Properties

Label 528.3.i.a.353.1
Level $528$
Weight $3$
Character 528.353
Analytic conductor $14.387$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [528,3,Mod(353,528)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(528, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 1, 0]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("528.353");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 528 = 2^{4} \cdot 3 \cdot 11 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 528.i (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(14.3869579582\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{-11}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x + 3 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 33)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 353.1
Root \(0.500000 + 1.65831i\) of defining polynomial
Character \(\chi\) \(=\) 528.353
Dual form 528.3.i.a.353.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-3.00000 q^{3} -6.63325i q^{5} +8.00000 q^{7} +9.00000 q^{9} -3.31662i q^{11} +4.00000 q^{13} +19.8997i q^{15} +13.2665i q^{17} +6.00000 q^{19} -24.0000 q^{21} -6.63325i q^{23} -19.0000 q^{25} -27.0000 q^{27} -39.7995i q^{29} +26.0000 q^{31} +9.94987i q^{33} -53.0660i q^{35} +30.0000 q^{37} -12.0000 q^{39} +13.2665i q^{41} -42.0000 q^{43} -59.6992i q^{45} -86.2322i q^{47} +15.0000 q^{49} -39.7995i q^{51} -59.6992i q^{53} -22.0000 q^{55} -18.0000 q^{57} -66.3325i q^{59} +12.0000 q^{61} +72.0000 q^{63} -26.5330i q^{65} -2.00000 q^{67} +19.8997i q^{69} +59.6992i q^{71} -74.0000 q^{73} +57.0000 q^{75} -26.5330i q^{77} +40.0000 q^{79} +81.0000 q^{81} +39.7995i q^{83} +88.0000 q^{85} +119.398i q^{87} -119.398i q^{89} +32.0000 q^{91} -78.0000 q^{93} -39.7995i q^{95} +62.0000 q^{97} -29.8496i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 6 q^{3} + 16 q^{7} + 18 q^{9} + 8 q^{13} + 12 q^{19} - 48 q^{21} - 38 q^{25} - 54 q^{27} + 52 q^{31} + 60 q^{37} - 24 q^{39} - 84 q^{43} + 30 q^{49} - 44 q^{55} - 36 q^{57} + 24 q^{61} + 144 q^{63}+ \cdots + 124 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/528\mathbb{Z}\right)^\times\).

\(n\) \(133\) \(145\) \(353\) \(463\)
\(\chi(n)\) \(1\) \(1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −3.00000 −1.00000
\(4\) 0 0
\(5\) − 6.63325i − 1.32665i −0.748331 0.663325i \(-0.769145\pi\)
0.748331 0.663325i \(-0.230855\pi\)
\(6\) 0 0
\(7\) 8.00000 1.14286 0.571429 0.820652i \(-0.306389\pi\)
0.571429 + 0.820652i \(0.306389\pi\)
\(8\) 0 0
\(9\) 9.00000 1.00000
\(10\) 0 0
\(11\) − 3.31662i − 0.301511i
\(12\) 0 0
\(13\) 4.00000 0.307692 0.153846 0.988095i \(-0.450834\pi\)
0.153846 + 0.988095i \(0.450834\pi\)
\(14\) 0 0
\(15\) 19.8997i 1.32665i
\(16\) 0 0
\(17\) 13.2665i 0.780382i 0.920734 + 0.390191i \(0.127591\pi\)
−0.920734 + 0.390191i \(0.872409\pi\)
\(18\) 0 0
\(19\) 6.00000 0.315789 0.157895 0.987456i \(-0.449529\pi\)
0.157895 + 0.987456i \(0.449529\pi\)
\(20\) 0 0
\(21\) −24.0000 −1.14286
\(22\) 0 0
\(23\) − 6.63325i − 0.288402i −0.989548 0.144201i \(-0.953939\pi\)
0.989548 0.144201i \(-0.0460612\pi\)
\(24\) 0 0
\(25\) −19.0000 −0.760000
\(26\) 0 0
\(27\) −27.0000 −1.00000
\(28\) 0 0
\(29\) − 39.7995i − 1.37240i −0.727415 0.686198i \(-0.759278\pi\)
0.727415 0.686198i \(-0.240722\pi\)
\(30\) 0 0
\(31\) 26.0000 0.838710 0.419355 0.907822i \(-0.362256\pi\)
0.419355 + 0.907822i \(0.362256\pi\)
\(32\) 0 0
\(33\) 9.94987i 0.301511i
\(34\) 0 0
\(35\) − 53.0660i − 1.51617i
\(36\) 0 0
\(37\) 30.0000 0.810811 0.405405 0.914137i \(-0.367130\pi\)
0.405405 + 0.914137i \(0.367130\pi\)
\(38\) 0 0
\(39\) −12.0000 −0.307692
\(40\) 0 0
\(41\) 13.2665i 0.323573i 0.986826 + 0.161787i \(0.0517256\pi\)
−0.986826 + 0.161787i \(0.948274\pi\)
\(42\) 0 0
\(43\) −42.0000 −0.976744 −0.488372 0.872635i \(-0.662409\pi\)
−0.488372 + 0.872635i \(0.662409\pi\)
\(44\) 0 0
\(45\) − 59.6992i − 1.32665i
\(46\) 0 0
\(47\) − 86.2322i − 1.83473i −0.398049 0.917364i \(-0.630312\pi\)
0.398049 0.917364i \(-0.369688\pi\)
\(48\) 0 0
\(49\) 15.0000 0.306122
\(50\) 0 0
\(51\) − 39.7995i − 0.780382i
\(52\) 0 0
\(53\) − 59.6992i − 1.12640i −0.826320 0.563200i \(-0.809570\pi\)
0.826320 0.563200i \(-0.190430\pi\)
\(54\) 0 0
\(55\) −22.0000 −0.400000
\(56\) 0 0
\(57\) −18.0000 −0.315789
\(58\) 0 0
\(59\) − 66.3325i − 1.12428i −0.827042 0.562140i \(-0.809978\pi\)
0.827042 0.562140i \(-0.190022\pi\)
