Defining parameters
Level: | \( N \) | = | \( 529 = 23^{2} \) |
Weight: | \( k \) | = | \( 4 \) |
Nonzero newspaces: | \( 4 \) | ||
Sturm bound: | \(93104\) | ||
Trace bound: | \(1\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{4}(\Gamma_1(529))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 35288 | 35135 | 153 |
Cusp forms | 34540 | 34430 | 110 |
Eisenstein series | 748 | 705 | 43 |
Trace form
Decomposition of \(S_{4}^{\mathrm{new}}(\Gamma_1(529))\)
We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.
Label | \(\chi\) | Newforms | Dimension | \(\chi\) degree |
---|---|---|---|---|
529.4.a | \(\chi_{529}(1, \cdot)\) | 529.4.a.a | 1 | 1 |
529.4.a.b | 1 | |||
529.4.a.c | 2 | |||
529.4.a.d | 2 | |||
529.4.a.e | 2 | |||
529.4.a.f | 2 | |||
529.4.a.g | 4 | |||
529.4.a.h | 5 | |||
529.4.a.i | 5 | |||
529.4.a.j | 6 | |||
529.4.a.k | 12 | |||
529.4.a.l | 24 | |||
529.4.a.m | 25 | |||
529.4.a.n | 25 | |||
529.4.c | \(\chi_{529}(118, \cdot)\) | n/a | 1160 | 10 |
529.4.e | \(\chi_{529}(24, \cdot)\) | n/a | 3014 | 22 |
529.4.g | \(\chi_{529}(2, \cdot)\) | n/a | 30140 | 220 |
"n/a" means that newforms for that character have not been added to the database yet
Decomposition of \(S_{4}^{\mathrm{old}}(\Gamma_1(529))\) into lower level spaces
\( S_{4}^{\mathrm{old}}(\Gamma_1(529)) \cong \) \(S_{4}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 3}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(23))\)\(^{\oplus 2}\)