646.18 0.854879 0.427440 0.904044i \(-0.359416\pi\)
0.427440 + 0.904044i \(0.359416\pi\)
\(264\) 51.4998 0.0120060
\(265\) 2811.58 0.651750
\(266\) −223.179 −0.0514435
\(267\) −6821.60 −1.56358
\(268\) −4070.07 −0.927684
\(269\) −5143.58 −1.16584 −0.582918 0.812531i \(-0.698089\pi\)
−0.582918 + 0.812531i \(0.698089\pi\)
\(270\) −168.760 −0.0380385
\(271\) 6918.43 1.55079 0.775396 0.631476i \(-0.217550\pi\)
0.775396 + 0.631476i \(0.217550\pi\)
\(272\) −6043.43 −1.34719
\(273\) 1997.14 0.442755
\(274\) 206.298 0.0454851
\(275\) −310.540 −0.0680955
\(276\) 0 0
\(277\) 3113.84 0.675424 0.337712 0.941250i \(-0.390347\pi\)
0.337712 + 0.941250i \(0.390347\pi\)
\(278\) 582.721 0.125717
\(279\) 222.092 0.0476570
\(280\) −163.139 −0.0348195
\(281\) 2383.37 0.505979 0.252990 0.967469i \(-0.418586\pi\)
0.252990 + 0.967469i \(0.418586\pi\)
\(282\) 326.154 0.0688730
\(283\) 2478.29 0.520563 0.260282 0.965533i \(-0.416185\pi\)
0.260282 + 0.965533i \(0.416185\pi\)
\(284\) −5235.81 −1.09397
\(285\) −1555.34 −0.323264
\(286\) −39.5695 −0.00818109
\(287\) −1861.17 −0.382792
\(288\) 477.430 0.0976834
\(289\) 4502.47 0.916439
\(290\) −214.662 −0.0434669
\(291\) −1637.21 −0.329812
\(292\) 3545.63 0.710591
\(293\) −382.276 −0.0762212 −0.0381106 0.999274i \(-0.512134\pi\)
−0.0381106 + 0.999274i \(0.512134\pi\)
\(294\) 289.078 0.0573447
\(295\) 3359.25 0.662994
\(296\) 1427.86 0.280380
\(297\) −439.133 −0.0857949
\(298\) 38.3844 0.00746157
\(299\) 0 0
\(300\) 3592.60 0.691395
\(301\) −1225.41 −0.234657
\(302\) −362.414 −0.0690549
\(303\) 339.684 0.0644037
\(304\) 5597.32 1.05601
\(305\) 999.157 0.187579
\(306\) −244.200 −0.0456209
\(307\) 5153.85 0.958129 0.479065 0.877780i \(-0.340976\pi\)
0.479065 + 0.877780i \(0.340976\pi\)
\(308\) −211.297 −0.0390902
\(309\) 1294.90 0.238396
\(310\) −26.1318 −0.00478770
\(311\) −620.805 −0.113192 −0.0565959 0.998397i \(-0.518025\pi\)
−0.0565959 + 0.998397i \(0.518025\pi\)
\(312\) 919.694 0.166883
\(313\) −4832.21 −0.872629 −0.436314 0.899794i \(-0.643716\pi\)
−0.436314 + 0.899794i \(0.643716\pi\)
\(314\) 273.799 0.0492082
\(315\) 359.014 0.0642164
\(316\) −6855.03 −1.22033
\(317\) 1273.97 0.225719 0.112860 0.993611i \(-0.463999\pi\)
0.112860 + 0.993611i \(0.463999\pi\)
\(318\) 766.475 0.135163
\(319\) −558.575 −0.0980383
\(320\) 1998.81 0.349178
\(321\) −5030.74 −0.874731
\(322\) 0 0
\(323\) −8720.43 −1.50222
\(324\) 3069.74 0.526361
\(325\) −5545.68 −0.946521
\(326\) 512.497 0.0870693
\(327\) −4311.99 −0.729216
\(328\) −857.081 −0.144282
\(329\) −2688.45 −0.450514
\(330\) 13.3351 0.00222446
\(331\) 2630.41 0.436799 0.218400 0.975859i \(-0.429916\pi\)
0.218400 + 0.975859i \(0.429916\pi\)
\(332\) −8487.57 −1.40306
\(333\) −3142.23 −0.517097
\(334\) −407.935 −0.0668300
\(335\) −2117.31 −0.345316
\(336\) 2422.13 0.393268
\(337\) 4564.81 0.737866 0.368933 0.929456i \(-0.379723\pi\)
0.368933 + 0.929456i \(0.379723\pi\)
\(338\) −117.955 −0.0189820
\(339\) 6694.97 1.07263
\(340\) −3172.87 −0.506097
\(341\) −67.9980 −0.0107985
\(342\) 226.174 0.0357604
\(343\) −5561.74 −0.875528
\(344\) −564.311 −0.0884465
\(345\) 0 0
\(346\) −310.984 −0.0483197
\(347\) −9791.82 −1.51485 −0.757424 0.652923i \(-0.773543\pi\)
−0.757424 + 0.652923i \(0.773543\pi\)
\(348\) 6462.08 0.995414
\(349\) −687.507 −0.105448 −0.0527240 0.998609i \(-0.516790\pi\)
−0.0527240 + 0.998609i \(0.516790\pi\)
\(350\) 268.175 0.0409559
\(351\) −7842.12 −1.19254
\(352\) −146.175 −0.0221339