\(60\) 0 0
\(61\) 12.0000 0.196721 0.0983607 0.995151i \(-0.468640\pi\)
0.0983607 + 0.995151i \(0.468640\pi\)
\(62\) 0 0
\(63\) 72.0000 1.14286
\(64\) 0 0
\(65\) − 26.5330i − 0.408200i
\(66\) 0 0
\(67\) −2.00000 −0.0298507 −0.0149254 0.999889i \(-0.504751\pi\)
−0.0149254 + 0.999889i \(0.504751\pi\)
\(68\) 0 0
\(69\) 19.8997i 0.288402i
\(70\) 0 0
\(71\) 59.6992i 0.840834i 0.907331 + 0.420417i \(0.138116\pi\)
−0.907331 + 0.420417i \(0.861884\pi\)
\(72\) 0 0
\(73\) −74.0000 −1.01370 −0.506849 0.862035i \(-0.669190\pi\)
−0.506849 + 0.862035i \(0.669190\pi\)
\(74\) 0 0
\(75\) 57.0000 0.760000
\(76\) 0 0
\(77\) − 26.5330i − 0.344584i
\(78\) 0 0
\(79\) 40.0000 0.506329 0.253165 0.967423i \(-0.418529\pi\)
0.253165 + 0.967423i \(0.418529\pi\)
\(80\) 0 0
\(81\) 81.0000 1.00000
\(82\) 0 0
\(83\) 39.7995i 0.479512i 0.970833 + 0.239756i \(0.0770674\pi\)
−0.970833 + 0.239756i \(0.922933\pi\)
\(84\) 0 0
\(85\) 88.0000 1.03529
\(86\) 0 0
\(87\) 119.398i 1.37240i
\(88\) 0 0
\(89\) − 119.398i − 1.34156i −0.741658 0.670778i \(-0.765960\pi\)
0.741658 0.670778i \(-0.234040\pi\)
\(90\) 0 0
\(91\) 32.0000 0.351648
\(92\) 0 0
\(93\) −78.0000 −0.838710
\(94\) 0 0
\(95\) − 39.7995i − 0.418942i
\(96\) 0 0
\(97\) 62.0000 0.639175 0.319588 0.947557i \(-0.396456\pi\)
0.319588 + 0.947557i \(0.396456\pi\)
\(98\) 0 0
\(99\) − 29.8496i − 0.301511i
\(100\) 0 0
\(101\) 106.132i 1.05081i 0.850852 + 0.525406i \(0.176087\pi\)
−0.850852 + 0.525406i \(0.823913\pi\)
\(102\) 0 0
\(103\) −74.0000 −0.718447 −0.359223 0.933252i \(-0.616958\pi\)
−0.359223 + 0.933252i \(0.616958\pi\)
\(104\) 0 0
\(105\) 159.198i 1.51617i
\(106\) 0 0
\(107\) 39.7995i 0.371958i 0.982554 + 0.185979i \(0.0595456\pi\)
−0.982554 + 0.185979i \(0.940454\pi\)
\(108\) 0 0
\(109\) −200.000 −1.83486 −0.917431 0.397894i \(-0.869741\pi\)
−0.917431 + 0.397894i \(0.869741\pi\)
\(110\) 0 0
\(111\) −90.0000 −0.810811
\(112\) 0 0
\(113\) − 39.7995i − 0.352208i −0.984372 0.176104i \(-0.943651\pi\)
0.984372 0.176104i \(-0.0563495\pi\)
\(114\) 0 0
\(115\) −44.0000 −0.382609
\(116\) 0 0
\(117\) 36.0000 0.307692
\(118\) 0 0
\(119\) 106.132i 0.891865i
\(120\) 0 0
\(121\) −11.0000 −0.0909091
\(122\) 0 0
\(123\) − 39.7995i − 0.323573i
\(124\) 0 0
\(125\) − 39.7995i − 0.318396i
\(126\) 0 0
\(127\) −188.000 −1.48031 −0.740157 0.672434i \(-0.765249\pi\)
−0.740157 + 0.672434i \(0.765249\pi\)
\(128\) 0 0
\(129\) 126.000 0.976744
\(130\) 0 0
\(131\) − 39.7995i − 0.303813i −0.988395 0.151906i \(-0.951459\pi\)
0.988395 0.151906i \(-0.0485413\pi\)
\(132\) 0 0
\(133\) 48.0000 0.360902
\(134\) 0 0
\(135\) 179.098i 1.32665i
\(136\) 0 0
\(137\) 106.132i 0.774686i 0.921936 + 0.387343i \(0.126607\pi\)
−0.921936 + 0.387343i \(0.873393\pi\)
\(138\) 0 0
\(139\) 74.0000 0.532374 0.266187 0.963921i \(-0.414236\pi\)
0.266187 + 0.963921i \(0.414236\pi\)
\(140\) 0 0
\(141\) 258.697i 1.83473i
\(142\) 0 0
\(143\) − 13.2665i − 0.0927727i
\(144\) 0 0
\(145\) −264.000 −1.82069
\(146\) 0 0
\(147\) −45.0000 −0.306122
\(148\) 0 0
\(149\) − 92.8655i − 0.623258i −0.950204 0.311629i \(-0.899125\pi\)
0.950204 0.311629i \(-0.100875\pi\)
\(150\) 0 0
\(151\) 160.000 1.05960 0.529801 0.848122i \(-0.322266\pi\)
0.529801 + 0.848122i \(0.322266\pi\)
\(152\) 0 0
\(153\) 119.398i 0.780382i
\(154\) 0 0
\(155\) − 172.464i − 1.11267i
\(156\) 0 0
\(157\) 182.000 1.15924 0.579618 0.814888i \(-0.303202\pi\)
0.579618 + 0.814888i \(0.303202\pi\)
\(158\) 0 0
\(159\) 179.098i 1.12640i
\(160\) 0 0
\(161\) − 53.0660i − 0.329602i
\(162\) 0 0
\(163\) 290.000 1.77914 0.889571 0.456798i \(-0.151004\pi\)
0.889571 + 0.456798i \(0.151004\pi\)
\(164\) 0 0
\(165\) 66.0000 0.400000
\(166\) 0 0
\(167\) 238.797i 1.42992i 0.699164 + 0.714961i \(0.253556\pi\)
−0.699164 + 0.714961i \(0.746444\pi\)
\(168\) 0 0
\(169\) −153.000 −0.905325
\(170\) 0 0
\(171\) 54.0000 0.315789
\(172\) 0 0
\(173\) 198.997i 1.15027i 0.818057 + 0.575137i \(0.195051\pi\)
−0.818057 + 0.575137i \(0.804949\pi\)
\(174\) 0 0
\(175\) −152.000 −0.868571
\(176\) 0 0
\(177\) 198.997i 1.12428i
\(178\) 0 0
\(179\) − 198.997i − 1.11172i −0.831277 0.555859i \(-0.812389\pi\)
0.831277 0.555859i \(-0.187611\pi\)
\(180\) 0 0
\(181\) 10.0000 0.0552486 0.0276243 0.999618i \(-0.491206\pi\)
0.0276243 + 0.999618i \(0.491206\pi\)
\(182\) 0 0
\(183\) −36.0000 −0.196721
\(184\) 0 0
\(185\) − 198.997i − 1.07566i
\(186\) 0 0
\(187\) 44.0000 0.235294
