Properties

Label 528.4.a.o.1.1
Level $528$
Weight $4$
Character 528.1
Self dual yes
Analytic conductor $31.153$
Analytic rank $1$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [528,4,Mod(1,528)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(528, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("528.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 528 = 2^{4} \cdot 3 \cdot 11 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 528.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(31.1530084830\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{33}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 8 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 33)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(-2.37228\) of defining polynomial
Character \(\chi\) \(=\) 528.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-3.00000 q^{3} -3.48913 q^{5} +4.74456 q^{7} +9.00000 q^{9} +O(q^{10})\) \(q-3.00000 q^{3} -3.48913 q^{5} +4.74456 q^{7} +9.00000 q^{9} -11.0000 q^{11} -15.0217 q^{13} +10.4674 q^{15} +73.1684 q^{17} +78.7011 q^{19} -14.2337 q^{21} -112.000 q^{23} -112.826 q^{25} -27.0000 q^{27} +243.125 q^{29} -278.717 q^{31} +33.0000 q^{33} -16.5544 q^{35} +102.380 q^{37} +45.0652 q^{39} -241.255 q^{41} +280.016 q^{43} -31.4021 q^{45} +169.870 q^{47} -320.489 q^{49} -219.505 q^{51} -409.652 q^{53} +38.3804 q^{55} -236.103 q^{57} -196.000 q^{59} -701.359 q^{61} +42.7011 q^{63} +52.4128 q^{65} -900.587 q^{67} +336.000 q^{69} -756.500 q^{71} -1019.81 q^{73} +338.478 q^{75} -52.1902 q^{77} +327.549 q^{79} +81.0000 q^{81} +756.619 q^{83} -255.294 q^{85} -729.375 q^{87} +508.978 q^{89} -71.2716 q^{91} +836.152 q^{93} -274.598 q^{95} +614.358 q^{97} -99.0000 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 6 q^{3} + 16 q^{5} - 2 q^{7} + 18 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 2 q - 6 q^{3} + 16 q^{5} - 2 q^{7} + 18 q^{9} - 22 q^{11} - 76 q^{13} - 48 q^{15} - 26 q^{17} + 54 q^{19} + 6 q^{21} - 224 q^{23} + 142 q^{25} - 54 q^{27} + 222 q^{29} + 40 q^{31} + 66 q^{33} - 148 q^{35} - 48 q^{37} + 228 q^{39} - 494 q^{41} + 66 q^{43} + 144 q^{45} + 64 q^{47} - 618 q^{49} + 78 q^{51} - 84 q^{53} - 176 q^{55} - 162 q^{57} - 392 q^{59} - 1104 q^{61} - 18 q^{63} - 1136 q^{65} - 928 q^{67} + 672 q^{69} - 456 q^{71} - 592 q^{73} - 426 q^{75} + 22 q^{77} + 230 q^{79} + 162 q^{81} - 348 q^{83} - 2188 q^{85} - 666 q^{87} + 972 q^{89} + 340 q^{91} - 120 q^{93} - 756 q^{95} - 1184 q^{97} - 198 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −3.00000 −0.577350
\(4\) 0 0
\(5\) −3.48913 −0.312077 −0.156038 0.987751i \(-0.549872\pi\)
−0.156038 + 0.987751i \(0.549872\pi\)
\(6\) 0 0
\(7\) 4.74456 0.256182 0.128091 0.991762i \(-0.459115\pi\)
0.128091 + 0.991762i \(0.459115\pi\)
\(8\) 0 0
\(9\) 9.00000 0.333333
\(10\) 0 0
\(11\) −11.0000 −0.301511
\(12\) 0 0
\(13\) −15.0217 −0.320483 −0.160242 0.987078i \(-0.551227\pi\)
−0.160242 + 0.987078i \(0.551227\pi\)
\(14\) 0 0
\(15\) 10.4674 0.180178
\(16\) 0 0
\(17\) 73.1684 1.04388 0.521940 0.852982i \(-0.325209\pi\)
0.521940 + 0.852982i \(0.325209\pi\)
\(18\) 0 0
\(19\) 78.7011 0.950277 0.475138 0.879911i \(-0.342398\pi\)
0.475138 + 0.879911i \(0.342398\pi\)
\(20\) 0 0
\(21\) −14.2337 −0.147907
\(22\) 0 0
\(23\) −112.000 −1.01537 −0.507687 0.861541i \(-0.669499\pi\)
−0.507687 + 0.861541i \(0.669499\pi\)
\(24\) 0 0
\(25\) −112.826 −0.902608
\(26\) 0 0
\(27\) −27.0000 −0.192450
\(28\) 0 0
\(29\) 243.125 1.55680 0.778399 0.627769i \(-0.216032\pi\)
0.778399 + 0.627769i \(0.216032\pi\)
\(30\) 0 0
\(31\) −278.717 −1.61481 −0.807405 0.589998i \(-0.799129\pi\)
−0.807405 + 0.589998i \(0.799129\pi\)
\(32\) 0 0
\(33\) 33.0000 0.174078
\(34\) 0 0
\(35\) −16.5544 −0.0799486
\(36\) 0 0
\(37\) 102.380 0.454898 0.227449 0.973790i \(-0.426961\pi\)
0.227449 + 0.973790i \(0.426961\pi\)
\(38\) 0 0
\(39\) 45.0652 0.185031
\(40\) 0 0
\(41\) −241.255 −0.918970 −0.459485 0.888186i \(-0.651966\pi\)
−0.459485 + 0.888186i \(0.651966\pi\)
\(42\) 0 0
\(43\) 280.016 0.993071 0.496536 0.868016i \(-0.334605\pi\)
0.496536 + 0.868016i \(0.334605\pi\)
\(44\) 0 0
\(45\) −31.4021 −0.104026
\(46\) 0 0
\(47\) 169.870 0.527192 0.263596 0.964633i \(-0.415091\pi\)
0.263596 + 0.964633i \(0.415091\pi\)
\(48\) 0 0
\(49\) −320.489 −0.934371
\(50\) 0 0
\(51\) −219.505 −0.602684
\(52\) 0 0
