Properties

Label 528.8.a
Level $528$
Weight $8$
Character orbit 528.a
Rep. character $\chi_{528}(1,\cdot)$
Character field $\Q$
Dimension $70$
Newform subspaces $24$
Sturm bound $768$
Trace bound $7$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 528 = 2^{4} \cdot 3 \cdot 11 \)
Weight: \( k \) \(=\) \( 8 \)
Character orbit: \([\chi]\) \(=\) 528.a (trivial)
Character field: \(\Q\)
Newform subspaces: \( 24 \)
Sturm bound: \(768\)
Trace bound: \(7\)
Distinguishing \(T_p\): \(5\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{8}(\Gamma_0(528))\).

Total New Old
Modular forms 684 70 614
Cusp forms 660 70 590
Eisenstein series 24 0 24

The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.

\(2\)\(3\)\(11\)FrickeDim
\(+\)\(+\)\(+\)$+$\(9\)
\(+\)\(+\)\(-\)$-$\(8\)
\(+\)\(-\)\(+\)$-$\(9\)
\(+\)\(-\)\(-\)$+$\(10\)
\(-\)\(+\)\(+\)$-$\(8\)
\(-\)\(+\)\(-\)$+$\(9\)
\(-\)\(-\)\(+\)$+$\(9\)
\(-\)\(-\)\(-\)$-$\(8\)
Plus space\(+\)\(37\)
Minus space\(-\)\(33\)

Trace form

\( 70 q + 54 q^{3} + 556 q^{5} + 2012 q^{7} + 51030 q^{9} + O(q^{10}) \) \( 70 q + 54 q^{3} + 556 q^{5} + 2012 q^{7} + 51030 q^{9} - 13108 q^{13} - 13500 q^{15} - 2908 q^{17} + 41428 q^{19} + 1077626 q^{25} + 39366 q^{27} + 120844 q^{29} - 733040 q^{31} + 816504 q^{35} - 82772 q^{37} - 789156 q^{39} + 441284 q^{41} - 48052 q^{43} + 405324 q^{45} + 1056408 q^{47} + 8746478 q^{49} - 1496664 q^{51} + 2015212 q^{53} - 1331000 q^{55} - 1551096 q^{57} + 917968 q^{59} + 2102364 q^{61} + 1466748 q^{63} + 4613976 q^{65} - 11247064 q^{67} - 4790448 q^{69} + 5232568 q^{71} - 7980324 q^{73} + 5906250 q^{75} - 384980 q^{79} + 37200870 q^{81} - 15261432 q^{83} + 121640 q^{85} - 16127988 q^{89} - 1469064 q^{91} - 27129624 q^{95} + 9992292 q^{97} + O(q^{100}) \)

