Properties

Label 529.4.a.a
Level $529$
Weight $4$
Character orbit 529.a
Self dual yes
Analytic conductor $31.212$
Analytic rank $1$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [529,4,Mod(1,529)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(529, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("529.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 529 = 23^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 529.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(31.2120103930\)
Analytic rank: \(1\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 23)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \( q - 2 q^{2} - 5 q^{3} - 4 q^{4} + 6 q^{5} + 10 q^{6} + 8 q^{7} + 24 q^{8} - 2 q^{9} - 12 q^{10} - 34 q^{11} + 20 q^{12} - 57 q^{13} - 16 q^{14} - 30 q^{15} - 16 q^{16} + 80 q^{17} + 4 q^{18} + 70 q^{19}+ \cdots + 68 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
0
−2.00000 −5.00000 −4.00000 6.00000 10.0000 8.00000 24.0000 −2.00000 −12.0000
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(23\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 529.4.a.a 1
23.b odd 2 1 23.4.a.a 1
69.c even 2 1 207.4.a.a 1
92.b even 2 1 368.4.a.d 1
115.c odd 2 1 575.4.a.g 1
115.e even 4 2 575.4.b.b 2
161.c even 2 1 1127.4.a.a 1
184.e odd 2 1 1472.4.a.h 1
184.h even 2 1 1472.4.a.c 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
23.4.a.a 1 23.b odd 2 1
207.4.a.a 1 69.c even 2 1
368.4.a.d 1 92.b even 2 1
529.4.a.a 1 1.a even 1 1 trivial
575.4.a.g 1 115.c odd 2 1
575.4.b.b 2 115.e even 4 2
1127.4.a.a 1 161.c even 2 1
1472.4.a.c 1 184.h even 2 1
1472.4.a.h 1 184.e odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{4}^{\mathrm{new}}(\Gamma_0(529))\):

\( T_{2} + 2 \) Copy content Toggle raw display
\( T_{3} + 5 \) Copy content Toggle raw display
\( T_{5} - 6 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T + 2 \) Copy content Toggle raw display
$3$ \( T + 5 \) Copy content Toggle raw display
$5$ \( T - 6 \) Copy content Toggle raw display
$7$ \( T - 8 \) Copy content Toggle raw display
$11$ \( T + 34 \) Copy content Toggle raw display
$13$ \( T + 57 \) Copy content Toggle raw display
$17$ \( T - 80 \) Copy content Toggle raw display
$19$ \( T - 70 \) Copy content Toggle raw display
$23$ \( T \) Copy content Toggle raw display
$29$ \( T - 245 \) Copy content Toggle raw display
$31$ \( T - 103 \) Copy content Toggle raw display
$37$ \( T - 298 \) Copy content Toggle raw display
$41$ \( T - 95 \) Copy content Toggle raw display
$43$ \( T + 88 \) Copy content Toggle raw display
$47$ \( T + 357 \) Copy content Toggle raw display
$53$ \( T - 414 \) Copy content Toggle raw display
$59$ \( T + 408 \) Copy content Toggle raw display
$61$ \( T + 822 \) Copy content Toggle raw display
$67$ \( T + 926 \) Copy content Toggle raw display
$71$ \( T - 335 \) Copy content Toggle raw display
$73$ \( T + 899 \) Copy content Toggle raw display
$79$ \( T - 1322 \) Copy content Toggle raw display
$83$ \( T - 36 \) Copy content Toggle raw display
$89$ \( T - 460 \) Copy content Toggle raw display
$97$ \( T - 964 \) Copy content Toggle raw display
show more
show less