\(53\) −409.652 −1.06170 −0.530849 0.847466i \(-0.678127\pi\)
−0.530849 + 0.847466i \(0.678127\pi\)
\(54\) 0 0
\(55\) 38.3804 0.0940947
\(56\) 0 0
\(57\) −236.103 −0.548643
\(58\) 0 0
\(59\) −196.000 −0.432492 −0.216246 0.976339i \(-0.569381\pi\)
−0.216246 + 0.976339i \(0.569381\pi\)
\(60\) 0 0
\(61\) −701.359 −1.47213 −0.736064 0.676912i \(-0.763318\pi\)
−0.736064 + 0.676912i \(0.763318\pi\)
\(62\) 0 0
\(63\) 42.7011 0.0853941
\(64\) 0 0
\(65\) 52.4128 0.100015
\(66\) 0 0
\(67\) −900.587 −1.64215 −0.821076 0.570819i \(-0.806626\pi\)
−0.821076 + 0.570819i \(0.806626\pi\)
\(68\) 0 0
\(69\) 336.000 0.586227
\(70\) 0 0
\(71\) −756.500 −1.26451 −0.632254 0.774762i \(-0.717870\pi\)
−0.632254 + 0.774762i \(0.717870\pi\)
\(72\) 0 0
\(73\) −1019.81 −1.63507 −0.817536 0.575877i \(-0.804661\pi\)
−0.817536 + 0.575877i \(0.804661\pi\)
\(74\) 0 0
\(75\) 338.478 0.521121
\(76\) 0 0
\(77\) −52.1902 −0.0772419
\(78\) 0 0
\(79\) 327.549 0.466483 0.233241 0.972419i \(-0.425067\pi\)
0.233241 + 0.972419i \(0.425067\pi\)
\(80\) 0 0
\(81\) 81.0000 0.111111
\(82\) 0 0
\(83\) 756.619 1.00060 0.500300 0.865852i \(-0.333223\pi\)
0.500300 + 0.865852i \(0.333223\pi\)
\(84\) 0 0
\(85\) −255.294 −0.325771
\(86\) 0 0
\(87\) −729.375 −0.898818
\(88\) 0 0
\(89\) 508.978 0.606198 0.303099 0.952959i \(-0.401979\pi\)
0.303099 + 0.952959i \(0.401979\pi\)
\(90\) 0 0
\(91\) −71.2716 −0.0821022
\(92\) 0 0
\(93\) 836.152 0.932311
\(94\) 0 0
\(95\) −274.598 −0.296559
\(96\) 0 0
\(97\) 614.358 0.643079 0.321539 0.946896i \(-0.395800\pi\)
0.321539 + 0.946896i \(0.395800\pi\)
\(98\) 0 0
\(99\) −99.0000 −0.100504
\(100\) 0 0
\(101\) −1015.92 −1.00087 −0.500434 0.865775i \(-0.666826\pi\)
−0.500434 + 0.865775i \(0.666826\pi\)
\(102\) 0 0
\(103\) −1102.16 −1.05436 −0.527181 0.849753i \(-0.676751\pi\)
−0.527181 + 0.849753i \(0.676751\pi\)
\(104\) 0 0
\(105\) 49.6631 0.0461583
\(106\) 0 0
\(107\) −1377.58 −1.24463 −0.622315 0.782767i \(-0.713808\pi\)
−0.622315 + 0.782767i \(0.713808\pi\)
\(108\) 0 0
\(109\) 320.217 0.281388 0.140694 0.990053i \(-0.455067\pi\)
0.140694 + 0.990053i \(0.455067\pi\)
\(110\) 0 0
\(111\) −307.141 −0.262636
\(112\) 0 0
\(113\) −1629.45 −1.35651 −0.678254 0.734828i \(-0.737263\pi\)
−0.678254 + 0.734828i \(0.737263\pi\)
\(114\) 0 0
\(115\) 390.782 0.316875
\(116\) 0 0
\(117\) −135.196 −0.106828
\(118\) 0 0
\(119\) 347.152 0.267423
\(120\) 0 0
\(121\) 121.000 0.0909091
\(122\) 0 0
\(123\) 723.766 0.530568
\(124\) 0 0
\(125\) 829.805 0.593760
\(126\) 0 0
\(127\) −2291.26 −1.60091 −0.800457 0.599390i \(-0.795410\pi\)
−0.800457 + 0.599390i \(0.795410\pi\)
\(128\) 0 0
\(129\) −840.049 −0.573350
\(130\) 0 0
\(131\) 1147.41 0.765267 0.382633 0.923900i \(-0.375017\pi\)
0.382633 + 0.923900i \(0.375017\pi\)
\(132\) 0 0
\(133\) 373.402 0.243444
\(134\) 0 0
\(135\) 94.2064 0.0600592
\(136\) 0 0
\(137\) 1268.60 0.791121 0.395561 0.918440i \(-0.370550\pi\)
0.395561 + 0.918440i \(0.370550\pi\)
\(138\) 0 0
\(139\) 486.288 0.296737 0.148368 0.988932i \(-0.452598\pi\)
0.148368 + 0.988932i \(0.452598\pi\)
\(140\) 0 0
\(141\) −509.609 −0.304374
\(142\) 0 0
\(143\) 165.239 0.0966294
\(144\) 0 0
\(145\) −848.293 −0.485841
\(146\) 0 0
\(147\) 961.467 0.539459
\(148\) 0 0
\(149\) 2354.11 1.29434 0.647169 0.762346i \(-0.275953\pi\)
0.647169 + 0.762346i \(0.275953\pi\)
\(150\) 0 0
\(151\) 570.070 0.307229 0.153615 0.988131i \(-0.450909\pi\)
0.153615 + 0.988131i \(0.450909\pi\)
\(152\) 0 0
\(153\) 658.516 0.347960
\(154\) 0 0
\(155\) 972.479 0.503945
\(156\) 0 0
\(157\) −2072.67 −1.05361 −0.526807 0.849985i \(-0.676611\pi\)
−0.526807 + 0.849985i \(0.676611\pi\)
\(158\) 0 0
\(159\) 1228.96 0.612972
\(160\) 0 0
\(161\) −531.391 −0.260121
\(162\) 0 0
\(163\) −2676.51 −1.28614 −0.643069 0.765808i \(-0.722339\pi\)
−0.643069 + 0.765808i \(0.722339\pi\)
\(164\) 0 0
\(165\) −115.141 −0.0543256
\(166\) 0 0
\(167\) 1188.12 0.550536 0.275268 0.961368i \(-0.411233\pi\)
0.275268 + 0.961368i \(0.411233\pi\)
\(168\) 0 0
\(169\) −1971.35 −0.897290
\(170\) 0 0
\(171\) 708.310 0.316759
\(172\) 0 0
\(173\) 807.147 0.354718 0.177359 0.984146i \(-0.443245\pi\)
0.177359 + 0.984146i \(0.443245\pi\)
\(174\) 0 0
\(175\) −535.310 −0.231232
\(176\) 0 0
\(177\) 588.000 0.249699
\(178\) 0 0
\(179\) 1950.39 0.814408 0.407204 0.913337i \(-0.366504\pi\)
0.407204 + 0.913337i \(0.366504\pi\)
\(180\) 0 0