\(353\) −3963.46 −0.597602 −0.298801 0.954315i \(-0.596587\pi\)
−0.298801 + 0.954315i \(0.596587\pi\)
\(354\) 915.777 0.137494
\(355\) −2723.74 −0.407214
\(356\) 12888.7 1.91882
\(357\) −3773.60 −0.559440
\(358\) −937.542 −0.138410
\(359\) 12702.5 1.86744 0.933719 0.358007i \(-0.116544\pi\)
0.933719 + 0.358007i \(0.116544\pi\)
\(360\) 165.328 0.0242044
\(361\) 1217.70 0.177534
\(362\) −632.912 −0.0918925
\(363\) −5550.38 −0.802533
\(364\) −3773.39 −0.543349
\(365\) 1844.49 0.264506
\(366\) 272.384 0.0389009
\(367\) 9240.42 1.31429 0.657147 0.753762i \(-0.271763\pi\)
0.657147 + 0.753762i \(0.271763\pi\)
\(368\) 0 0
\(369\) 1886.14 0.266094
\(370\) 369.721 0.0519484
\(371\) −6317.97 −0.884131
\(372\) 786.660 0.109641
\(373\) −12361.6 −1.71597 −0.857986 0.513674i \(-0.828284\pi\)
−0.857986 + 0.513674i \(0.828284\pi\)
\(374\) 74.7668 0.0103372
\(375\) 4032.22 0.555261
\(376\) −1238.05 −0.169807
\(377\) −9975.15 −1.36272
\(378\) 379.225 0.0516011
\(379\) −1957.34 −0.265281 −0.132641 0.991164i \(-0.542346\pi\)
−0.132641 + 0.991164i \(0.542346\pi\)
\(380\) 2938.65 0.396709
\(381\) −4605.73 −0.619314
\(382\) −163.857 −0.0219467
\(383\) 3449.96 0.460273 0.230136 0.973158i \(-0.426083\pi\)
0.230136 + 0.973158i \(0.426083\pi\)
\(384\) 2251.29 0.299182
\(385\) −109.920 −0.0145507
\(386\) −30.8370 −0.00406622
\(387\) 1241.86 0.163119
\(388\) 3093.35 0.404745
\(389\) 3817.31 0.497545 0.248773 0.968562i \(-0.419973\pi\)
0.248773 + 0.968562i \(0.419973\pi\)
\(390\) 238.140 0.0309197
\(391\) 0 0
\(392\) −1097.31 −0.141384
\(393\) 1743.85 0.223831
\(394\) 764.329 0.0977318
\(395\) −3566.08 −0.454250
\(396\) 214.132 0.0271731
\(397\) −13045.7 −1.64923 −0.824615 0.565694i \(-0.808608\pi\)
−0.824615 + 0.565694i \(0.808608\pi\)
\(398\) −1309.92 −0.164976
\(399\) 3495.04 0.438523
\(400\) −6725.82 −0.840727
\(401\) 9936.18 1.23738 0.618690 0.785636i \(-0.287664\pi\)
0.618690 + 0.785636i \(0.287664\pi\)
\(402\) −577.207 −0.0716131
\(403\) −1214.32 −0.150098
\(404\) −641.798 −0.0790362
\(405\) 1596.92 0.195930
\(406\) 482.373 0.0589649
\(407\) 962.058 0.117168
\(408\) −1737.77 −0.210863
\(409\) −3496.05 −0.422662 −0.211331 0.977415i \(-0.567780\pi\)
−0.211331 + 0.977415i \(0.567780\pi\)
\(410\) −221.927 −0.0267322
\(411\) −3230.68 −0.387731
\(412\) −2446.58 −0.292559
\(413\) −7548.66 −0.899383
\(414\) 0 0
\(415\) −4415.34 −0.522267
\(416\) −2610.42 −0.307659
\(417\) −9125.55 −1.07166
\(418\) −69.2476 −0.00810290
\(419\) −6290.96 −0.733493 −0.366746 0.930321i \(-0.619528\pi\)
−0.366746 + 0.930321i \(0.619528\pi\)
\(420\) 1271.64 0.147738
\(421\) −16430.7 −1.90210 −0.951050 0.309037i \(-0.899993\pi\)
−0.951050 + 0.309037i \(0.899993\pi\)
\(422\) −1193.84 −0.137714
\(423\) 2724.53 0.313170
\(424\) −2909.47 −0.333246
\(425\) 10478.6 1.19597
\(426\) −742.529 −0.0844498
\(427\) −2245.23 −0.254460
\(428\) 9505.07 1.07347
\(429\) 619.668 0.0697386
\(430\) −146.119 −0.0163872
\(431\) −15112.6 −1.68897 −0.844486 0.535578i \(-0.820094\pi\)
−0.844486 + 0.535578i \(0.820094\pi\)
\(432\) −9510.94 −1.05925
\(433\) 4506.66 0.500176 0.250088 0.968223i \(-0.419540\pi\)
0.250088 + 0.968223i \(0.419540\pi\)
\(434\) 58.7215 0.00649475
\(435\) 3361.66 0.370527
\(436\) 8147.07 0.894894
\(437\) 0 0
\(438\) 502.832 0.0548544
\(439\) 10839.4 1.17844 0.589221 0.807972i \(-0.299435\pi\)
0.589221 + 0.807972i \(0.299435\pi\)
\(440\) −50.6186 −0.00548443
\(441\) 2414.81 0.260750
\(442\) 1335.20 0.143685
\(443\) −3718.12 −0.398766 −0.199383 0.979922i \(-0.563894\pi\)