\(188\) 0 0
\(189\) −216.000 −1.14286
\(190\) 0 0
\(191\) 112.765i 0.590394i 0.955436 + 0.295197i \(0.0953853\pi\)
−0.955436 + 0.295197i \(0.904615\pi\)
\(192\) 0 0
\(193\) 298.000 1.54404 0.772021 0.635597i \(-0.219246\pi\)
0.772021 + 0.635597i \(0.219246\pi\)
\(194\) 0 0
\(195\) 79.5990i 0.408200i
\(196\) 0 0
\(197\) 132.665i 0.673426i 0.941607 + 0.336713i \(0.109315\pi\)
−0.941607 + 0.336713i \(0.890685\pi\)
\(198\) 0 0
\(199\) 42.0000 0.211055 0.105528 0.994416i \(-0.466347\pi\)
0.105528 + 0.994416i \(0.466347\pi\)
\(200\) 0 0
\(201\) 6.00000 0.0298507
\(202\) 0 0
\(203\) − 318.396i − 1.56845i
\(204\) 0 0
\(205\) 88.0000 0.429268
\(206\) 0 0
\(207\) − 59.6992i − 0.288402i
\(208\) 0 0
\(209\) − 19.8997i − 0.0952141i
\(210\) 0 0
\(211\) −246.000 −1.16588 −0.582938 0.812516i \(-0.698097\pi\)
−0.582938 + 0.812516i \(0.698097\pi\)
\(212\) 0 0
\(213\) − 179.098i − 0.840834i
\(214\) 0 0
\(215\) 278.596i 1.29580i
\(216\) 0 0
\(217\) 208.000 0.958525
\(218\) 0 0
\(219\) 222.000 1.01370
\(220\) 0 0
\(221\) 53.0660i 0.240118i
\(222\) 0 0
\(223\) 302.000 1.35426 0.677130 0.735863i \(-0.263223\pi\)
0.677130 + 0.735863i \(0.263223\pi\)
\(224\) 0 0
\(225\) −171.000 −0.760000
\(226\) 0 0
\(227\) 198.997i 0.876641i 0.898819 + 0.438320i \(0.144426\pi\)
−0.898819 + 0.438320i \(0.855574\pi\)
\(228\) 0 0
\(229\) 150.000 0.655022 0.327511 0.944847i \(-0.393790\pi\)
0.327511 + 0.944847i \(0.393790\pi\)
\(230\) 0 0
\(231\) 79.5990i 0.344584i
\(232\) 0 0
\(233\) − 437.794i − 1.87895i −0.342623 0.939473i \(-0.611315\pi\)
0.342623 0.939473i \(-0.388685\pi\)
\(234\) 0 0
\(235\) −572.000 −2.43404
\(236\) 0 0
\(237\) −120.000 −0.506329
\(238\) 0 0
\(239\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(240\) 0 0
\(241\) 130.000 0.539419 0.269710 0.962942i \(-0.413072\pi\)
0.269710 + 0.962942i \(0.413072\pi\)
\(242\) 0 0
\(243\) −243.000 −1.00000
\(244\) 0 0
\(245\) − 99.4987i − 0.406117i
\(246\) 0 0
\(247\) 24.0000 0.0971660
\(248\) 0 0
\(249\) − 119.398i − 0.479512i
\(250\) 0 0
\(251\) − 291.863i − 1.16280i −0.813618 0.581400i \(-0.802505\pi\)
0.813618 0.581400i \(-0.197495\pi\)
\(252\) 0 0
\(253\) −22.0000 −0.0869565
\(254\) 0 0
\(255\) −264.000 −1.03529
\(256\) 0 0
\(257\) 490.860i 1.90996i 0.296665 + 0.954981i \(0.404125\pi\)
−0.296665 + 0.954981i \(0.595875\pi\)
\(258\) 0 0
\(259\) 240.000 0.926641
\(260\) 0 0
\(261\) − 358.195i − 1.37240i
\(262\) 0 0
\(263\) − 225.530i − 0.857530i −0.903416 0.428765i \(-0.858949\pi\)
0.903416 0.428765i \(-0.141051\pi\)
\(264\) 0 0
\(265\) −396.000 −1.49434
\(266\) 0 0
\(267\) 358.195i 1.34156i
\(268\) 0 0
\(269\) 72.9657i 0.271248i 0.990760 + 0.135624i \(0.0433039\pi\)
−0.990760 + 0.135624i \(0.956696\pi\)
\(270\) 0 0
\(271\) 448.000 1.65314 0.826568 0.562836i \(-0.190290\pi\)
0.826568 + 0.562836i \(0.190290\pi\)
\(272\) 0 0
\(273\) −96.0000 −0.351648
\(274\) 0 0
\(275\) 63.0159i 0.229149i
\(276\) 0 0
\(277\) −260.000 −0.938628 −0.469314 0.883031i \(-0.655499\pi\)
−0.469314 + 0.883031i \(0.655499\pi\)
\(278\) 0 0
\(279\) 234.000 0.838710
\(280\) 0 0
\(281\) − 198.997i − 0.708176i −0.935212 0.354088i \(-0.884791\pi\)
0.935212 0.354088i \(-0.115209\pi\)
\(282\) 0 0
\(283\) 50.0000 0.176678 0.0883392 0.996090i \(-0.471844\pi\)
0.0883392 + 0.996090i \(0.471844\pi\)
\(284\) 0 0
\(285\) 119.398i 0.418942i
\(286\) 0 0
\(287\) 106.132i 0.369798i
\(288\) 0 0
\(289\) 113.000 0.391003
\(290\) 0 0
\(291\) −186.000 −0.639175
\(292\) 0 0
\(293\) 477.594i 1.63001i 0.579451 + 0.815007i \(0.303267\pi\)
−0.579451 + 0.815007i \(0.696733\pi\)
\(294\) 0 0
\(295\) −440.000 −1.49153
\(296\) 0 0
\(297\) 89.5489i 0.301511i
\(298\) 0 0
\(299\) − 26.5330i − 0.0887391i
\(300\) 0 0
\(301\) −336.000 −1.11628
\(302\) 0 0
\(303\) − 318.396i − 1.05081i
\(304\) 0 0
\(305\) − 79.5990i − 0.260980i
\(306\) 0 0
\(307\) −86.0000 −0.280130 −0.140065 0.990142i \(-0.544731\pi\)
−0.140065 + 0.990142i \(0.544731\pi\)
\(308\) 0 0
\(309\) 222.000 0.718447
\(310\) 0 0
\(311\) − 19.8997i − 0.0639863i −0.999488 0.0319932i \(-0.989815\pi\)
0.999488 0.0319932i \(-0.0101855\pi\)
\(312\) 0 0
\(313\) 98.0000 0.313099 0.156550 0.987670i \(-0.449963\pi\)
0.156550 + 0.987670i \(0.449963\pi\)
\(314\) 0 0
\(315\) − 477.594i − 1.51617i
\(316\) 0 0
\(317\) 311.763i 0.983479i 0.870742 + 0.491739i \(0.163639\pi\)
−0.870742 + 0.491739i \(0.836361\pi\)
\(318\) 0 0
\(319\) −132.000 −0.413793