\(181\) 1061.61 0.435959 0.217980 0.975953i \(-0.430053\pi\)
0.217980 + 0.975953i \(0.430053\pi\)
\(182\) 0 0
\(183\) 2104.08 0.849933
\(184\) 0 0
\(185\) −357.218 −0.141963
\(186\) 0 0
\(187\) −804.853 −0.314742
\(188\) 0 0
\(189\) −128.103 −0.0493023
\(190\) 0 0
\(191\) −2136.41 −0.809348 −0.404674 0.914461i \(-0.632615\pi\)
−0.404674 + 0.914461i \(0.632615\pi\)
\(192\) 0 0
\(193\) 3947.76 1.47236 0.736181 0.676784i \(-0.236627\pi\)
0.736181 + 0.676784i \(0.236627\pi\)
\(194\) 0 0
\(195\) −157.238 −0.0577439
\(196\) 0 0
\(197\) 923.886 0.334133 0.167066 0.985946i \(-0.446571\pi\)
0.167066 + 0.985946i \(0.446571\pi\)
\(198\) 0 0
\(199\) 476.152 0.169616 0.0848078 0.996397i \(-0.472972\pi\)
0.0848078 + 0.996397i \(0.472972\pi\)
\(200\) 0 0
\(201\) 2701.76 0.948097
\(202\) 0 0
\(203\) 1153.52 0.398824
\(204\) 0 0
\(205\) 841.770 0.286789
\(206\) 0 0
\(207\) −1008.00 −0.338458
\(208\) 0 0
\(209\) −865.712 −0.286519
\(210\) 0 0
\(211\) 4918.24 1.60467 0.802336 0.596872i \(-0.203590\pi\)
0.802336 + 0.596872i \(0.203590\pi\)
\(212\) 0 0
\(213\) 2269.50 0.730064
\(214\) 0 0
\(215\) −977.012 −0.309915
\(216\) 0 0
\(217\) −1322.39 −0.413686
\(218\) 0 0
\(219\) 3059.44 0.944010
\(220\) 0 0
\(221\) −1099.12 −0.334546
\(222\) 0 0
\(223\) −2100.29 −0.630700 −0.315350 0.948975i \(-0.602122\pi\)
−0.315350 + 0.948975i \(0.602122\pi\)
\(224\) 0 0
\(225\) −1015.43 −0.300869
\(226\) 0 0
\(227\) 2257.16 0.659970 0.329985 0.943986i \(-0.392956\pi\)
0.329985 + 0.943986i \(0.392956\pi\)
\(228\) 0 0
\(229\) −5311.07 −1.53260 −0.766301 0.642482i \(-0.777905\pi\)
−0.766301 + 0.642482i \(0.777905\pi\)
\(230\) 0 0
\(231\) 156.571 0.0445956
\(232\) 0 0
\(233\) 2466.27 0.693435 0.346718 0.937970i \(-0.387296\pi\)
0.346718 + 0.937970i \(0.387296\pi\)
\(234\) 0 0
\(235\) −592.696 −0.164524
\(236\) 0 0
\(237\) −982.646 −0.269324
\(238\) 0 0
\(239\) −1429.40 −0.386863 −0.193432 0.981114i \(-0.561962\pi\)
−0.193432 + 0.981114i \(0.561962\pi\)
\(240\) 0 0
\(241\) −978.989 −0.261669 −0.130835 0.991404i \(-0.541766\pi\)
−0.130835 + 0.991404i \(0.541766\pi\)
\(242\) 0 0
\(243\) −243.000 −0.0641500
\(244\) 0 0
\(245\) 1118.23 0.291595
\(246\) 0 0
\(247\) −1182.23 −0.304548
\(248\) 0 0
\(249\) −2269.86 −0.577696
\(250\) 0 0
\(251\) 6530.63 1.64227 0.821135 0.570734i \(-0.193341\pi\)
0.821135 + 0.570734i \(0.193341\pi\)
\(252\) 0 0
\(253\) 1232.00 0.306147
\(254\) 0 0
\(255\) 765.882 0.188084
\(256\) 0 0
\(257\) 8130.26 1.97335 0.986676 0.162696i \(-0.0520188\pi\)
0.986676 + 0.162696i \(0.0520188\pi\)
\(258\) 0 0
\(259\) 485.750 0.116537
\(260\) 0 0
\(261\) 2188.12 0.518933
\(262\) 0 0
\(263\) 4549.42 1.06665 0.533326 0.845910i \(-0.320942\pi\)
0.533326 + 0.845910i \(0.320942\pi\)
\(264\) 0 0
\(265\) 1429.33 0.331332
\(266\) 0 0
\(267\) −1526.93 −0.349988
\(268\) 0 0
\(269\) −29.1522 −0.00660760 −0.00330380 0.999995i \(-0.501052\pi\)
−0.00330380 + 0.999995i \(0.501052\pi\)
\(270\) 0 0
\(271\) −7711.22 −1.72850 −0.864250 0.503063i \(-0.832206\pi\)
−0.864250 + 0.503063i \(0.832206\pi\)
\(272\) 0 0
\(273\) 213.815 0.0474017
\(274\) 0 0
\(275\) 1241.09 0.272147
\(276\) 0 0
\(277\) 1127.52 0.244571 0.122286 0.992495i \(-0.460978\pi\)
0.122286 + 0.992495i \(0.460978\pi\)
\(278\) 0 0
\(279\) −2508.46 −0.538270
\(280\) 0 0
\(281\) −1872.47 −0.397517 −0.198758 0.980049i \(-0.563691\pi\)
−0.198758 + 0.980049i \(0.563691\pi\)
\(282\) 0 0
\(283\) −2124.48 −0.446245 −0.223123 0.974790i \(-0.571625\pi\)
−0.223123 + 0.974790i \(0.571625\pi\)
\(284\) 0 0
\(285\) 823.794 0.171219
\(286\) 0 0
\(287\) −1144.65 −0.235424
\(288\) 0 0
\(289\) 440.621 0.0896846
\(290\) 0 0
\(291\) −1843.07 −0.371282
\(292\) 0 0
\(293\) −3324.19 −0.662802 −0.331401 0.943490i \(-0.607521\pi\)
−0.331401 + 0.943490i \(0.607521\pi\)
\(294\) 0 0
\(295\) 683.869 0.134971
\(296\) 0 0
\(297\) 297.000 0.0580259
\(298\) 0 0
\(299\) 1682.44 0.325411
\(300\) 0 0
\(301\) 1328.55 0.254407
\(302\) 0 0
\(303\) 3047.75 0.577851
\(304\) 0 0
\(305\) 2447.13 0.459417
\(306\) 0 0
\(307\) 1698.94 0.315843 0.157921 0.987452i \(-0.449521\pi\)
0.157921 + 0.987452i \(0.449521\pi\)
\(308\) 0 0
\(309\) 3306.49 0.608736
\(310\) 0 0
\(311\) −6928.83 −1.26334 −0.631668 0.775239i \(-0.717630\pi\)
−0.631668 + 0.775239i \(0.717630\pi\)
\(312\) 0 0
\(313\) −3560.75 −0.643020 −0.321510 0.946906i \(-0.604190\pi\)
−0.321510 + 0.946906i \(0.604190\pi\)
\(314\) 0 0