Decomposition of \(S_{8}^{\mathrm{new}}(\Gamma_0(528))\) into newform subspaces

Label Char Prim Dim $A$ Field CM Traces A-L signs Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$ 2 3 11
528.8.a.a 528.a 1.a $1$ $164.939$ \(\Q\) None \(0\) \(-27\) \(-410\) \(1028\) $-$ $+$ $-$ $\mathrm{SU}(2)$ \(q-3^{3}q^{3}-410q^{5}+1028q^{7}+3^{6}q^{9}+\cdots\)
528.8.a.b 528.a 1.a $1$ $164.939$ \(\Q\) None \(0\) \(-27\) \(-70\) \(8\) $-$ $+$ $-$ $\mathrm{SU}(2)$ \(q-3^{3}q^{3}-70q^{5}+8q^{7}+3^{6}q^{9}+11^{3}q^{11}+\cdots\)
528.8.a.c 528.a 1.a $1$ $164.939$ \(\Q\) None \(0\) \(27\) \(0\) \(286\) $-$ $-$ $-$ $\mathrm{SU}(2)$ \(q+3^{3}q^{3}+286q^{7}+3^{6}q^{9}+11^{3}q^{11}+\cdots\)
528.8.a.d 528.a 1.a $2$ $164.939$ \(\Q(\sqrt{131905}) \) None \(0\) \(-54\) \(-70\) \(-1162\) $-$ $+$ $+$ $\mathrm{SU}(2)$ \(q-3^{3}q^{3}+(-35-\beta )q^{5}+(-581+3\beta )q^{7}+\cdots\)
528.8.a.e 528.a 1.a $2$ $164.939$ \(\Q(\sqrt{3529}) \) None \(0\) \(-54\) \(-70\) \(896\) $-$ $+$ $+$ $\mathrm{SU}(2)$ \(q-3^{3}q^{3}+(-35-\beta )q^{5}+(448-6\beta )q^{7}+\cdots\)
528.8.a.f 528.a 1.a $2$ $164.939$ \(\Q(\sqrt{177}) \) None \(0\) \(-54\) \(-34\) \(166\) $-$ $+$ $-$ $\mathrm{SU}(2)$ \(q-3^{3}q^{3}+(-17-19\beta )q^{5}+(83-77\beta )q^{7}+\cdots\)
528.8.a.g 528.a 1.a $2$ $164.939$ \(\Q(\sqrt{3217}) \) None \(0\) \(-54\) \(250\) \(-1222\) $-$ $+$ $-$ $\mathrm{SU}(2)$ \(q-3^{3}q^{3}+(5^{3}-5\beta )q^{5}+(-611-3\beta )q^{7}+\cdots\)
528.8.a.h 528.a 1.a $2$ $164.939$ \(\Q(\sqrt{97}) \) None \(0\) \(54\) \(-194\) \(418\) $-$ $-$ $+$ $\mathrm{SU}(2)$ \(q+3^{3}q^{3}+(-97-7\beta )q^{5}+(209+21\beta )q^{7}+\cdots\)
528.8.a.i 528.a 1.a $2$ $164.939$ \(\Q(\sqrt{43465}) \) None \(0\) \(54\) \(-70\) \(-336\) $-$ $-$ $-$ $\mathrm{SU}(2)$ \(q+3^{3}q^{3}+(-35-\beta )q^{5}+(-168-2\beta )q^{7}+\cdots\)
528.8.a.j 528.a 1.a $2$ $164.939$ \(\Q(\sqrt{97}) \) None \(0\) \(54\) \(-70\) \(278\) $-$ $-$ $+$ $\mathrm{SU}(2)$ \(q+3^{3}q^{3}+(-35-5\beta )q^{5}+(139-21\beta )q^{7}+\cdots\)
528.8.a.k 528.a 1.a $2$ $164.939$ \(\Q(\sqrt{3193}) \) None \(0\) \(54\) \(-70\) \(762\) $-$ $-$ $-$ $\mathrm{SU}(2)$ \(q+3^{3}q^{3}+(-35-7\beta )q^{5}+(381+19\beta )q^{7}+\cdots\)
528.8.a.l 528.a 1.a $2$ $164.939$ \(\Q(\sqrt{175345}) \) None \(0\) \(54\) \(250\) \(822\) $-$ $-$ $+$ $\mathrm{SU}(2)$ \(q+3^{3}q^{3}+(5^{3}-\beta )q^{5}+(411-\beta )q^{7}+\cdots\)
528.8.a.m 528.a 1.a $3$ $164.939$ \(\mathbb{Q}[x]/(x^{3} - \cdots)\) None \(0\) \(-81\) \(84\) \(386\) $+$ $+$ $-$ $\mathrm{SU}(2)$ \(q-3^{3}q^{3}+(28-\beta _{1})q^{5}+(129-\beta _{1}+\cdots)q^{7}+\cdots\)
528.8.a.n 528.a 1.a $3$ $164.939$ \(\mathbb{Q}[x]/(x^{3} - \cdots)\) None \(0\) \(-81\) \(180\) \(922\) $-$ $+$ $-$ $\mathrm{SU}(2)$ \(q-3^{3}q^{3}+(60-\beta _{1})q^{5}+(307-\beta _{1}+\cdots)q^{7}+\cdots\)
528.8.a.o 528.a 1.a $3$ $164.939$ 3.3.115512.1 None \(0\) \(81\) \(-444\) \(-1614\) $-$ $-$ $-$ $\mathrm{SU}(2)$ \(q+3^{3}q^{3}+(-148+2\beta _{1}+\beta _{2})q^{5}+\cdots\)
528.8.a.p 528.a 1.a $3$ $164.939$ \(\mathbb{Q}[x]/(x^{3} - \cdots)\) None \(0\) \(81\) \(180\) \(-362\) $-$ $-$ $+$ $\mathrm{SU}(2)$ \(q+3^{3}q^{3}+(60-5\beta _{1})q^{5}+(-11^{2}-6\beta _{1}+\cdots)q^{7}+\cdots\)
528.8.a.q 528.a 1.a $4$ $164.939$ \(\mathbb{Q}[x]/(x^{4} - \cdots)\) None \(0\) \(-108\) \(14\) \(1106\) $+$ $+$ $+$ $\mathrm{SU}(2)$ \(q-3^{3}q^{3}+(4-\beta _{2}+\beta _{3})q^{5}+(277+\beta _{1}+\cdots)q^{7}+\cdots\)
528.8.a.r 528.a 1.a $4$ $164.939$ \(\mathbb{Q}[x]/(x^{4} - \cdots)\) None \(0\) \(-108\) \(306\) \(-890\) $-$ $+$ $+$ $\mathrm{SU}(2)$ \(q-3^{3}q^{3}+(77+\beta _{1}+\beta _{2})q^{5}+(-221+\cdots)q^{7}+\cdots\)
528.8.a.s 528.a 1.a $4$ $164.939$ \(\mathbb{Q}[x]/(x^{4} - \cdots)\) None \(0\) \(108\) \(84\) \(460\) $+$ $-$ $+$ $\mathrm{SU}(2)$ \(q+3^{3}q^{3}+(21+\beta _{1})q^{5}+(115-2\beta _{1}+\cdots)q^{7}+\cdots\)
528.8.a.t 528.a 1.a $5$ $164.939$ \(\mathbb{Q}[x]/(x^{5} - \cdots)\) None \(0\) \(-135\) \(14\) \(244\) $+$ $+$ $-$ $\mathrm{SU}(2)$ \(q-3^{3}q^{3}+(3+\beta _{1})q^{5}+(7^{2}-\beta _{1}-\beta _{2}+\cdots)q^{7}+\cdots\)
528.8.a.u 528.a 1.a $5$ $164.939$ \(\mathbb{Q}[x]/(x^{5} - \cdots)\) None \(0\) \(-135\) \(334\) \(-476\) $+$ $+$ $+$ $\mathrm{SU}(2)$ \(q-3^{3}q^{3}+(67+\beta _{1})q^{5}+(-95-\beta _{1}+\cdots)q^{7}+\cdots\)
528.8.a.v 528.a 1.a $5$ $164.939$ \(\mathbb{Q}[x]/(x^{5} - \cdots)\) None \(0\) \(135\) \(14\) \(-260\) $+$ $-$ $-$ $\mathrm{SU}(2)$ \(q+3^{3}q^{3}+(3-\beta _{2})q^{5}+(-52+\beta _{1}+\cdots)q^{7}+\cdots\)
528.8.a.w 528.a 1.a $5$ $164.939$ \(\mathbb{Q}[x]/(x^{5} - \cdots)\) None \(0\) \(135\) \(14\) \(-84\) $+$ $-$ $+$ $\mathrm{SU}(2)$ \(q+3^{3}q^{3}+(3-\beta _{1})q^{5}+(-17+\beta _{2}+\cdots)q^{7}+\cdots\)
528.8.a.x 528.a 1.a $5$ $164.939$ \(\mathbb{Q}[x]/(x^{5} - \cdots)\) None \(0\) \(135\) \(334\) \(636\) $+$ $-$ $-$ $\mathrm{SU}(2)$ \(q+3^{3}q^{3}+(67-\beta _{1})q^{5}+(127-\beta _{1}+\cdots)q^{7}+\cdots\)