−0.199383 + 0.979922i \(0.563894\pi\)
\(444\) −11129.9 −1.18965
\(445\) 6704.88 0.714252
\(446\) 657.004 0.0697534
\(447\) −601.109 −0.0636051
\(448\) −4491.58 −0.473677
\(449\) −6029.90 −0.633783 −0.316891 0.948462i \(-0.602639\pi\)
−0.316891 + 0.948462i \(0.602639\pi\)
\(450\) −271.773 −0.0284700
\(451\) −577.481 −0.0602938
\(452\) −12649.5 −1.31633
\(453\) 5675.49 0.588649
\(454\) 1348.78 0.139430
\(455\) −1962.97 −0.202253
\(456\) 1609.49 0.165288
\(457\) −9631.45 −0.985865 −0.492932 0.870068i \(-0.664075\pi\)
−0.492932 + 0.870068i \(0.664075\pi\)
\(458\) 837.597 0.0854548
\(459\) 14817.7 1.50682
\(460\) 0 0
\(461\) −8074.51 −0.815764 −0.407882 0.913035i \(-0.633733\pi\)
−0.407882 + 0.913035i \(0.633733\pi\)
\(462\) −29.9656 −0.00301759
\(463\) 100.139 0.0100516 0.00502578 0.999987i \(-0.498400\pi\)
0.00502578 + 0.999987i \(0.498400\pi\)
\(464\) −12097.9 −1.21041
\(465\) 409.231 0.0408121
\(466\) −593.058 −0.0589546
\(467\) 11461.9 1.13575 0.567874 0.823116i \(-0.307766\pi\)
0.567874 + 0.823116i \(0.307766\pi\)
\(468\) 3824.02 0.377703
\(469\) 4757.85 0.468438
\(470\) −320.573 −0.0314616
\(471\) −4287.76 −0.419469
\(472\) −3476.21 −0.338994
\(473\) −380.219 −0.0369609
\(474\) −972.161 −0.0942043
\(475\) −9705.09 −0.937473
\(476\) 7129.83 0.686545
\(477\) 6402.74 0.614594
\(478\) −1503.00 −0.143819
\(479\) 1178.21 0.112388 0.0561939 0.998420i \(-0.482103\pi\)
0.0561939 + 0.998420i \(0.482103\pi\)
\(480\) 879.720 0.0836533
\(481\) 17180.6 1.62863
\(482\) 1193.93 0.112826
\(483\) 0 0
\(484\) 10486.9 0.984868
\(485\) 1609.20 0.150660
\(486\) −669.441 −0.0624824
\(487\) −11163.9 −1.03878 −0.519390 0.854537i \(-0.673841\pi\)
−0.519390 + 0.854537i \(0.673841\pi\)
\(488\) −1033.94 −0.0959107
\(489\) −8025.83 −0.742210
\(490\) −284.131 −0.0261954
\(491\) −11408.8 −1.04861 −0.524307 0.851529i \(-0.675676\pi\)
−0.524307 + 0.851529i \(0.675676\pi\)
\(492\) 6680.80 0.612182
\(493\) 18848.1 1.72186
\(494\) −1236.64 −0.112629
\(495\) 111.394 0.0101148
\(496\) −1472.73 −0.133322
\(497\) 6120.59 0.552406
\(498\) −1203.68 −0.108310
\(499\) 10900.7 0.977917 0.488958 0.872307i \(-0.337377\pi\)
0.488958 + 0.872307i \(0.337377\pi\)
\(500\) −7618.47 −0.681416
\(501\) 6388.37 0.569683
\(502\) −303.478 −0.0269818
\(503\) −17446.4 −1.54652 −0.773258 0.634092i \(-0.781374\pi\)
−0.773258 + 0.634092i \(0.781374\pi\)
\(504\) −371.514 −0.0328344
\(505\) −333.872 −0.0294200
\(506\) 0 0
\(507\) 1847.21 0.161810
\(508\) 8702.06 0.760022
\(509\) 11723.8 1.02092 0.510459 0.859902i \(-0.329476\pi\)
0.510459 + 0.859902i \(0.329476\pi\)
\(510\) −449.967 −0.0390684
\(511\) −4144.79 −0.358816
\(512\) −5292.45 −0.456827
\(513\) −13723.9 −1.18114
\(514\) 301.562 0.0258781
\(515\) −1272.74 −0.108901
\(516\) 4398.71 0.375276
\(517\) −834.169 −0.0709608
\(518\) −830.811 −0.0704705
\(519\) 4870.10 0.411895
\(520\) −903.958 −0.0762330
\(521\) −14113.3 −1.18678 −0.593391 0.804914i \(-0.702211\pi\)
−0.593391 + 0.804914i \(0.702211\pi\)
\(522\) −488.845 −0.0409888
\(523\) 12010.1 1.00414 0.502068 0.864828i \(-0.332573\pi\)
0.502068 + 0.864828i \(0.332573\pi\)
\(524\) −3294.83 −0.274686
\(525\) −4199.69 −0.349123
\(526\) −976.992 −0.0809864
\(527\) 2294.47 0.189656
\(528\) 751.535 0.0619439
\(529\) 0 0
\(530\) −753.360 −0.0617431
\(531\) 7649.95 0.625197
\(532\) −6603.52 −0.538156
\(533\) −10312.8 −0.838078
\(534\) 1827.84 0.148125
\(535\) 4944.66 0.399582
\(536\) 2191.02 0.176563
\(537\) 14682.1 1.17985