\(315\) −148.989 −0.0266495
\(316\) 0 0
\(317\) 332.750 0.0589561 0.0294780 0.999565i \(-0.490615\pi\)
0.0294780 + 0.999565i \(0.490615\pi\)
\(318\) 0 0
\(319\) −2674.37 −0.469393
\(320\) 0 0
\(321\) 4132.73 0.718587
\(322\) 0 0
\(323\) 5758.43 0.991975
\(324\) 0 0
\(325\) 1694.84 0.289271
\(326\) 0 0
\(327\) −960.652 −0.162459
\(328\) 0 0
\(329\) 805.957 0.135057
\(330\) 0 0
\(331\) 541.445 0.0899108 0.0449554 0.998989i \(-0.485685\pi\)
0.0449554 + 0.998989i \(0.485685\pi\)
\(332\) 0 0
\(333\) 921.423 0.151633
\(334\) 0 0
\(335\) 3142.26 0.512478
\(336\) 0 0
\(337\) 816.531 0.131986 0.0659930 0.997820i \(-0.478978\pi\)
0.0659930 + 0.997820i \(0.478978\pi\)
\(338\) 0 0
\(339\) 4888.34 0.783180
\(340\) 0 0
\(341\) 3065.89 0.486883
\(342\) 0 0
\(343\) −3147.97 −0.495552
\(344\) 0 0
\(345\) −1172.35 −0.182948
\(346\) 0 0
\(347\) −6260.53 −0.968539 −0.484269 0.874919i \(-0.660914\pi\)
−0.484269 + 0.874919i \(0.660914\pi\)
\(348\) 0 0
\(349\) −12768.5 −1.95840 −0.979198 0.202906i \(-0.934961\pi\)
−0.979198 + 0.202906i \(0.934961\pi\)
\(350\) 0 0
\(351\) 405.587 0.0616771
\(352\) 0 0
\(353\) −2649.28 −0.399453 −0.199727 0.979852i \(-0.564005\pi\)
−0.199727 + 0.979852i \(0.564005\pi\)
\(354\) 0 0
\(355\) 2639.52 0.394623
\(356\) 0 0
\(357\) −1041.46 −0.154397
\(358\) 0 0
\(359\) 3203.91 0.471020 0.235510 0.971872i \(-0.424324\pi\)
0.235510 + 0.971872i \(0.424324\pi\)
\(360\) 0 0
\(361\) −665.143 −0.0969737
\(362\) 0 0
\(363\) −363.000 −0.0524864
\(364\) 0 0
\(365\) 3558.26 0.510268
\(366\) 0 0
\(367\) 8429.40 1.19894 0.599470 0.800397i \(-0.295378\pi\)
0.599470 + 0.800397i \(0.295378\pi\)
\(368\) 0 0
\(369\) −2171.30 −0.306323
\(370\) 0 0
\(371\) −1943.62 −0.271988
\(372\) 0 0
\(373\) −9388.53 −1.30327 −0.651635 0.758533i \(-0.725917\pi\)
−0.651635 + 0.758533i \(0.725917\pi\)
\(374\) 0 0
\(375\) −2489.41 −0.342807
\(376\) 0 0
\(377\) −3652.16 −0.498928
\(378\) 0 0
\(379\) 14264.5 1.93329 0.966647 0.256112i \(-0.0824415\pi\)
0.966647 + 0.256112i \(0.0824415\pi\)
\(380\) 0 0
\(381\) 6873.77 0.924288
\(382\) 0 0
\(383\) −13462.2 −1.79605 −0.898026 0.439942i \(-0.854999\pi\)
−0.898026 + 0.439942i \(0.854999\pi\)
\(384\) 0 0
\(385\) 182.098 0.0241054
\(386\) 0 0
\(387\) 2520.15 0.331024
\(388\) 0 0
\(389\) −941.881 −0.122764 −0.0613821 0.998114i \(-0.519551\pi\)
−0.0613821 + 0.998114i \(0.519551\pi\)
\(390\) 0 0
\(391\) −8194.87 −1.05993
\(392\) 0 0
\(393\) −3442.24 −0.441827
\(394\) 0 0
\(395\) −1142.86 −0.145578
\(396\) 0 0
\(397\) −847.839 −0.107183 −0.0535917 0.998563i \(-0.517067\pi\)
−0.0535917 + 0.998563i \(0.517067\pi\)
\(398\) 0 0
\(399\) −1120.21 −0.140553
\(400\) 0 0
\(401\) 12203.6 1.51975 0.759875 0.650069i \(-0.225260\pi\)
0.759875 + 0.650069i \(0.225260\pi\)
\(402\) 0 0
\(403\) 4186.82 0.517520
\(404\) 0 0
\(405\) −282.619 −0.0346752
\(406\) 0 0
\(407\) −1126.18 −0.137157
\(408\) 0 0
\(409\) 8759.53 1.05900 0.529500 0.848310i \(-0.322380\pi\)
0.529500 + 0.848310i \(0.322380\pi\)
\(410\) 0 0
\(411\) −3805.79 −0.456754
\(412\) 0 0
\(413\) −929.934 −0.110797
\(414\) 0 0
\(415\) −2639.94 −0.312264
\(416\) 0 0
\(417\) −1458.86 −0.171321
\(418\) 0 0
\(419\) 11188.4 1.30451 0.652256 0.757999i \(-0.273823\pi\)
0.652256 + 0.757999i \(0.273823\pi\)
\(420\) 0 0
\(421\) −14082.3 −1.63023 −0.815116 0.579298i \(-0.803327\pi\)
−0.815116 + 0.579298i \(0.803327\pi\)
\(422\) 0 0
\(423\) 1528.83 0.175731
\(424\) 0 0
\(425\) −8255.30 −0.942214
\(426\) 0 0
\(427\) −3327.64 −0.377133
\(428\) 0 0
\(429\) −495.718 −0.0557890
\(430\) 0 0
\(431\) 5616.05 0.627647 0.313823 0.949481i \(-0.398390\pi\)
0.313823 + 0.949481i \(0.398390\pi\)
\(432\) 0 0
\(433\) 7195.75 0.798627 0.399314 0.916814i \(-0.369248\pi\)
0.399314 + 0.916814i \(0.369248\pi\)
\(434\) 0 0
\(435\) 2544.88 0.280500
\(436\) 0 0
\(437\) −8814.52 −0.964887
\(438\) 0 0
\(439\) −101.959 −0.0110848 −0.00554240 0.999985i \(-0.501764\pi\)
−0.00554240 + 0.999985i \(0.501764\pi\)
\(440\) 0 0
\(441\) −2884.40 −0.311457
\(442\) 0 0
\(443\) −4953.74 −0.531285 −0.265642 0.964072i \(-0.585584\pi\)
−0.265642 + 0.964072i \(0.585584\pi\)
\(444\) 0 0
\(445\) −1775.89 −0.189180
\(446\) 0 0
\(447\) −7062.34 −0.747287
\(448\) 0 0
\(449\) −11602.0 −1.21945 −0.609723 0.792615i \(-0.708719\pi\)
−0.609723 + 0.792615i \(0.708719\pi\)
\(450\) 0 0
\(451\) 2653.81 0.277080
\(452\) 0 0
\(453\) −1710.21 −0.177379