Decomposition of \(S_{8}^{\mathrm{old}}(\Gamma_0(528))\) into lower level spaces

\( S_{8}^{\mathrm{old}}(\Gamma_0(528)) \cong \) \(S_{8}^{\mathrm{new}}(\Gamma_0(16))\)\(^{\oplus 4}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(\Gamma_0(2))\)\(^{\oplus 16}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(\Gamma_0(3))\)\(^{\oplus 10}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(\Gamma_0(6))\)\(^{\oplus 8}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(\Gamma_0(8))\)\(^{\oplus 8}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(\Gamma_0(11))\)\(^{\oplus 10}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(\Gamma_0(12))\)\(^{\oplus 6}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(\Gamma_0(22))\)\(^{\oplus 8}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(\Gamma_0(24))\)\(^{\oplus 4}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(\Gamma_0(33))\)\(^{\oplus 5}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(\Gamma_0(44))\)\(^{\oplus 6}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(\Gamma_0(48))\)\(^{\oplus 2}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(\Gamma_0(66))\)\(^{\oplus 4}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(\Gamma_0(88))\)\(^{\oplus 4}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(\Gamma_0(132))\)\(^{\oplus 3}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(\Gamma_0(176))\)\(^{\oplus 2}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(\Gamma_0(264))\)\(^{\oplus 2}\)