\(320\) 0 0
\(321\) − 119.398i − 0.371958i
\(322\) 0 0
\(323\) 79.5990i 0.246437i
\(324\) 0 0
\(325\) −76.0000 −0.233846
\(326\) 0 0
\(327\) 600.000 1.83486
\(328\) 0 0
\(329\) − 689.858i − 2.09683i
\(330\) 0 0
\(331\) 218.000 0.658610 0.329305 0.944224i \(-0.393186\pi\)
0.329305 + 0.944224i \(0.393186\pi\)
\(332\) 0 0
\(333\) 270.000 0.810811
\(334\) 0 0
\(335\) 13.2665i 0.0396015i
\(336\) 0 0
\(337\) 278.000 0.824926 0.412463 0.910974i \(-0.364669\pi\)
0.412463 + 0.910974i \(0.364669\pi\)
\(338\) 0 0
\(339\) 119.398i 0.352208i
\(340\) 0 0
\(341\) − 86.2322i − 0.252880i
\(342\) 0 0
\(343\) −272.000 −0.793003
\(344\) 0 0
\(345\) 132.000 0.382609
\(346\) 0 0
\(347\) − 331.662i − 0.955800i −0.878414 0.477900i \(-0.841398\pi\)
0.878414 0.477900i \(-0.158602\pi\)
\(348\) 0 0
\(349\) 324.000 0.928367 0.464183 0.885739i \(-0.346348\pi\)
0.464183 + 0.885739i \(0.346348\pi\)
\(350\) 0 0
\(351\) −108.000 −0.307692
\(352\) 0 0
\(353\) 397.995i 1.12746i 0.825958 + 0.563732i \(0.190635\pi\)
−0.825958 + 0.563732i \(0.809365\pi\)
\(354\) 0 0
\(355\) 396.000 1.11549
\(356\) 0 0
\(357\) − 318.396i − 0.891865i
\(358\) 0 0
\(359\) 305.129i 0.849943i 0.905207 + 0.424971i \(0.139716\pi\)
−0.905207 + 0.424971i \(0.860284\pi\)
\(360\) 0 0
\(361\) −325.000 −0.900277
\(362\) 0 0
\(363\) 33.0000 0.0909091
\(364\) 0 0
\(365\) 490.860i 1.34482i
\(366\) 0 0
\(367\) 278.000 0.757493 0.378747 0.925500i \(-0.376355\pi\)
0.378747 + 0.925500i \(0.376355\pi\)
\(368\) 0 0
\(369\) 119.398i 0.323573i
\(370\) 0 0
\(371\) − 477.594i − 1.28732i
\(372\) 0 0
\(373\) −68.0000 −0.182306 −0.0911528 0.995837i \(-0.529055\pi\)
−0.0911528 + 0.995837i \(0.529055\pi\)
\(374\) 0 0
\(375\) 119.398i 0.318396i
\(376\) 0 0
\(377\) − 159.198i − 0.422276i
\(378\) 0 0
\(379\) −670.000 −1.76781 −0.883905 0.467666i \(-0.845095\pi\)
−0.883905 + 0.467666i \(0.845095\pi\)
\(380\) 0 0
\(381\) 564.000 1.48031
\(382\) 0 0
\(383\) 33.1662i 0.0865959i 0.999062 + 0.0432980i \(0.0137865\pi\)
−0.999062 + 0.0432980i \(0.986214\pi\)
\(384\) 0 0
\(385\) −176.000 −0.457143
\(386\) 0 0
\(387\) −378.000 −0.976744
\(388\) 0 0
\(389\) − 417.895i − 1.07428i −0.843493 0.537140i \(-0.819505\pi\)
0.843493 0.537140i \(-0.180495\pi\)
\(390\) 0 0
\(391\) 88.0000 0.225064
\(392\) 0 0
\(393\) 119.398i 0.303813i
\(394\) 0 0
\(395\) − 265.330i − 0.671721i
\(396\) 0 0
\(397\) −86.0000 −0.216625 −0.108312 0.994117i \(-0.534545\pi\)
−0.108312 + 0.994117i \(0.534545\pi\)
\(398\) 0 0
\(399\) −144.000 −0.360902
\(400\) 0 0
\(401\) − 252.063i − 0.628587i −0.949326 0.314294i \(-0.898232\pi\)
0.949326 0.314294i \(-0.101768\pi\)
\(402\) 0 0
\(403\) 104.000 0.258065
\(404\) 0 0
\(405\) − 537.293i − 1.32665i
\(406\) 0 0
\(407\) − 99.4987i − 0.244469i
\(408\) 0 0
\(409\) 510.000 1.24694 0.623472 0.781846i \(-0.285722\pi\)
0.623472 + 0.781846i \(0.285722\pi\)
\(410\) 0 0
\(411\) − 318.396i − 0.774686i
\(412\) 0 0
\(413\) − 530.660i − 1.28489i
\(414\) 0 0
\(415\) 264.000 0.636145
\(416\) 0 0
\(417\) −222.000 −0.532374
\(418\) 0 0
\(419\) 530.660i 1.26649i 0.773951 + 0.633246i \(0.218278\pi\)
−0.773951 + 0.633246i \(0.781722\pi\)
\(420\) 0 0
\(421\) −170.000 −0.403800 −0.201900 0.979406i \(-0.564712\pi\)
−0.201900 + 0.979406i \(0.564712\pi\)
\(422\) 0 0
\(423\) − 776.090i − 1.83473i
\(424\) 0 0
\(425\) − 252.063i − 0.593091i
\(426\) 0 0
\(427\) 96.0000 0.224824
\(428\) 0 0
\(429\) 39.7995i 0.0927727i
\(430\) 0 0
\(431\) − 278.596i − 0.646396i −0.946331 0.323198i \(-0.895242\pi\)
0.946331 0.323198i \(-0.104758\pi\)
\(432\) 0 0
\(433\) −542.000 −1.25173 −0.625866 0.779931i \(-0.715254\pi\)
−0.625866 + 0.779931i \(0.715254\pi\)
\(434\) 0 0
\(435\) 792.000 1.82069
\(436\) 0 0
\(437\) − 39.7995i − 0.0910744i
\(438\) 0 0
\(439\) −328.000 −0.747153 −0.373576 0.927599i \(-0.621869\pi\)
−0.373576 + 0.927599i \(0.621869\pi\)
\(440\) 0 0
\(441\) 135.000 0.306122
\(442\) 0 0
\(443\) − 132.665i − 0.299470i −0.988726 0.149735i \(-0.952158\pi\)
0.988726 0.149735i \(-0.0478420\pi\)
\(444\) 0 0
\(445\) −792.000 −1.77978
\(446\) 0 0
\(447\) 278.596i 0.623258i
\(448\) 0 0
\(449\) − 451.061i − 1.00459i −0.864696 0.502295i \(-0.832489\pi\)
0.864696 0.502295i \(-0.167511\pi\)
\(450\) 0 0
\(451\) 44.0000 0.0975610
\(452\) 0 0
\(453\) −480.000 −1.05960
\(454\) 0 0
\(455\) − 212.264i − 0.466514i
\(456\) 0 0
\(457\) 342.000 0.748359 0.374179 0.927356i \(-0.377924\pi\)