\(538\) 1378.22 0.110445
\(539\) −739.343 −0.0590830
\(540\) −4993.35 −0.397925
\(541\) 11256.3 0.894536 0.447268 0.894400i \(-0.352397\pi\)
0.447268 + 0.894400i \(0.352397\pi\)
\(542\) −1853.79 −0.146913
\(543\) 9911.56 0.783325
\(544\) 4932.40 0.388741
\(545\) 4238.21 0.333110
\(546\) −535.131 −0.0419441
\(547\) −14543.7 −1.13683 −0.568413 0.822743i \(-0.692442\pi\)
−0.568413 + 0.822743i \(0.692442\pi\)
\(548\) 6104.04 0.475824
\(549\) 2275.36 0.176885
\(550\) 83.2089 0.00645098
\(551\) −17456.8 −1.34970
\(552\) 0 0
\(553\) 8013.42 0.616212
\(554\) −834.350 −0.0639858
\(555\) −5789.93 −0.442827
\(556\) 17241.8 1.31514
\(557\) 9575.70 0.728430 0.364215 0.931315i \(-0.381337\pi\)
0.364215 + 0.931315i \(0.381337\pi\)
\(558\) −59.5094 −0.00451475
\(559\) −6790.03 −0.513753
\(560\) −2380.69 −0.179647
\(561\) −1170.87 −0.0881177
\(562\) −638.623 −0.0479336
\(563\) 10941.0 0.819020 0.409510 0.912306i \(-0.365700\pi\)
0.409510 + 0.912306i \(0.365700\pi\)
\(564\) 9650.39 0.720487
\(565\) −6580.41 −0.489983
\(566\) −664.057 −0.0493152
\(567\) −3588.48 −0.265788
\(568\) 2818.57 0.208212
\(569\) −25029.1 −1.84407 −0.922033 0.387111i \(-0.873473\pi\)
−0.922033 + 0.387111i \(0.873473\pi\)
\(570\) 416.751 0.0306242
\(571\) 11123.7 0.815257 0.407629 0.913148i \(-0.366356\pi\)
0.407629 + 0.913148i \(0.366356\pi\)
\(572\) −1170.80 −0.0855832
\(573\) 2566.04 0.187082
\(574\) 498.699 0.0362636
\(575\) 0 0
\(576\) 4551.85 0.329271
\(577\) −1382.51 −0.0997478 −0.0498739 0.998756i \(-0.515882\pi\)
−0.0498739 + 0.998756i \(0.515882\pi\)
\(578\) −1206.43 −0.0868183
\(579\) 482.915 0.0346620
\(580\) −6351.52 −0.454711
\(581\) 9921.84 0.708481
\(582\) 438.690 0.0312445
\(583\) −1960.33 −0.139260
\(584\) −1908.70 −0.135244
\(585\) 1989.30 0.140594
\(586\) 102.431 0.00722077
\(587\) −23415.0 −1.64640 −0.823202 0.567749i \(-0.807814\pi\)
−0.823202 + 0.567749i \(0.807814\pi\)
\(588\) 8553.36 0.599889
\(589\) −2125.09 −0.148664
\(590\) −900.108 −0.0628083
\(591\) −11969.6 −0.833102
\(592\) 20836.7 1.44659
\(593\) 15127.1 1.04755 0.523775 0.851857i \(-0.324523\pi\)
0.523775 + 0.851857i \(0.324523\pi\)
\(594\) 117.665 0.00812772
\(595\) 3709.03 0.255555
\(596\) 1135.73 0.0780562
\(597\) 20513.7 1.40632
\(598\) 0 0
\(599\) −20031.3 −1.36637 −0.683187 0.730243i \(-0.739407\pi\)
−0.683187 + 0.730243i \(0.739407\pi\)
\(600\) −1933.98 −0.131591
\(601\) −9458.41 −0.641958 −0.320979 0.947086i \(-0.604012\pi\)
−0.320979 + 0.947086i \(0.604012\pi\)
\(602\) 328.349 0.0222300
\(603\) −4821.69 −0.325630
\(604\) −10723.3 −0.722390
\(605\) 5455.41 0.366602
\(606\) −91.0180 −0.00610124
\(607\) 9518.51 0.636482 0.318241 0.948010i \(-0.396908\pi\)
0.318241 + 0.948010i \(0.396908\pi\)
\(608\) −4568.30 −0.304719
\(609\) −7554.08 −0.502638
\(610\) −267.723 −0.0177702
\(611\) −14896.8 −0.986347
\(612\) −7225.50 −0.477244
\(613\) 13100.8 0.863192 0.431596 0.902067i \(-0.357951\pi\)
0.431596 + 0.902067i \(0.357951\pi\)
\(614\) −1380.97 −0.0907677
\(615\) 3475.44 0.227875
\(616\) 113.747 0.00743990
\(617\) −12355.3 −0.806169 −0.403085 0.915163i \(-0.632062\pi\)
−0.403085 + 0.915163i \(0.632062\pi\)
\(618\) −346.967 −0.0225843
\(619\) −23174.2 −1.50477 −0.752383 0.658726i \(-0.771096\pi\)
−0.752383 + 0.658726i \(0.771096\pi\)
\(620\) −773.200 −0.0500846
\(621\) 0 0
\(622\) 166.344 0.0107231
\(623\) −15066.7 −0.968917
\(624\) 13421.1 0.861014
\(625\) 9535.48 0.610271
\(626\) 1294.79 0.0826679
\(627\) 1084.44 0.0690720
