Properties

Label 529.4.a
Level $529$
Weight $4$
Character orbit 529.a
Rep. character $\chi_{529}(1,\cdot)$
Character field $\Q$
Dimension $116$
Newform subspaces $14$
Sturm bound $184$
Trace bound $5$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 529 = 23^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 529.a (trivial)
Character field: \(\Q\)
Newform subspaces: \( 14 \)
Sturm bound: \(184\)
Trace bound: \(5\)
Distinguishing \(T_p\): \(2\), \(3\), \(5\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{4}(\Gamma_0(529))\).

Total New Old
Modular forms 150 137 13
Cusp forms 126 116 10
Eisenstein series 24 21 3

The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.

\(23\)Dim
\(+\)\(61\)
\(-\)\(55\)

Trace form

\( 116 q - 2 q^{3} + 424 q^{4} - 8 q^{5} - 8 q^{6} - 8 q^{7} + 42 q^{8} + 926 q^{9} + 58 q^{10} - 42 q^{11} + 86 q^{12} - 54 q^{13} + 128 q^{14} - 40 q^{15} + 1360 q^{16} - 18 q^{17} + 40 q^{18} - 26 q^{19}+ \cdots + 1566 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{4}^{\mathrm{new}}(\Gamma_0(529))\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces A-L signs Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$ 23
529.4.a.a 529.a 1.a $1$ $31.212$ \(\Q\) None 23.4.a.a \(-2\) \(-5\) \(6\) \(8\) $-$ $\mathrm{SU}(2)$ \(q-2q^{2}-5q^{3}-4q^{4}+6q^{5}+10q^{6}+\cdots\)
529.4.a.b 529.a 1.a $1$ $31.212$ \(\Q\) \(\Q(\sqrt{-23}) \) 529.4.a.b \(3\) \(4\) \(0\) \(0\) $-$ $N(\mathrm{U}(1))$ \(q+3q^{2}+4q^{3}+q^{4}+12q^{6}-21q^{8}+\cdots\)
529.4.a.c 529.a 1.a $2$ $31.212$ \(\Q(\sqrt{85}) \) None 529.4.a.c \(-4\) \(-2\) \(0\) \(0\) $-$ $\mathrm{SU}(2)$ \(q-2q^{2}-q^{3}-4q^{4}+\beta q^{5}+2q^{6}+\cdots\)
529.4.a.d 529.a 1.a $2$ $31.212$ \(\Q(\sqrt{3}) \) None 529.4.a.d \(-4\) \(-2\) \(-16\) \(-22\) $-$ $\mathrm{SU}(2)$ \(q+(-2+\beta )q^{2}+(-1+3\beta )q^{3}+(-1+\cdots)q^{4}+\cdots\)
529.4.a.e 529.a 1.a $2$ $31.212$ \(\Q(\sqrt{3}) \) None 529.4.a.d \(-4\) \(-2\) \(16\) \(22\) $-$ $\mathrm{SU}(2)$ \(q+(-2+\beta )q^{2}+(-1+3\beta )q^{3}+(-1+\cdots)q^{4}+\cdots\)
529.4.a.f 529.a 1.a $2$ $31.212$ \(\Q(\sqrt{69}) \) \(\Q(\sqrt{-23}) \) 529.4.a.f \(-3\) \(-4\) \(0\) \(0\) $-$ $N(\mathrm{U}(1))$ \(q+(-1-\beta )q^{2}+(-3+2\beta )q^{3}+(10+\cdots)q^{4}+\cdots\)
529.4.a.g 529.a 1.a $4$ $31.212$ 4.4.334189.1 None 23.4.a.b \(2\) \(7\) \(-14\) \(-16\) $-$ $\mathrm{SU}(2)$ \(q+(1+\beta _{3})q^{2}+(1+\beta _{1}+\beta _{2})q^{3}+(6+\cdots)q^{4}+\cdots\)
529.4.a.h 529.a 1.a $5$ $31.212$ \(\mathbb{Q}[x]/(x^{5} - \cdots)\) None 529.4.a.h \(0\) \(-7\) \(-4\) \(14\) $-$ $\mathrm{SU}(2)$ \(q+\beta _{1}q^{2}+(-1-\beta _{1}-\beta _{2})q^{3}+(3+\beta _{1}+\cdots)q^{4}+\cdots\)
529.4.a.i 529.a 1.a $5$ $31.212$ \(\mathbb{Q}[x]/(x^{5} - \cdots)\) None 529.4.a.h \(0\) \(-7\) \(4\) \(-14\) $-$ $\mathrm{SU}(2)$ \(q+\beta _{1}q^{2}+(-1-\beta _{1}-\beta _{2})q^{3}+(3+\beta _{1}+\cdots)q^{4}+\cdots\)
529.4.a.j 529.a 1.a $6$ $31.212$ 6.6.\(\cdots\).1 None 529.4.a.j \(0\) \(-6\) \(0\) \(0\) $-$ $\mathrm{SU}(2)$ \(q+\beta _{2}q^{2}+(-1-\beta _{2}+\beta _{3})q^{3}+(6-\beta _{2}+\cdots)q^{4}+\cdots\)
529.4.a.k 529.a 1.a $12$ $31.212$ \(\mathbb{Q}[x]/(x^{12} - \cdots)\) None 529.4.a.k \(4\) \(0\) \(0\) \(0\) $+$ $\mathrm{SU}(2)$ \(q+\beta _{2}q^{2}-\beta _{7}q^{3}+(4+\beta _{2}-\beta _{9})q^{4}+\cdots\)
529.4.a.l 529.a 1.a $24$ $31.212$ None 529.4.a.l \(8\) \(24\) \(0\) \(0\) $+$ $\mathrm{SU}(2)$
529.4.a.m 529.a 1.a $25$ $31.212$ None 23.4.c.a \(0\) \(-1\) \(-51\) \(-73\) $-$ $\mathrm{SU}(2)$
529.4.a.n 529.a 1.a $25$ $31.212$ None 23.4.c.a \(0\) \(-1\) \(51\) \(73\) $+$ $\mathrm{SU}(2)$

Decomposition of \(S_{4}^{\mathrm{old}}(\Gamma_0(529))\) into lower level spaces

\( S_{4}^{\mathrm{old}}(\Gamma_0(529)) \simeq \) \(S_{4}^{\mathrm{new}}(\Gamma_0(23))\)\(^{\oplus 2}\)