0.374179 + 0.927356i \(0.377924\pi\)
\(458\) 0 0
\(459\) − 358.195i − 0.780382i
\(460\) 0 0
\(461\) − 79.5990i − 0.172666i −0.996266 0.0863330i \(-0.972485\pi\)
0.996266 0.0863330i \(-0.0275149\pi\)
\(462\) 0 0
\(463\) 86.0000 0.185745 0.0928726 0.995678i \(-0.470395\pi\)
0.0928726 + 0.995678i \(0.470395\pi\)
\(464\) 0 0
\(465\) 517.393i 1.11267i
\(466\) 0 0
\(467\) 596.992i 1.27836i 0.769059 + 0.639178i \(0.220725\pi\)
−0.769059 + 0.639178i \(0.779275\pi\)
\(468\) 0 0
\(469\) −16.0000 −0.0341151
\(470\) 0 0
\(471\) −546.000 −1.15924
\(472\) 0 0
\(473\) 139.298i 0.294499i
\(474\) 0 0
\(475\) −114.000 −0.240000
\(476\) 0 0
\(477\) − 537.293i − 1.12640i
\(478\) 0 0
\(479\) − 225.530i − 0.470836i −0.971894 0.235418i \(-0.924354\pi\)
0.971894 0.235418i \(-0.0756459\pi\)
\(480\) 0 0
\(481\) 120.000 0.249480
\(482\) 0 0
\(483\) 159.198i 0.329602i
\(484\) 0 0
\(485\) − 411.261i − 0.847962i
\(486\) 0 0
\(487\) −446.000 −0.915811 −0.457906 0.889001i \(-0.651400\pi\)
−0.457906 + 0.889001i \(0.651400\pi\)
\(488\) 0 0
\(489\) −870.000 −1.77914
\(490\) 0 0
\(491\) 703.124i 1.43203i 0.698087 + 0.716013i \(0.254035\pi\)
−0.698087 + 0.716013i \(0.745965\pi\)
\(492\) 0 0
\(493\) 528.000 1.07099
\(494\) 0 0
\(495\) −198.000 −0.400000
\(496\) 0 0
\(497\) 477.594i 0.960954i
\(498\) 0 0
\(499\) 58.0000 0.116232 0.0581162 0.998310i \(-0.481491\pi\)
0.0581162 + 0.998310i \(0.481491\pi\)
\(500\) 0 0
\(501\) − 716.391i − 1.42992i
\(502\) 0 0
\(503\) 504.127i 1.00224i 0.865378 + 0.501120i \(0.167079\pi\)
−0.865378 + 0.501120i \(0.832921\pi\)
\(504\) 0 0
\(505\) 704.000 1.39406
\(506\) 0 0
\(507\) 459.000 0.905325
\(508\) 0 0
\(509\) 736.291i 1.44654i 0.690563 + 0.723272i \(0.257363\pi\)
−0.690563 + 0.723272i \(0.742637\pi\)
\(510\) 0 0
\(511\) −592.000 −1.15851
\(512\) 0 0
\(513\) −162.000 −0.315789
\(514\) 0 0
\(515\) 490.860i 0.953127i
\(516\) 0 0
\(517\) −286.000 −0.553191
\(518\) 0 0
\(519\) − 596.992i − 1.15027i
\(520\) 0 0
\(521\) 278.596i 0.534734i 0.963595 + 0.267367i \(0.0861536\pi\)
−0.963595 + 0.267367i \(0.913846\pi\)
\(522\) 0 0
\(523\) 142.000 0.271511 0.135755 0.990742i \(-0.456654\pi\)
0.135755 + 0.990742i \(0.456654\pi\)
\(524\) 0 0
\(525\) 456.000 0.868571
\(526\) 0 0
\(527\) 344.929i 0.654514i
\(528\) 0 0
\(529\) 485.000 0.916824
\(530\) 0 0
\(531\) − 596.992i − 1.12428i
\(532\) 0 0
\(533\) 53.0660i 0.0995610i
\(534\) 0 0
\(535\) 264.000 0.493458
\(536\) 0 0
\(537\) 596.992i 1.11172i
\(538\) 0 0
\(539\) − 49.7494i − 0.0922994i
\(540\) 0 0
\(541\) 400.000 0.739372 0.369686 0.929157i \(-0.379465\pi\)
0.369686 + 0.929157i \(0.379465\pi\)
\(542\) 0 0
\(543\) −30.0000 −0.0552486
\(544\) 0 0
\(545\) 1326.65i 2.43422i
\(546\) 0 0
\(547\) −170.000 −0.310786 −0.155393 0.987853i \(-0.549664\pi\)
−0.155393 + 0.987853i \(0.549664\pi\)
\(548\) 0 0
\(549\) 108.000 0.196721
\(550\) 0 0
\(551\) − 238.797i − 0.433388i
\(552\) 0 0
\(553\) 320.000 0.578662
\(554\) 0 0
\(555\) 596.992i 1.07566i
\(556\) 0 0
\(557\) 849.056i 1.52434i 0.647378 + 0.762169i \(0.275865\pi\)
−0.647378 + 0.762169i \(0.724135\pi\)
\(558\) 0 0
\(559\) −168.000 −0.300537
\(560\) 0 0
\(561\) −132.000 −0.235294
\(562\) 0 0
\(563\) 703.124i 1.24889i 0.781069 + 0.624444i \(0.214675\pi\)
−0.781069 + 0.624444i \(0.785325\pi\)
\(564\) 0 0
\(565\) −264.000 −0.467257
\(566\) 0 0
\(567\) 648.000 1.14286
\(568\) 0 0
\(569\) − 119.398i − 0.209839i −0.994481 0.104920i \(-0.966541\pi\)
0.994481 0.104920i \(-0.0334585\pi\)
\(570\) 0 0
\(571\) 706.000 1.23643 0.618214 0.786010i \(-0.287857\pi\)
0.618214 + 0.786010i \(0.287857\pi\)
\(572\) 0 0
\(573\) − 338.296i − 0.590394i
\(574\) 0 0
\(575\) 126.032i 0.219186i
\(576\) 0 0
\(577\) −738.000 −1.27903 −0.639515 0.768779i \(-0.720865\pi\)
−0.639515 + 0.768779i \(0.720865\pi\)
\(578\) 0 0
\(579\) −894.000 −1.54404
\(580\) 0 0
\(581\) 318.396i 0.548014i
\(582\) 0 0
\(583\) −198.000 −0.339623
\(584\) 0 0
\(585\) − 238.797i − 0.408200i
\(586\) 0 0
\(587\) 941.921i 1.60464i 0.596897 + 0.802318i \(0.296400\pi\)
−0.596897 + 0.802318i \(0.703600\pi\)
\(588\) 0 0
\(589\) 156.000 0.264856
\(590\) 0 0
\(591\) − 397.995i − 0.673426i
\(592\) 0 0
\(593\) 543.926i 0.917245i 0.888631 + 0.458623i \(0.151657\pi\)
−0.888631 + 0.458623i \(0.848343\pi\)
\(594\) 0 0
\(595\) 704.000 1.18319
\(596\) 0 0
\(597\) −126.000 −0.211055
\(598\) 0 0
\(599\) 46.4327i 0.0775171i 0.999249 + 0.0387586i \(0.0123403\pi\)