\(454\) 0 0
\(455\) 248.676 0.0256222
\(456\) 0 0
\(457\) −3530.68 −0.361397 −0.180698 0.983539i \(-0.557836\pi\)
−0.180698 + 0.983539i \(0.557836\pi\)
\(458\) 0 0
\(459\) −1975.55 −0.200895
\(460\) 0 0
\(461\) 11566.3 1.16854 0.584271 0.811559i \(-0.301381\pi\)
0.584271 + 0.811559i \(0.301381\pi\)
\(462\) 0 0
\(463\) −10888.5 −1.09294 −0.546470 0.837479i \(-0.684029\pi\)
−0.546470 + 0.837479i \(0.684029\pi\)
\(464\) 0 0
\(465\) −2917.44 −0.290953
\(466\) 0 0
\(467\) −10688.0 −1.05906 −0.529529 0.848292i \(-0.677631\pi\)
−0.529529 + 0.848292i \(0.677631\pi\)
\(468\) 0 0
\(469\) −4272.89 −0.420690
\(470\) 0 0
\(471\) 6218.02 0.608304
\(472\) 0 0
\(473\) −3080.18 −0.299422
\(474\) 0 0
\(475\) −8879.53 −0.857728
\(476\) 0 0
\(477\) −3686.87 −0.353900
\(478\) 0 0
\(479\) −2341.90 −0.223391 −0.111696 0.993742i \(-0.535628\pi\)
−0.111696 + 0.993742i \(0.535628\pi\)
\(480\) 0 0
\(481\) −1537.93 −0.145787
\(482\) 0 0
\(483\) 1594.17 0.150181
\(484\) 0 0
\(485\) −2143.57 −0.200690
\(486\) 0 0
\(487\) −6748.91 −0.627972 −0.313986 0.949428i \(-0.601665\pi\)
−0.313986 + 0.949428i \(0.601665\pi\)
\(488\) 0 0
\(489\) 8029.53 0.742552
\(490\) 0 0
\(491\) −7361.40 −0.676609 −0.338305 0.941037i \(-0.609853\pi\)
−0.338305 + 0.941037i \(0.609853\pi\)
\(492\) 0 0
\(493\) 17789.1 1.62511
\(494\) 0 0
\(495\) 345.423 0.0313649
\(496\) 0 0
\(497\) −3589.26 −0.323944
\(498\) 0 0
\(499\) −10381.7 −0.931359 −0.465680 0.884953i \(-0.654190\pi\)
−0.465680 + 0.884953i \(0.654190\pi\)
\(500\) 0 0
\(501\) −3564.36 −0.317852
\(502\) 0 0
\(503\) −19149.0 −1.69744 −0.848721 0.528840i \(-0.822627\pi\)
−0.848721 + 0.528840i \(0.822627\pi\)
\(504\) 0 0
\(505\) 3544.67 0.312348
\(506\) 0 0
\(507\) 5914.04 0.518051
\(508\) 0 0
\(509\) 16073.2 1.39967 0.699836 0.714303i \(-0.253256\pi\)
0.699836 + 0.714303i \(0.253256\pi\)
\(510\) 0 0
\(511\) −4838.58 −0.418877
\(512\) 0 0
\(513\) −2124.93 −0.182881
\(514\) 0 0
\(515\) 3845.58 0.329042
\(516\) 0 0
\(517\) −1868.56 −0.158954
\(518\) 0 0
\(519\) −2421.44 −0.204797
\(520\) 0 0
\(521\) −18955.3 −1.59395 −0.796975 0.604012i \(-0.793568\pi\)
−0.796975 + 0.604012i \(0.793568\pi\)
\(522\) 0 0
\(523\) 4442.19 0.371402 0.185701 0.982606i \(-0.440544\pi\)
0.185701 + 0.982606i \(0.440544\pi\)
\(524\) 0 0
\(525\) 1605.93 0.133502
\(526\) 0 0
\(527\) −20393.3 −1.68567
\(528\) 0 0
\(529\) 377.000 0.0309855
\(530\) 0 0
\(531\) −1764.00 −0.144164
\(532\) 0 0
\(533\) 3624.08 0.294515
\(534\) 0 0
\(535\) 4806.54 0.388420
\(536\) 0 0
\(537\) −5851.17 −0.470199
\(538\) 0 0
\(539\) 3525.38 0.281723
\(540\) 0 0
\(541\) 2180.90 0.173316 0.0866580 0.996238i \(-0.472381\pi\)
0.0866580 + 0.996238i \(0.472381\pi\)
\(542\) 0 0
\(543\) −3184.82 −0.251701
\(544\) 0 0
\(545\) −1117.28 −0.0878146
\(546\) 0 0
\(547\) −8225.04 −0.642920 −0.321460 0.946923i \(-0.604174\pi\)
−0.321460 + 0.946923i \(0.604174\pi\)
\(548\) 0 0
\(549\) −6312.23 −0.490709
\(550\) 0 0
\(551\) 19134.2 1.47939
\(552\) 0 0
\(553\) 1554.08 0.119505
\(554\) 0 0
\(555\) 1071.65 0.0819625
\(556\) 0 0
\(557\) −25181.9 −1.91561 −0.957804 0.287423i \(-0.907201\pi\)
−0.957804 + 0.287423i \(0.907201\pi\)
\(558\) 0 0
\(559\) −4206.33 −0.318263
\(560\) 0 0
\(561\) 2414.56 0.181716
\(562\) 0 0
\(563\) 4504.50 0.337197 0.168599 0.985685i \(-0.446076\pi\)
0.168599 + 0.985685i \(0.446076\pi\)
\(564\) 0 0
\(565\) 5685.34 0.423335
\(566\) 0 0
\(567\) 384.310 0.0284647
\(568\) 0 0
\(569\) −13447.0 −0.990732 −0.495366 0.868684i \(-0.664966\pi\)
−0.495366 + 0.868684i \(0.664966\pi\)
\(570\) 0 0
\(571\) 2605.52 0.190959 0.0954795 0.995431i \(-0.469562\pi\)
0.0954795 + 0.995431i \(0.469562\pi\)
\(572\) 0 0
\(573\) 6409.24 0.467277
\(574\) 0 0
\(575\) 12636.5 0.916485
\(576\) 0 0
\(577\) 6339.65 0.457406 0.228703 0.973496i \(-0.426552\pi\)
0.228703 + 0.973496i \(0.426552\pi\)
\(578\) 0 0
\(579\) −11843.3 −0.850069
\(580\) 0 0
\(581\) 3589.83 0.256336
\(582\) 0 0
\(583\) 4506.17 0.320114
\(584\) 0 0
\(585\) 471.715 0.0333385
\(586\) 0 0
\(587\) 13370.6 0.940140 0.470070 0.882629i \(-0.344229\pi\)
0.470070 + 0.882629i \(0.344229\pi\)
\(588\) 0 0
\(589\) −21935.3 −1.53452
\(590\) 0 0
\(591\) −2771.66 −0.192912
\(592\) 0 0
\(593\) 14319.3 0.991608 0.495804 0.868434i \(-0.334873\pi\)
0.495804 + 0.868434i \(0.334873\pi\)
\(594\) 0 0
\(595\) −1211.26 −0.0834567
\(596\) 0 0
\(597\) −1428.46 −0.0979276
