Defining parameters
Level: | \( N \) | \(=\) | \( 529 = 23^{2} \) |
Weight: | \( k \) | \(=\) | \( 4 \) |
Character orbit: | \([\chi]\) | \(=\) | 529.a (trivial) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 14 \) | ||
Sturm bound: | \(184\) | ||
Trace bound: | \(5\) | ||
Distinguishing \(T_p\): | \(2\), \(3\), \(5\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{4}(\Gamma_0(529))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 150 | 137 | 13 |
Cusp forms | 126 | 116 | 10 |
Eisenstein series | 24 | 21 | 3 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
\(23\) | Dim |
---|---|
\(+\) | \(61\) |
\(-\) | \(55\) |
Trace form
Decomposition of \(S_{4}^{\mathrm{new}}(\Gamma_0(529))\) into newform subspaces
Decomposition of \(S_{4}^{\mathrm{old}}(\Gamma_0(529))\) into lower level spaces
\( S_{4}^{\mathrm{old}}(\Gamma_0(529)) \simeq \) \(S_{4}^{\mathrm{new}}(\Gamma_0(23))\)\(^{\oplus 2}\)