−0.999249 + 0.0387586i \(0.987660\pi\)
\(600\) 0 0
\(601\) 542.000 0.901830 0.450915 0.892567i \(-0.351098\pi\)
0.450915 + 0.892567i \(0.351098\pi\)
\(602\) 0 0
\(603\) −18.0000 −0.0298507
\(604\) 0 0
\(605\) 72.9657i 0.120605i
\(606\) 0 0
\(607\) 700.000 1.15321 0.576606 0.817022i \(-0.304377\pi\)
0.576606 + 0.817022i \(0.304377\pi\)
\(608\) 0 0
\(609\) 955.188i 1.56845i
\(610\) 0 0
\(611\) − 344.929i − 0.564532i
\(612\) 0 0
\(613\) 764.000 1.24633 0.623165 0.782091i \(-0.285847\pi\)
0.623165 + 0.782091i \(0.285847\pi\)
\(614\) 0 0
\(615\) −264.000 −0.429268
\(616\) 0 0
\(617\) 39.7995i 0.0645049i 0.999480 + 0.0322524i \(0.0102680\pi\)
−0.999480 + 0.0322524i \(0.989732\pi\)
\(618\) 0 0
\(619\) 742.000 1.19871 0.599354 0.800484i \(-0.295424\pi\)
0.599354 + 0.800484i \(0.295424\pi\)
\(620\) 0 0
\(621\) 179.098i 0.288402i
\(622\) 0 0
\(623\) − 955.188i − 1.53321i
\(624\) 0 0
\(625\) −739.000 −1.18240
\(626\) 0 0
\(627\) 59.6992i 0.0952141i
\(628\) 0 0
\(629\) 397.995i 0.632742i
\(630\) 0 0
\(631\) 410.000 0.649762 0.324881 0.945755i \(-0.394676\pi\)
0.324881 + 0.945755i \(0.394676\pi\)
\(632\) 0 0
\(633\) 738.000 1.16588
\(634\) 0 0
\(635\) 1247.05i 1.96386i
\(636\) 0 0
\(637\) 60.0000 0.0941915
\(638\) 0 0
\(639\) 537.293i 0.840834i
\(640\) 0 0
\(641\) − 756.190i − 1.17970i −0.807511 0.589852i \(-0.799186\pi\)
0.807511 0.589852i \(-0.200814\pi\)
\(642\) 0 0
\(643\) −890.000 −1.38414 −0.692068 0.721832i \(-0.743300\pi\)
−0.692068 + 0.721832i \(0.743300\pi\)
\(644\) 0 0
\(645\) − 835.789i − 1.29580i
\(646\) 0 0
\(647\) − 484.227i − 0.748419i −0.927344 0.374210i \(-0.877914\pi\)
0.927344 0.374210i \(-0.122086\pi\)
\(648\) 0 0
\(649\) −220.000 −0.338983
\(650\) 0 0
\(651\) −624.000 −0.958525
\(652\) 0 0
\(653\) 391.362i 0.599329i 0.954045 + 0.299664i \(0.0968747\pi\)
−0.954045 + 0.299664i \(0.903125\pi\)
\(654\) 0 0
\(655\) −264.000 −0.403053
\(656\) 0 0
\(657\) −666.000 −1.01370
\(658\) 0 0
\(659\) 384.728i 0.583806i 0.956448 + 0.291903i \(0.0942885\pi\)
−0.956448 + 0.291903i \(0.905711\pi\)
\(660\) 0 0
\(661\) −746.000 −1.12859 −0.564297 0.825572i \(-0.690853\pi\)
−0.564297 + 0.825572i \(0.690853\pi\)
\(662\) 0 0
\(663\) − 159.198i − 0.240118i
\(664\) 0 0
\(665\) − 318.396i − 0.478791i
\(666\) 0 0
\(667\) −264.000 −0.395802
\(668\) 0 0
\(669\) −906.000 −1.35426
\(670\) 0 0
\(671\) − 39.7995i − 0.0593137i
\(672\) 0 0
\(673\) −634.000 −0.942051 −0.471025 0.882120i \(-0.656116\pi\)
−0.471025 + 0.882120i \(0.656116\pi\)
\(674\) 0 0
\(675\) 513.000 0.760000
\(676\) 0 0
\(677\) 795.990i 1.17576i 0.808948 + 0.587880i \(0.200037\pi\)
−0.808948 + 0.587880i \(0.799963\pi\)
\(678\) 0 0
\(679\) 496.000 0.730486
\(680\) 0 0
\(681\) − 596.992i − 0.876641i
\(682\) 0 0
\(683\) 451.061i 0.660411i 0.943909 + 0.330206i \(0.107118\pi\)
−0.943909 + 0.330206i \(0.892882\pi\)
\(684\) 0 0
\(685\) 704.000 1.02774
\(686\) 0 0
\(687\) −450.000 −0.655022
\(688\) 0 0
\(689\) − 238.797i − 0.346585i
\(690\) 0 0
\(691\) −458.000 −0.662808 −0.331404 0.943489i \(-0.607522\pi\)
−0.331404 + 0.943489i \(0.607522\pi\)
\(692\) 0 0
\(693\) − 238.797i − 0.344584i
\(694\) 0 0
\(695\) − 490.860i − 0.706274i
\(696\) 0 0
\(697\) −176.000 −0.252511
\(698\) 0 0
\(699\) 1313.38i 1.87895i
\(700\) 0 0
\(701\) 504.127i 0.719154i 0.933115 + 0.359577i \(0.117079\pi\)
−0.933115 + 0.359577i \(0.882921\pi\)
\(702\) 0 0
\(703\) 180.000 0.256046
\(704\) 0 0
\(705\) 1716.00 2.43404
\(706\) 0 0
\(707\) 849.056i 1.20093i
\(708\) 0 0
\(709\) −562.000 −0.792666 −0.396333 0.918107i \(-0.629717\pi\)
−0.396333 + 0.918107i \(0.629717\pi\)
\(710\) 0 0
\(711\) 360.000 0.506329
\(712\) 0 0
\(713\) − 172.464i − 0.241886i
\(714\) 0 0
\(715\) −88.0000 −0.123077
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) − 338.296i − 0.470509i −0.971934 0.235254i \(-0.924408\pi\)
0.971934 0.235254i \(-0.0755923\pi\)
\(720\) 0 0
\(721\) −592.000 −0.821082
\(722\) 0 0
\(723\) −390.000 −0.539419
\(724\) 0 0
\(725\) 756.190i 1.04302i
\(726\) 0 0
\(727\) 42.0000 0.0577717 0.0288858 0.999583i \(-0.490804\pi\)
0.0288858 + 0.999583i \(0.490804\pi\)
\(728\) 0 0
\(729\) 729.000 1.00000
\(730\) 0 0
\(731\) − 557.193i − 0.762234i
\(732\) 0 0
\(733\) −624.000 −0.851296 −0.425648 0.904889i \(-0.639954\pi\)
−0.425648 + 0.904889i \(0.639954\pi\)
\(734\) 0 0
\(735\) 298.496i 0.406117i
\(736\) 0 0
\(737\) 6.63325i 0.00900034i