\(598\) 0 0
\(599\) 5788.63 0.394853 0.197427 0.980318i \(-0.436742\pi\)
0.197427 + 0.980318i \(0.436742\pi\)
\(600\) 0 0
\(601\) 23968.1 1.62675 0.813375 0.581739i \(-0.197628\pi\)
0.813375 + 0.581739i \(0.197628\pi\)
\(602\) 0 0
\(603\) −8105.28 −0.547384
\(604\) 0 0
\(605\) −422.184 −0.0283706
\(606\) 0 0
\(607\) 23526.6 1.57317 0.786585 0.617482i \(-0.211847\pi\)
0.786585 + 0.617482i \(0.211847\pi\)
\(608\) 0 0
\(609\) −3460.56 −0.230261
\(610\) 0 0
\(611\) −2551.74 −0.168956
\(612\) 0 0
\(613\) 1228.07 0.0809159 0.0404579 0.999181i \(-0.487118\pi\)
0.0404579 + 0.999181i \(0.487118\pi\)
\(614\) 0 0
\(615\) −2525.31 −0.165578
\(616\) 0 0
\(617\) −9844.90 −0.642368 −0.321184 0.947017i \(-0.604081\pi\)
−0.321184 + 0.947017i \(0.604081\pi\)
\(618\) 0 0
\(619\) 6551.68 0.425419 0.212709 0.977115i \(-0.431771\pi\)
0.212709 + 0.977115i \(0.431771\pi\)
\(620\) 0 0
\(621\) 3024.00 0.195409
\(622\) 0 0
\(623\) 2414.88 0.155297
\(624\) 0 0
\(625\) 11208.0 0.717309
\(626\) 0 0
\(627\) 2597.14 0.165422
\(628\) 0 0
\(629\) 7491.01 0.474859
\(630\) 0 0
\(631\) 26440.5 1.66812 0.834058 0.551677i \(-0.186012\pi\)
0.834058 + 0.551677i \(0.186012\pi\)
\(632\) 0 0
\(633\) −14754.7 −0.926458
\(634\) 0 0
\(635\) 7994.48 0.499608
\(636\) 0 0
\(637\) 4814.31 0.299450
\(638\) 0 0
\(639\) −6808.50 −0.421502
\(640\) 0 0
\(641\) −27927.2 −1.72084 −0.860421 0.509584i \(-0.829799\pi\)
−0.860421 + 0.509584i \(0.829799\pi\)
\(642\) 0 0
\(643\) 16737.7 1.02655 0.513274 0.858225i \(-0.328432\pi\)
0.513274 + 0.858225i \(0.328432\pi\)
\(644\) 0 0
\(645\) 2931.03 0.178929
\(646\) 0 0
\(647\) −7818.70 −0.475092 −0.237546 0.971376i \(-0.576343\pi\)
−0.237546 + 0.971376i \(0.576343\pi\)
\(648\) 0 0
\(649\) 2156.00 0.130401
\(650\) 0 0
\(651\) 3967.17 0.238842
\(652\) 0 0
\(653\) 19747.6 1.18344 0.591719 0.806144i \(-0.298450\pi\)
0.591719 + 0.806144i \(0.298450\pi\)
\(654\) 0 0
\(655\) −4003.47 −0.238822
\(656\) 0 0
\(657\) −9178.33 −0.545024
\(658\) 0 0
\(659\) −7867.72 −0.465072 −0.232536 0.972588i \(-0.574702\pi\)
−0.232536 + 0.972588i \(0.574702\pi\)
\(660\) 0 0
\(661\) 4227.41 0.248755 0.124378 0.992235i \(-0.460307\pi\)
0.124378 + 0.992235i \(0.460307\pi\)
\(662\) 0 0
\(663\) 3297.35 0.193150
\(664\) 0 0
\(665\) −1302.85 −0.0759733
\(666\) 0 0
\(667\) −27230.0 −1.58073
\(668\) 0 0
\(669\) 6300.88 0.364135
\(670\) 0 0
\(671\) 7714.94 0.443863
\(672\) 0 0
\(673\) 29397.6 1.68379 0.841897 0.539638i \(-0.181439\pi\)
0.841897 + 0.539638i \(0.181439\pi\)
\(674\) 0 0
\(675\) 3046.30 0.173707
\(676\) 0 0
\(677\) 5737.14 0.325696 0.162848 0.986651i \(-0.447932\pi\)
0.162848 + 0.986651i \(0.447932\pi\)
\(678\) 0 0
\(679\) 2914.86 0.164745
\(680\) 0 0
\(681\) −6771.49 −0.381034
\(682\) 0 0
\(683\) −32097.6 −1.79821 −0.899107 0.437729i \(-0.855783\pi\)
−0.899107 + 0.437729i \(0.855783\pi\)
\(684\) 0 0
\(685\) −4426.30 −0.246891
\(686\) 0 0
\(687\) 15933.2 0.884848
\(688\) 0 0
\(689\) 6153.69 0.340257
\(690\) 0 0
\(691\) 16456.2 0.905965 0.452983 0.891519i \(-0.350360\pi\)
0.452983 + 0.891519i \(0.350360\pi\)
\(692\) 0 0
\(693\) −469.712 −0.0257473
\(694\) 0 0
\(695\) −1696.72 −0.0926047
\(696\) 0 0
\(697\) −17652.3 −0.959294
\(698\) 0 0
\(699\) −7398.80 −0.400355
\(700\) 0 0
\(701\) 27238.1 1.46758 0.733788 0.679379i \(-0.237751\pi\)
0.733788 + 0.679379i \(0.237751\pi\)
\(702\) 0 0
\(703\) 8057.44 0.432279
\(704\) 0 0
\(705\) 1778.09 0.0949882
\(706\) 0 0
\(707\) −4820.09 −0.256405
\(708\) 0 0
\(709\) 28761.4 1.52349 0.761747 0.647875i \(-0.224342\pi\)
0.761747 + 0.647875i \(0.224342\pi\)
\(710\) 0 0
\(711\) 2947.94 0.155494
\(712\) 0 0
\(713\) 31216.3 1.63964
\(714\) 0 0
\(715\) −576.540 −0.0301558
\(716\) 0 0
\(717\) 4288.21 0.223356
\(718\) 0 0
\(719\) 27272.0 1.41456 0.707282 0.706931i \(-0.249921\pi\)
0.707282 + 0.706931i \(0.249921\pi\)
\(720\) 0 0
\(721\) −5229.28 −0.270109
\(722\) 0 0
\(723\) 2936.97 0.151075
\(724\) 0 0
\(725\) −27430.8 −1.40518
\(726\) 0 0
\(727\) −3979.75 −0.203027 −0.101514 0.994834i \(-0.532369\pi\)
−0.101514 + 0.994834i \(0.532369\pi\)
\(728\) 0 0
\(729\) 729.000 0.0370370
\(730\) 0 0
\(731\) 20488.3 1.03665
\(732\) 0 0
\(733\) 9342.48 0.470767 0.235384 0.971903i \(-0.424365\pi\)
0.235384 + 0.971903i \(0.424365\pi\)
\(734\) 0 0
\(735\) −3354.68 −0.168353
\(736\) 0 0
\(737\) 9906.45 0.495127
\(738\) 0 0
\(739\) 28928.0 1.43997 0.719983 0.693992i \(-0.244150\pi\)