\(628\) 8101.29 0.514772
\(629\) −32462.9 −2.05784
\(630\) −96.1976 −0.00608350
\(631\) −15294.8 −0.964940 −0.482470 0.875912i \(-0.660260\pi\)
−0.482470 + 0.875912i \(0.660260\pi\)
\(632\) 3690.23 0.232262
\(633\) 18695.9 1.17393
\(634\) −341.358 −0.0213834
\(635\) 4526.92 0.282906
\(636\) 22678.8 1.41395
\(637\) −13203.3 −0.821248
\(638\) 149.670 0.00928759
\(639\) −6202.71 −0.383999
\(640\) −2212.77 −0.136668
\(641\) 30409.1 1.87377 0.936885 0.349638i \(-0.113695\pi\)
0.936885 + 0.349638i \(0.113695\pi\)
\(642\) 1347.98 0.0828670
\(643\) −2545.73 −0.156133 −0.0780667 0.996948i \(-0.524875\pi\)
−0.0780667 + 0.996948i \(0.524875\pi\)
\(644\) 0 0
\(645\) 2288.26 0.139690
\(646\) 2336.63 0.142312
\(647\) 13101.7 0.796107 0.398054 0.917362i \(-0.369686\pi\)
0.398054 + 0.917362i \(0.369686\pi\)
\(648\) −1652.52 −0.100181
\(649\) −2342.19 −0.141662
\(650\) 1485.96 0.0896680
\(651\) −919.593 −0.0553636
\(652\) 15164.0 0.910840
\(653\) −28455.4 −1.70528 −0.852639 0.522500i \(-0.824999\pi\)
−0.852639 + 0.522500i \(0.824999\pi\)
\(654\) 1155.39 0.0690818
\(655\) −1714.01 −0.102247
\(656\) −12507.3 −0.744405
\(657\) 4200.41 0.249427
\(658\) 720.369 0.0426792
\(659\) 14405.4 0.851522 0.425761 0.904836i \(-0.360006\pi\)
0.425761 + 0.904836i \(0.360006\pi\)
\(660\) 394.564 0.0232703
\(661\) −6378.24 −0.375317 −0.187659 0.982234i \(-0.560090\pi\)
−0.187659 + 0.982234i \(0.560090\pi\)
\(662\) −704.817 −0.0413799
\(663\) −20909.6 −1.22483
\(664\) 4569.07 0.267040
\(665\) −3435.24 −0.200320
\(666\) 841.958 0.0489868
\(667\) 0 0
\(668\) −12070.2 −0.699116
\(669\) −10288.8 −0.594603
\(670\) 567.330 0.0327133
\(671\) −696.647 −0.0400801
\(672\) −1976.84 −0.113480
\(673\) 13344.7 0.764342 0.382171 0.924092i \(-0.375177\pi\)
0.382171 + 0.924092i \(0.375177\pi\)
\(674\) −1223.14 −0.0699013
\(675\) 16490.9 0.940346
\(676\) −3490.12 −0.198573
\(677\) −20354.1 −1.15550 −0.577749 0.816215i \(-0.696069\pi\)
−0.577749 + 0.816215i \(0.696069\pi\)
\(678\) −1793.91 −0.101615
\(679\) −3616.08 −0.204378
\(680\) 1708.03 0.0963236
\(681\) −21122.2 −1.18855
\(682\) 18.2200 0.00102299
\(683\) −26879.8 −1.50589 −0.752947 0.658081i \(-0.771368\pi\)
−0.752947 + 0.658081i \(0.771368\pi\)
\(684\) 6692.13 0.374093
\(685\) 3175.40 0.177118
\(686\) 1490.26 0.0829425
\(687\) −13117.0 −0.728448
\(688\) −8234.96 −0.456330
\(689\) −35008.0 −1.93570
\(690\) 0 0
\(691\) 7746.87 0.426490 0.213245 0.976999i \(-0.431597\pi\)
0.213245 + 0.976999i \(0.431597\pi\)
\(692\) −9201.55 −0.505478
\(693\) −250.317 −0.0137212
\(694\) 2623.71 0.143508
\(695\) 8969.42 0.489539
\(696\) −3478.70 −0.189454
\(697\) 19486.0 1.05895
\(698\) 184.217 0.00998956
\(699\) 9287.43 0.502551
\(700\) 7934.89 0.428444
\(701\) 28706.6 1.54670 0.773348 0.633982i \(-0.218581\pi\)
0.773348 + 0.633982i \(0.218581\pi\)
\(702\) 2101.29 0.112975
\(703\) 30066.5 1.61306
\(704\) −1393.64 −0.0746091
\(705\) 5020.26 0.268190
\(706\) 1062.01 0.0566135
\(707\) 750.252 0.0399096
\(708\) 27096.4 1.43834
\(709\) 8217.64 0.435289 0.217644 0.976028i \(-0.430163\pi\)
0.217644 + 0.976028i \(0.430163\pi\)
\(710\) 729.824 0.0385772
\(711\) −8120.95 −0.428353
\(712\) −6938.32 −0.365203
\(713\) 0 0
\(714\) 1011.13 0.0529982
\(715\) −609.066 −0.0318570
\(716\) −27740.4 −1.44792
\(717\) 23537.3 1.22597
\(718\) −3403.61 −0.176911
\(719\) 27287.3 1.41536 0.707681 0.706532i \(-0.249742\pi\)
0.707681 + 0.706532i \(0.249742\pi\)
\(720\) 2412.63 0.124880
\(721\) 2860.02 0.147729
\(722\) −326.283 −0.0168186