\(738\) 0 0
\(739\) −686.000 −0.928281 −0.464141 0.885761i \(-0.653637\pi\)
−0.464141 + 0.885761i \(0.653637\pi\)
\(740\) 0 0
\(741\) −72.0000 −0.0971660
\(742\) 0 0
\(743\) 862.322i 1.16060i 0.814404 + 0.580298i \(0.197064\pi\)
−0.814404 + 0.580298i \(0.802936\pi\)
\(744\) 0 0
\(745\) −616.000 −0.826846
\(746\) 0 0
\(747\) 358.195i 0.479512i
\(748\) 0 0
\(749\) 318.396i 0.425095i
\(750\) 0 0
\(751\) −94.0000 −0.125166 −0.0625832 0.998040i \(-0.519934\pi\)
−0.0625832 + 0.998040i \(0.519934\pi\)
\(752\) 0 0
\(753\) 875.589i 1.16280i
\(754\) 0 0
\(755\) − 1061.32i − 1.40572i
\(756\) 0 0
\(757\) 1118.00 1.47688 0.738441 0.674318i \(-0.235562\pi\)
0.738441 + 0.674318i \(0.235562\pi\)
\(758\) 0 0
\(759\) 66.0000 0.0869565
\(760\) 0 0
\(761\) − 1154.19i − 1.51667i −0.651865 0.758335i \(-0.726013\pi\)
0.651865 0.758335i \(-0.273987\pi\)
\(762\) 0 0
\(763\) −1600.00 −2.09699
\(764\) 0 0
\(765\) 792.000 1.03529
\(766\) 0 0
\(767\) − 265.330i − 0.345932i
\(768\) 0 0
\(769\) 1274.00 1.65670 0.828349 0.560213i \(-0.189281\pi\)
0.828349 + 0.560213i \(0.189281\pi\)
\(770\) 0 0
\(771\) − 1472.58i − 1.90996i
\(772\) 0 0
\(773\) − 935.288i − 1.20995i −0.796246 0.604973i \(-0.793184\pi\)
0.796246 0.604973i \(-0.206816\pi\)
\(774\) 0 0
\(775\) −494.000 −0.637419
\(776\) 0 0
\(777\) −720.000 −0.926641
\(778\) 0 0
\(779\) 79.5990i 0.102181i
\(780\) 0 0
\(781\) 198.000 0.253521
\(782\) 0 0
\(783\) 1074.59i 1.37240i
\(784\) 0 0
\(785\) − 1207.25i − 1.53790i
\(786\) 0 0
\(787\) −298.000 −0.378653 −0.189327 0.981914i \(-0.560630\pi\)
−0.189327 + 0.981914i \(0.560630\pi\)
\(788\) 0 0
\(789\) 676.591i 0.857530i
\(790\) 0 0
\(791\) − 318.396i − 0.402523i
\(792\) 0 0
\(793\) 48.0000 0.0605296
\(794\) 0 0
\(795\) 1188.00 1.49434
\(796\) 0 0
\(797\) 524.027i 0.657499i 0.944417 + 0.328750i \(0.106627\pi\)
−0.944417 + 0.328750i \(0.893373\pi\)
\(798\) 0 0
\(799\) 1144.00 1.43179
\(800\) 0 0
\(801\) − 1074.59i − 1.34156i
\(802\) 0 0
\(803\) 245.430i 0.305642i
\(804\) 0 0
\(805\) −352.000 −0.437267
\(806\) 0 0
\(807\) − 218.897i − 0.271248i
\(808\) 0 0
\(809\) − 915.388i − 1.13151i −0.824575 0.565753i \(-0.808586\pi\)
0.824575 0.565753i \(-0.191414\pi\)
\(810\) 0 0
\(811\) 182.000 0.224414 0.112207 0.993685i \(-0.464208\pi\)
0.112207 + 0.993685i \(0.464208\pi\)
\(812\) 0 0
\(813\) −1344.00 −1.65314
\(814\) 0 0
\(815\) − 1923.64i − 2.36030i
\(816\) 0 0
\(817\) −252.000 −0.308446
\(818\) 0 0
\(819\) 288.000 0.351648
\(820\) 0 0
\(821\) − 822.523i − 1.00185i −0.865489 0.500927i \(-0.832992\pi\)
0.865489 0.500927i \(-0.167008\pi\)
\(822\) 0 0
\(823\) 246.000 0.298906 0.149453 0.988769i \(-0.452249\pi\)
0.149453 + 0.988769i \(0.452249\pi\)
\(824\) 0 0
\(825\) − 189.048i − 0.229149i
\(826\) 0 0
\(827\) − 543.926i − 0.657710i −0.944380 0.328855i \(-0.893337\pi\)
0.944380 0.328855i \(-0.106663\pi\)
\(828\) 0 0
\(829\) 250.000 0.301568 0.150784 0.988567i \(-0.451820\pi\)
0.150784 + 0.988567i \(0.451820\pi\)
\(830\) 0 0
\(831\) 780.000 0.938628
\(832\) 0 0
\(833\) 198.997i 0.238893i
\(834\) 0 0
\(835\) 1584.00 1.89701
\(836\) 0 0
\(837\) −702.000 −0.838710
\(838\) 0 0
\(839\) − 470.961i − 0.561336i −0.959805 0.280668i \(-0.909444\pi\)
0.959805 0.280668i \(-0.0905559\pi\)
\(840\) 0 0
\(841\) −743.000 −0.883472
\(842\) 0 0
\(843\) 596.992i 0.708176i
\(844\) 0 0
\(845\) 1014.89i 1.20105i
\(846\) 0 0
\(847\) −88.0000 −0.103896
\(848\) 0 0
\(849\) −150.000 −0.176678
\(850\) 0 0
\(851\) − 198.997i − 0.233840i
\(852\) 0 0
\(853\) 56.0000 0.0656506 0.0328253 0.999461i \(-0.489549\pi\)
0.0328253 + 0.999461i \(0.489549\pi\)
\(854\) 0 0
\(855\) − 358.195i − 0.418942i
\(856\) 0 0
\(857\) − 252.063i − 0.294123i −0.989127 0.147062i \(-0.953018\pi\)
0.989127 0.147062i \(-0.0469815\pi\)
\(858\) 0 0
\(859\) −1278.00 −1.48778 −0.743888 0.668304i \(-0.767021\pi\)
−0.743888 + 0.668304i \(0.767021\pi\)
\(860\) 0 0
\(861\) − 318.396i − 0.369798i
\(862\) 0 0
\(863\) 1134.29i 1.31435i 0.753737 + 0.657176i \(0.228249\pi\)
−0.753737 + 0.657176i \(0.771751\pi\)
\(864\) 0 0
\(865\) 1320.00 1.52601
\(866\) 0 0
\(867\) −339.000 −0.391003
\(868\) 0 0
\(869\) − 132.665i − 0.152664i
\(870\) 0 0
\(871\) −8.00000 −0.00918485
\(872\) 0 0
\(873\) 558.000 0.639175
\(874\) 0 0
\(875\) − 318.396i − 0.363881i
\(876\) 0 0
\(877\) 456.000 0.519954 0.259977 0.965615i \(-0.416285\pi\)
0.259977 + 0.965615i \(0.416285\pi\)