0.719983 + 0.693992i \(0.244150\pi\)
\(740\) 0 0
\(741\) 3546.68 0.175831
\(742\) 0 0
\(743\) −4857.04 −0.239822 −0.119911 0.992785i \(-0.538261\pi\)
−0.119911 + 0.992785i \(0.538261\pi\)
\(744\) 0 0
\(745\) −8213.80 −0.403933
\(746\) 0 0
\(747\) 6809.57 0.333533
\(748\) 0 0
\(749\) −6536.00 −0.318852
\(750\) 0 0
\(751\) −14355.4 −0.697517 −0.348759 0.937213i \(-0.613397\pi\)
−0.348759 + 0.937213i \(0.613397\pi\)
\(752\) 0 0
\(753\) −19591.9 −0.948165
\(754\) 0 0
\(755\) −1989.05 −0.0958792
\(756\) 0 0
\(757\) −17714.9 −0.850538 −0.425269 0.905067i \(-0.639821\pi\)
−0.425269 + 0.905067i \(0.639821\pi\)
\(758\) 0 0
\(759\) −3696.00 −0.176754
\(760\) 0 0
\(761\) −7945.82 −0.378497 −0.189248 0.981929i \(-0.560605\pi\)
−0.189248 + 0.981929i \(0.560605\pi\)
\(762\) 0 0
\(763\) 1519.29 0.0720866
\(764\) 0 0
\(765\) −2297.64 −0.108590
\(766\) 0 0
\(767\) 2944.26 0.138606
\(768\) 0 0
\(769\) 27308.1 1.28057 0.640284 0.768139i \(-0.278817\pi\)
0.640284 + 0.768139i \(0.278817\pi\)
\(770\) 0 0
\(771\) −24390.8 −1.13932
\(772\) 0 0
\(773\) −18872.6 −0.878136 −0.439068 0.898454i \(-0.644691\pi\)
−0.439068 + 0.898454i \(0.644691\pi\)
\(774\) 0 0
\(775\) 31446.6 1.45754
\(776\) 0 0
\(777\) −1457.25 −0.0672826
\(778\) 0 0
\(779\) −18987.1 −0.873276
\(780\) 0 0
\(781\) 8321.50 0.381263
\(782\) 0 0
\(783\) −6564.37 −0.299606
\(784\) 0 0
\(785\) 7231.82 0.328808
\(786\) 0 0
\(787\) 14512.1 0.657307 0.328654 0.944450i \(-0.393405\pi\)
0.328654 + 0.944450i \(0.393405\pi\)
\(788\) 0 0
\(789\) −13648.3 −0.615832
\(790\) 0 0
\(791\) −7731.01 −0.347513
\(792\) 0 0
\(793\) 10535.6 0.471792
\(794\) 0 0
\(795\) −4287.98 −0.191294
\(796\) 0 0
\(797\) 29108.9 1.29371 0.646856 0.762612i \(-0.276083\pi\)
0.646856 + 0.762612i \(0.276083\pi\)
\(798\) 0 0
\(799\) 12429.1 0.550325
\(800\) 0 0
\(801\) 4580.80 0.202066
\(802\) 0 0
\(803\) 11218.0 0.492993
\(804\) 0 0
\(805\) 1854.09 0.0811777
\(806\) 0 0
\(807\) 87.4567 0.00381490
\(808\) 0 0
\(809\) −3000.83 −0.130413 −0.0652063 0.997872i \(-0.520771\pi\)
−0.0652063 + 0.997872i \(0.520771\pi\)
\(810\) 0 0
\(811\) −6239.39 −0.270154 −0.135077 0.990835i \(-0.543128\pi\)
−0.135077 + 0.990835i \(0.543128\pi\)
\(812\) 0 0
\(813\) 23133.7 0.997950
\(814\) 0 0
\(815\) 9338.68 0.401374
\(816\) 0 0
\(817\) 22037.6 0.943693
\(818\) 0 0
\(819\) −641.445 −0.0273674
\(820\) 0 0
\(821\) 14922.4 0.634342 0.317171 0.948368i \(-0.397267\pi\)
0.317171 + 0.948368i \(0.397267\pi\)
\(822\) 0 0
\(823\) 25737.8 1.09011 0.545057 0.838399i \(-0.316508\pi\)
0.545057 + 0.838399i \(0.316508\pi\)
\(824\) 0 0
\(825\) −3723.26 −0.157124
\(826\) 0 0
\(827\) −27043.4 −1.13711 −0.568555 0.822645i \(-0.692497\pi\)
−0.568555 + 0.822645i \(0.692497\pi\)
\(828\) 0 0
\(829\) −9795.41 −0.410384 −0.205192 0.978722i \(-0.565782\pi\)
−0.205192 + 0.978722i \(0.565782\pi\)
\(830\) 0 0
\(831\) −3382.56 −0.141203
\(832\) 0 0
\(833\) −23449.7 −0.975370
\(834\) 0 0
\(835\) −4145.50 −0.171809
\(836\) 0 0
\(837\) 7525.37 0.310770
\(838\) 0 0
\(839\) −28875.5 −1.18819 −0.594095 0.804395i \(-0.702490\pi\)
−0.594095 + 0.804395i \(0.702490\pi\)
\(840\) 0 0
\(841\) 34720.7 1.42362
\(842\) 0 0
\(843\) 5617.41 0.229506
\(844\) 0 0
\(845\) 6878.28 0.280024
\(846\) 0 0
\(847\) 574.092 0.0232893
\(848\) 0 0
\(849\) 6373.45 0.257640
\(850\) 0 0
\(851\) −11466.6 −0.461892
\(852\) 0 0
\(853\) −47157.1 −1.89288 −0.946441 0.322878i \(-0.895350\pi\)
−0.946441 + 0.322878i \(0.895350\pi\)
\(854\) 0 0
\(855\) −2471.38 −0.0988531
\(856\) 0 0
\(857\) 5021.31 0.200145 0.100073 0.994980i \(-0.468092\pi\)
0.100073 + 0.994980i \(0.468092\pi\)
\(858\) 0 0
\(859\) 22921.1 0.910428 0.455214 0.890382i \(-0.349563\pi\)
0.455214 + 0.890382i \(0.349563\pi\)
\(860\) 0 0
\(861\) 3433.95 0.135922
\(862\) 0 0
\(863\) 19488.1 0.768693 0.384347 0.923189i \(-0.374427\pi\)
0.384347 + 0.923189i \(0.374427\pi\)
\(864\) 0 0
\(865\) −2816.24 −0.110699
\(866\) 0 0
\(867\) −1321.86 −0.0517794
\(868\) 0 0
\(869\) −3603.04 −0.140650
\(870\) 0 0
\(871\) 13528.4 0.526282
\(872\) 0 0
\(873\) 5529.22 0.214360
\(874\) 0 0
\(875\) 3937.06 0.152111
\(876\) 0 0
\(877\) −8455.67 −0.325573 −0.162787 0.986661i \(-0.552048\pi\)
−0.162787 + 0.986661i \(0.552048\pi\)
\(878\) 0 0
\(879\) 9972.56 0.382669
\(880\) 0 0
\(881\) −11291.2 −0.431794 −0.215897 0.976416i \(-0.569268\pi\)
−0.215897 + 0.976416i \(0.569268\pi\)