\(723\) −18697.3 −0.961769
\(724\) −18726.9 −0.961297
\(725\) 20976.3 1.07454
\(726\) 1487.22 0.0760274
\(727\) −15881.7 −0.810208 −0.405104 0.914271i \(-0.632765\pi\)
−0.405104 + 0.914271i \(0.632765\pi\)
\(728\) 2031.31 0.103414
\(729\) 20937.8 1.06375
\(730\) −494.228 −0.0250578
\(731\) 12829.8 0.649148
\(732\) 8059.41 0.406946
\(733\) 27928.9 1.40734 0.703669 0.710528i \(-0.251544\pi\)
0.703669 + 0.710528i \(0.251544\pi\)
\(734\) −2475.96 −0.124509
\(735\) 4449.57 0.223299
\(736\) 0 0
\(737\) 1476.26 0.0737839
\(738\) −505.391 −0.0252082
\(739\) 30594.9 1.52294 0.761469 0.648201i \(-0.224478\pi\)
0.761469 + 0.648201i \(0.224478\pi\)
\(740\) 10939.5 0.543437
\(741\) 19366.1 0.960094
\(742\) 1692.90 0.0837576
\(743\) 28225.2 1.39365 0.696826 0.717240i \(-0.254595\pi\)
0.696826 + 0.717240i \(0.254595\pi\)
\(744\) −423.478 −0.0208676
\(745\) 590.824 0.0290552
\(746\) 3312.27 0.162561
\(747\) −10055.0 −0.492493
\(748\) 2212.23 0.108138
\(749\) −11111.3 −0.542053
\(750\) −1080.43 −0.0526023
\(751\) −4270.40 −0.207495 −0.103748 0.994604i \(-0.533083\pi\)
−0.103748 + 0.994604i \(0.533083\pi\)
\(752\) −18066.8 −0.876102
\(753\) 4752.54 0.230003
\(754\) 2672.83 0.129097
\(755\) −5578.39 −0.268898
\(756\) 11220.7 0.539805
\(757\) −3631.91 −0.174378 −0.0871888 0.996192i \(-0.527788\pi\)
−0.0871888 + 0.996192i \(0.527788\pi\)
\(758\) 524.466 0.0251312
\(759\) 0 0
\(760\) −1581.95 −0.0755044
\(761\) 9256.89 0.440949 0.220474 0.975393i \(-0.429239\pi\)
0.220474 + 0.975393i \(0.429239\pi\)
\(762\) 1234.10 0.0586703
\(763\) −9523.80 −0.451881
\(764\) −4848.27 −0.229587
\(765\) −3758.80 −0.177647
\(766\) −924.413 −0.0436037
\(767\) −41827.2 −1.96909
\(768\) 15665.6 0.736047
\(769\) 951.862 0.0446359 0.0223180 0.999751i \(-0.492895\pi\)
0.0223180 + 0.999751i \(0.492895\pi\)
\(770\) 29.4529 0.00137845
\(771\) −4722.54 −0.220594
\(772\) −912.419 −0.0425372
\(773\) −1037.17 −0.0482593 −0.0241296 0.999709i \(-0.507681\pi\)
−0.0241296 + 0.999709i \(0.507681\pi\)
\(774\) −332.754 −0.0154530
\(775\) 2553.54 0.118356
\(776\) −1665.23 −0.0770337
\(777\) 13010.7 0.600716
\(778\) −1022.84 −0.0471346
\(779\) −18047.6 −0.830067
\(780\) 7046.20 0.323454
\(781\) 1899.09 0.0870098
\(782\) 0 0
\(783\) 29662.5 1.35383
\(784\) −16013.0 −0.729457
\(785\) 4214.40 0.191616
\(786\) −467.263 −0.0212045
\(787\) 38701.1 1.75292 0.876458 0.481478i \(-0.159900\pi\)
0.876458 + 0.481478i \(0.159900\pi\)
\(788\) 22615.3 1.02238
\(789\) 15299.9 0.690358
\(790\) 955.527 0.0430331
\(791\) 14787.0 0.664685
\(792\) −115.273 −0.00517177
\(793\) −12440.9 −0.557109
\(794\) 3495.58 0.156239
\(795\) 11797.8 0.526321
\(796\) −38758.6 −1.72583
\(797\) −21851.8 −0.971182 −0.485591 0.874186i \(-0.661396\pi\)
−0.485591 + 0.874186i \(0.661396\pi\)
\(798\) −936.493 −0.0415432
\(799\) 28147.5 1.24629
\(800\) 5489.33 0.242597
\(801\) 15268.9 0.673533
\(802\) −2662.39 −0.117222
\(803\) −1286.04 −0.0565172
\(804\) −17078.7 −0.749151
\(805\) 0 0
\(806\) 325.376 0.0142195
\(807\) −21583.3 −0.941470
\(808\) 345.496 0.0150427
\(809\) 7226.03 0.314034 0.157017 0.987596i \(-0.449812\pi\)
0.157017 + 0.987596i \(0.449812\pi\)
\(810\) −427.893 −0.0185613
\(811\) 2314.99 0.100235 0.0501173 0.998743i \(-0.484040\pi\)
0.0501173 + 0.998743i \(0.484040\pi\)
\(812\) 14272.7 0.616838
\(813\) 29030.8 1.25234
\(814\) −257.783 −0.0110998
\(815\) 7888.51 0.339046
\(816\) −25359.2 −1.08793
\(817\) −11882.7 −0.508842
\(818\) 936.764 0.0400406