\(882\) 0 0
\(883\) −31818.1 −1.21264 −0.606322 0.795219i \(-0.707356\pi\)
−0.606322 + 0.795219i \(0.707356\pi\)
\(884\) 0 0
\(885\) −2051.61 −0.0779254
\(886\) 0 0
\(887\) −17481.1 −0.661732 −0.330866 0.943678i \(-0.607341\pi\)
−0.330866 + 0.943678i \(0.607341\pi\)
\(888\) 0 0
\(889\) −10871.0 −0.410126
\(890\) 0 0
\(891\) −891.000 −0.0335013
\(892\) 0 0
\(893\) 13368.9 0.500978
\(894\) 0 0
\(895\) −6805.16 −0.254158
\(896\) 0 0
\(897\) −5047.31 −0.187876
\(898\) 0 0
\(899\) −67763.1 −2.51393
\(900\) 0 0
\(901\) −29973.6 −1.10829
\(902\) 0 0
\(903\) −3985.66 −0.146882
\(904\) 0 0
\(905\) −3704.08 −0.136053
\(906\) 0 0
\(907\) −10607.4 −0.388326 −0.194163 0.980969i \(-0.562199\pi\)
−0.194163 + 0.980969i \(0.562199\pi\)
\(908\) 0 0
\(909\) −9143.26 −0.333623
\(910\) 0 0
\(911\) 41249.2 1.50016 0.750080 0.661347i \(-0.230015\pi\)
0.750080 + 0.661347i \(0.230015\pi\)
\(912\) 0 0
\(913\) −8322.81 −0.301692
\(914\) 0 0
\(915\) −7341.38 −0.265244
\(916\) 0 0
\(917\) 5443.97 0.196048
\(918\) 0 0
\(919\) 13858.1 0.497429 0.248714 0.968577i \(-0.419992\pi\)
0.248714 + 0.968577i \(0.419992\pi\)
\(920\) 0 0
\(921\) −5096.83 −0.182352
\(922\) 0 0
\(923\) 11363.9 0.405253
\(924\) 0 0
\(925\) −11551.2 −0.410595
\(926\) 0 0
\(927\) −9919.47 −0.351454
\(928\) 0 0
\(929\) 20893.7 0.737890 0.368945 0.929451i \(-0.379719\pi\)
0.368945 + 0.929451i \(0.379719\pi\)
\(930\) 0 0
\(931\) −25222.8 −0.887911
\(932\) 0 0
\(933\) 20786.5 0.729388
\(934\) 0 0
\(935\) 2808.23 0.0982236
\(936\) 0 0
\(937\) 3203.52 0.111691 0.0558454 0.998439i \(-0.482215\pi\)
0.0558454 + 0.998439i \(0.482215\pi\)
\(938\) 0 0
\(939\) 10682.2 0.371248
\(940\) 0 0
\(941\) 19951.6 0.691182 0.345591 0.938385i \(-0.387678\pi\)
0.345591 + 0.938385i \(0.387678\pi\)
\(942\) 0 0
\(943\) 27020.6 0.933099
\(944\) 0 0
\(945\) 446.968 0.0153861
\(946\) 0 0
\(947\) 38216.7 1.31138 0.655689 0.755031i \(-0.272378\pi\)
0.655689 + 0.755031i \(0.272378\pi\)
\(948\) 0 0
\(949\) 15319.4 0.524014
\(950\) 0 0
\(951\) −998.249 −0.0340383
\(952\) 0 0
\(953\) −47661.4 −1.62004 −0.810022 0.586399i \(-0.800545\pi\)
−0.810022 + 0.586399i \(0.800545\pi\)
\(954\) 0 0
\(955\) 7454.21 0.252579
\(956\) 0 0
\(957\) 8023.12 0.271004
\(958\) 0 0
\(959\) 6018.94 0.202671
\(960\) 0 0
\(961\) 47892.3 1.60761
\(962\) 0 0
\(963\) −12398.2 −0.414876
\(964\) 0 0
\(965\) −13774.2 −0.459490
\(966\) 0 0
\(967\) −18933.2 −0.629628 −0.314814 0.949153i \(-0.601942\pi\)
−0.314814 + 0.949153i \(0.601942\pi\)
\(968\) 0 0
\(969\) −17275.3 −0.572717
\(970\) 0 0
\(971\) 40660.3 1.34382 0.671911 0.740632i \(-0.265474\pi\)
0.671911 + 0.740632i \(0.265474\pi\)
\(972\) 0 0
\(973\) 2307.23 0.0760188
\(974\) 0 0
\(975\) −5084.53 −0.167011
\(976\) 0 0
\(977\) −22502.8 −0.736876 −0.368438 0.929652i \(-0.620107\pi\)
−0.368438 + 0.929652i \(0.620107\pi\)
\(978\) 0 0
\(979\) −5598.76 −0.182775
\(980\) 0 0
\(981\) 2881.96 0.0937959
\(982\) 0 0
\(983\) 4435.20 0.143907 0.0719536 0.997408i \(-0.477077\pi\)
0.0719536 + 0.997408i \(0.477077\pi\)
\(984\) 0 0
\(985\) −3223.55 −0.104275
\(986\) 0 0
\(987\) −2417.87 −0.0779753
\(988\) 0 0
\(989\) −31361.8 −1.00834
\(990\) 0 0
\(991\) −7362.76 −0.236010 −0.118005 0.993013i \(-0.537650\pi\)
−0.118005 + 0.993013i \(0.537650\pi\)
\(992\) 0 0
\(993\) −1624.33 −0.0519101
\(994\) 0 0
\(995\) −1661.35 −0.0529331
\(996\) 0 0
\(997\) −53480.1 −1.69883 −0.849413 0.527728i \(-0.823044\pi\)
−0.849413 + 0.527728i \(0.823044\pi\)
\(998\) 0 0
\(999\) −2764.27 −0.0875452
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 528.4.a.o.1.1 2
3.2 odd 2 1584.4.a.x.1.2 2
4.3 odd 2 33.4.a.d.1.2 2
8.3 odd 2 2112.4.a.ba.1.2 2
8.5 even 2 2112.4.a.bh.1.2 2
12.11 even 2 99.4.a.e.1.1 2
20.3 even 4 825.4.c.i.199.1 4
20.7 even 4 825.4.c.i.199.4 4
20.19 odd 2 825.4.a.k.1.1 2
28.27 even 2 1617.4.a.j.1.2 2
44.43 even 2 363.4.a.j.1.1 2
60.59 even 2 2475.4.a.o.1.2 2
132.131 odd 2 1089.4.a.t.1.2 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
33.4.a.d.1.2 2 4.3 odd 2
99.4.a.e.1.1 2 12.11 even 2
363.4.a.j.1.1 2 44.43 even 2
528.4.a.o.1.1 2 1.1 even 1 trivial
825.4.a.k.1.1 2 20.19 odd 2
825.4.c.i.199.1 4 20.3 even 4
825.4.c.i.199.4 4 20.7 even 4
1089.4.a.t.1.2 2 132.131 odd 2
1584.4.a.x.1.2 2 3.2 odd 2
1617.4.a.j.1.2 2 28.27 even 2
2112.4.a.ba.1.2 2 8.3 odd 2
2112.4.a.bh.1.2 2 8.5 even 2
2475.4.a.o.1.2 2 60.59 even 2