\(819\) −4470.22 −0.190723
\(820\) −6566.49 −0.279649
\(821\) −2597.81 −0.110431 −0.0552156 0.998474i \(-0.517585\pi\)
−0.0552156 + 0.998474i \(0.517585\pi\)
\(822\) 865.657 0.0367315
\(823\) −12884.9 −0.545736 −0.272868 0.962052i \(-0.587972\pi\)
−0.272868 + 0.962052i \(0.587972\pi\)
\(824\) 1317.06 0.0556818
\(825\) −1303.07 −0.0549905
\(826\) 2022.66 0.0852025
\(827\) −9338.08 −0.392644 −0.196322 0.980539i \(-0.562900\pi\)
−0.196322 + 0.980539i \(0.562900\pi\)
\(828\) 0 0
\(829\) 16843.2 0.705655 0.352828 0.935688i \(-0.385220\pi\)
0.352828 + 0.935688i \(0.385220\pi\)
\(830\) 1183.09 0.0494766
\(831\) 13066.1 0.545438
\(832\) −24887.9 −1.03706
\(833\) 24947.8 1.03768
\(834\) 2445.19 0.101523
\(835\) −6279.07 −0.260235
\(836\) −2048.93 −0.0847652
\(837\) 3610.95 0.149119
\(838\) 1685.66 0.0694869
\(839\) −11419.2 −0.469886 −0.234943 0.972009i \(-0.575490\pi\)
−0.234943 + 0.972009i \(0.575490\pi\)
\(840\) −684.558 −0.0281184
\(841\) 13341.6 0.547032
\(842\) 4402.60 0.180194
\(843\) 10001.0 0.408604
\(844\) −35324.0 −1.44064
\(845\) −1815.61 −0.0739157
\(846\) −730.035 −0.0296680
\(847\) −12259.0 −0.497313
\(848\) −42457.7 −1.71934
\(849\) 10399.3 0.420381
\(850\) −2807.73 −0.113299
\(851\) 0 0
\(852\) −21970.3 −0.883438
\(853\) 35905.9 1.44126 0.720630 0.693320i \(-0.243853\pi\)
0.720630 + 0.693320i \(0.243853\pi\)
\(854\) 601.608 0.0241061
\(855\) 3481.33 0.139250
\(856\) −5116.82 −0.204310
\(857\) 44631.7 1.77899 0.889493 0.456949i \(-0.151058\pi\)
0.889493 + 0.456949i \(0.151058\pi\)
\(858\) −166.040 −0.00660664
\(859\) 10440.1 0.414682 0.207341 0.978269i \(-0.433519\pi\)
0.207341 + 0.978269i \(0.433519\pi\)
\(860\) −4323.44 −0.171428
\(861\) −7809.75 −0.309124
\(862\) 4049.40 0.160004
\(863\) 27382.8 1.08009 0.540046 0.841635i \(-0.318407\pi\)
0.540046 + 0.841635i \(0.318407\pi\)
\(864\) 7762.44 0.305652
\(865\) −4786.77 −0.188156
\(866\) −1207.56 −0.0473838
\(867\) 18893.0 0.740070
\(868\) 1737.48 0.0679422
\(869\) 2486.39 0.0970599
\(870\) −900.754 −0.0351017
\(871\) 26363.3 1.02559
\(872\) −4385.77 −0.170322
\(873\) 3664.60 0.142071
\(874\) 0 0
\(875\) 8905.87 0.344084
\(876\) 14878.0 0.573838
\(877\) −12291.8 −0.473277 −0.236638 0.971598i \(-0.576046\pi\)
−0.236638 + 0.971598i \(0.576046\pi\)
\(878\) −2904.41 −0.111639
\(879\) −1604.09 −0.0615524
\(880\) −738.676 −0.0282963
\(881\) −22566.6 −0.862982 −0.431491 0.902117i \(-0.642012\pi\)
−0.431491 + 0.902117i \(0.642012\pi\)
\(882\) −647.046 −0.0247020
\(883\) 1110.49 0.0423226 0.0211613 0.999776i \(-0.493264\pi\)
0.0211613 + 0.999776i \(0.493264\pi\)
\(884\) 39506.5 1.50311
\(885\) 14095.9 0.535400
\(886\) 996.267 0.0377768
\(887\) −27586.0 −1.04425 −0.522124 0.852870i \(-0.674860\pi\)
−0.522124 + 0.852870i \(0.674860\pi\)
\(888\) 5991.51 0.226421
\(889\) −10172.6 −0.383776
\(890\) −1796.57 −0.0676642
\(891\) −1113.43 −0.0418645
\(892\) 19439.7 0.729697
\(893\) −26069.7 −0.976920
\(894\) 161.067 0.00602559
\(895\) −14430.9 −0.538964
\(896\) 4972.38 0.185397
\(897\) 0 0
\(898\) 1615.71 0.0600410
\(899\) 4593.12 0.170399
\(900\) −8041.36 −0.297828
\(901\) 66147.7 2.44584
\(902\) 154.736 0.00571190
\(903\) −5142.02 −0.189497
\(904\) 6809.52 0.250532
\(905\) −9741.97 −0.357828
\(906\) −1520.74 −0.0557653
\(907\) −19150.3 −0.701075 −0.350537 0.936549i \(-0.614001\pi\)
−0.350537 + 0.936549i \(0.614001\pi\)
\(908\) 39908.2 1.45859
\(909\) −760.318 −0.0277428
\(910\) 525.975 0.0191603
\(911\) 7520.22 0.273497 0.136749 0.990606i \(-0.456335\pi\)
0.136749 + 0.990606i \(0.456335\pi\)
\(912\) 23487.2 0.852784
\(913\) 3078.53 0.111593
\(914\) 2580.74 0.0933953
\(915\) 4192.61 0.151479
\(916\) 24783.2 0.893952
\(917\) 3851.60 0.138704
\(918\) −3970.40 −0.142748
\(919\) 48041.8 1.72443 0.862215 0.506542i \(-0.169077\pi\)
0.862215 + 0.506542i \(0.169077\pi\)
\(920\) 0 0
\(921\) 21626.3 0.773737
\(922\) 2163.56 0.0772809
\(923\) 33914.3 1.20943
\(924\) −886.635 −0.0315673
\(925\) −36128.4 −1.28421
\(926\) −26.8323 −0.000952228 0
\(927\) −2898.39 −0.102692
\(928\) 9873.79 0.349271
\(929\) 7907.44 0.279262 0.139631 0.990204i \(-0.455408\pi\)
0.139631 + 0.990204i \(0.455408\pi\)
\(930\) −109.653 −0.00386631
\(931\) −23106.2 −0.813398
\(932\) −17547.7 −0.616730
\(933\) −2604.99 −0.0914079
\(934\) −3071.21 −0.107594
\(935\) 1150.83 0.0402527
\(936\) −2058.56 −0.0718870
\(937\) −20221.4 −0.705021 −0.352511 0.935808i \(-0.614672\pi\)
−0.352511 + 0.935808i \(0.614672\pi\)
\(938\) −1274.86 −0.0443771
\(939\) −20276.7 −0.704691
\(940\) −9485.27 −0.329123
\(941\) 12102.6 0.419270 0.209635 0.977780i \(-0.432772\pi\)
0.209635 + 0.977780i \(0.432772\pi\)
\(942\) 1148.90 0.0397381
\(943\) 0 0
\(944\) −50728.1 −1.74900
\(945\) 5837.15 0.200934
\(946\) 101.879 0.00350147
\(947\) −45025.8 −1.54503 −0.772514 0.634997i \(-0.781001\pi\)
−0.772514 + 0.634997i \(0.781001\pi\)
\(948\) −28764.7 −0.985480
\(949\) −22966.3 −0.785584
\(950\) 2600.47 0.0888109
\(951\) 5345.75 0.182280
\(952\) −3838.17 −0.130668
\(953\) 28967.9 0.984640 0.492320 0.870414i \(-0.336149\pi\)
0.492320 + 0.870414i \(0.336149\pi\)
\(954\) −1715.61 −0.0582232
\(955\) −2522.14 −0.0854601
\(956\) −44471.4 −1.50451
\(957\) −2343.87 −0.0791708
\(958\) −315.700 −0.0106470
\(959\) −7135.52 −0.240269
\(960\) 8387.31 0.281979
\(961\) −29231.9 −0.981231
\(962\) −4603.53 −0.154287
\(963\) 11260.4 0.376802
\(964\) 35326.6 1.18028
\(965\) −474.652 −0.0158338
\(966\) 0 0
\(967\) −4037.75 −0.134276 −0.0671381 0.997744i \(-0.521387\pi\)
−0.0671381 + 0.997744i \(0.521387\pi\)
\(968\) −5645.35 −0.187447
\(969\) −36592.3 −1.21312
\(970\) −431.184 −0.0142727
\(971\) 29400.4 0.971684 0.485842 0.874047i \(-0.338513\pi\)
0.485842 + 0.874047i \(0.338513\pi\)
\(972\) −19807.7 −0.653635
\(973\) −20155.4 −0.664083
\(974\) 2991.36 0.0984081
\(975\) −23270.5 −0.764363
\(976\) −15088.3 −0.494841
\(977\) 8142.37 0.266630 0.133315 0.991074i \(-0.457438\pi\)
0.133315 + 0.991074i \(0.457438\pi\)
\(978\) 2150.52 0.0703128
\(979\) −4674.88 −0.152615
\(980\) −8407.01 −0.274033
\(981\) 9651.59 0.314120
\(982\) 3056.97 0.0993398
\(983\) 11010.0 0.357236 0.178618 0.983918i \(-0.442837\pi\)
0.178618 + 0.983918i \(0.442837\pi\)
\(984\) −3596.44 −0.116515
\(985\) 11764.8 0.380566
\(986\) −5050.33 −0.163119
\(987\) −11281.2 −0.363813
\(988\) −36590.2 −1.17823
\(989\) 0 0
\(990\) −29.8480 −0.000958215 0
\(991\) −27404.9 −0.878453 −0.439226 0.898376i \(-0.644747\pi\)
−0.439226 + 0.898376i \(0.644747\pi\)
\(992\) 1201.98 0.0384707
\(993\) 11037.6 0.352737
\(994\) −1640.01 −0.0523318
\(995\) −20162.7 −0.642414
\(996\) −35615.1 −1.13304
\(997\) −20088.0 −0.638107 −0.319054 0.947737i \(-0.603365\pi\)
−0.319054 + 0.947737i \(0.603365\pi\)
\(998\) −2920.82 −0.0926423
\(999\) −51088.9 −1.61800
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 529.4.a.e.1.2 yes 2
23.22 odd 2 529.4.a.d.1.2 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
529.4.a.d.1.2 2 23.22 odd 2
529.4.a.e.1.2 yes 2 1.1 even 1 trivial