\(878\) 0 0
\(879\) − 1432.78i − 1.63001i
\(880\) 0 0
\(881\) − 610.259i − 0.692689i −0.938107 0.346344i \(-0.887423\pi\)
0.938107 0.346344i \(-0.112577\pi\)
\(882\) 0 0
\(883\) 1094.00 1.23896 0.619479 0.785013i \(-0.287344\pi\)
0.619479 + 0.785013i \(0.287344\pi\)
\(884\) 0 0
\(885\) 1320.00 1.49153
\(886\) 0 0
\(887\) − 145.931i − 0.164523i −0.996611 0.0822613i \(-0.973786\pi\)
0.996611 0.0822613i \(-0.0262142\pi\)
\(888\) 0 0
\(889\) −1504.00 −1.69179
\(890\) 0 0
\(891\) − 268.647i − 0.301511i
\(892\) 0 0
\(893\) − 517.393i − 0.579388i
\(894\) 0 0
\(895\) −1320.00 −1.47486
\(896\) 0 0
\(897\) 79.5990i 0.0887391i
\(898\) 0 0
\(899\) − 1034.79i − 1.15104i
\(900\) 0 0
\(901\) 792.000 0.879023
\(902\) 0 0
\(903\) 1008.00 1.11628
\(904\) 0 0
\(905\) − 66.3325i − 0.0732956i
\(906\) 0 0
\(907\) −186.000 −0.205072 −0.102536 0.994729i \(-0.532696\pi\)
−0.102536 + 0.994729i \(0.532696\pi\)
\(908\) 0 0
\(909\) 955.188i 1.05081i
\(910\) 0 0
\(911\) − 855.689i − 0.939286i −0.882857 0.469643i \(-0.844383\pi\)
0.882857 0.469643i \(-0.155617\pi\)
\(912\) 0 0
\(913\) 132.000 0.144578
\(914\) 0 0
\(915\) 238.797i 0.260980i
\(916\) 0 0
\(917\) − 318.396i − 0.347215i
\(918\) 0 0
\(919\) 428.000 0.465724 0.232862 0.972510i \(-0.425191\pi\)
0.232862 + 0.972510i \(0.425191\pi\)
\(920\) 0 0
\(921\) 258.000 0.280130
\(922\) 0 0
\(923\) 238.797i 0.258718i
\(924\) 0 0
\(925\) −570.000 −0.616216
\(926\) 0 0
\(927\) −666.000 −0.718447
\(928\) 0 0
\(929\) 636.792i 0.685460i 0.939434 + 0.342730i \(0.111352\pi\)
−0.939434 + 0.342730i \(0.888648\pi\)
\(930\) 0 0
\(931\) 90.0000 0.0966702
\(932\) 0 0
\(933\) 59.6992i 0.0639863i
\(934\) 0 0
\(935\) − 291.863i − 0.312153i
\(936\) 0 0
\(937\) 290.000 0.309498 0.154749 0.987954i \(-0.450543\pi\)
0.154749 + 0.987954i \(0.450543\pi\)
\(938\) 0 0
\(939\) −294.000 −0.313099
\(940\) 0 0
\(941\) 875.589i 0.930488i 0.885183 + 0.465244i \(0.154033\pi\)
−0.885183 + 0.465244i \(0.845967\pi\)
\(942\) 0 0
\(943\) 88.0000 0.0933192
\(944\) 0 0
\(945\) 1432.78i 1.51617i
\(946\) 0 0
\(947\) 79.5990i 0.0840538i 0.999116 + 0.0420269i \(0.0133815\pi\)
−0.999116 + 0.0420269i \(0.986618\pi\)
\(948\) 0 0
\(949\) −296.000 −0.311907
\(950\) 0 0
\(951\) − 935.288i − 0.983479i
\(952\) 0 0
\(953\) − 782.723i − 0.821326i −0.911787 0.410663i \(-0.865297\pi\)
0.911787 0.410663i \(-0.134703\pi\)
\(954\) 0 0
\(955\) 748.000 0.783246
\(956\) 0 0
\(957\) 396.000 0.413793
\(958\) 0 0
\(959\) 849.056i 0.885356i
\(960\) 0 0
\(961\) −285.000 −0.296566
\(962\) 0 0
\(963\) 358.195i 0.371958i
\(964\) 0 0
\(965\) − 1976.71i − 2.04840i
\(966\) 0 0
\(967\) −460.000 −0.475698 −0.237849 0.971302i \(-0.576442\pi\)
−0.237849 + 0.971302i \(0.576442\pi\)
\(968\) 0 0
\(969\) − 238.797i − 0.246437i
\(970\) 0 0
\(971\) 1167.45i 1.20232i 0.799129 + 0.601160i \(0.205294\pi\)
−0.799129 + 0.601160i \(0.794706\pi\)
\(972\) 0 0
\(973\) 592.000 0.608428
\(974\) 0 0
\(975\) 228.000 0.233846
\(976\) 0 0
\(977\) 1313.38i 1.34430i 0.740414 + 0.672151i \(0.234630\pi\)
−0.740414 + 0.672151i \(0.765370\pi\)
\(978\) 0 0
\(979\) −396.000 −0.404494
\(980\) 0 0
\(981\) −1800.00 −1.83486
\(982\) 0 0
\(983\) − 417.895i − 0.425122i −0.977148 0.212561i \(-0.931820\pi\)
0.977148 0.212561i \(-0.0681804\pi\)
\(984\) 0 0
\(985\) 880.000 0.893401
\(986\) 0 0
\(987\) 2069.57i 2.09683i
\(988\) 0 0
\(989\) 278.596i 0.281695i
\(990\) 0 0
\(991\) −838.000 −0.845610 −0.422805 0.906221i \(-0.638955\pi\)
−0.422805 + 0.906221i \(0.638955\pi\)
\(992\) 0 0
\(993\) −654.000 −0.658610
\(994\) 0 0
\(995\) − 278.596i − 0.279996i
\(996\) 0 0
\(997\) −52.0000 −0.0521565 −0.0260782 0.999660i \(-0.508302\pi\)
−0.0260782 + 0.999660i \(0.508302\pi\)
\(998\) 0 0
\(999\) −810.000 −0.810811
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 528.3.i.a.353.1 2
3.2 odd 2 inner 528.3.i.a.353.2 2
4.3 odd 2 33.3.b.a.23.2 yes 2
12.11 even 2 33.3.b.a.23.1 2
44.3 odd 10 363.3.h.e.251.2 8
44.7 even 10 363.3.h.d.269.2 8
44.15 odd 10 363.3.h.e.269.1 8
44.19 even 10 363.3.h.d.251.1 8
44.27 odd 10 363.3.h.e.245.1 8
44.31 odd 10 363.3.h.e.323.2 8
44.35 even 10 363.3.h.d.323.1 8
44.39 even 10 363.3.h.d.245.2 8
44.43 even 2 363.3.b.d.122.1 2
132.35 odd 10 363.3.h.d.323.2 8
132.47 even 10 363.3.h.e.251.1 8
132.59 even 10 363.3.h.e.269.2 8
132.71 even 10 363.3.h.e.245.2 8
132.83 odd 10 363.3.h.d.245.1 8
132.95 odd 10 363.3.h.d.269.1 8
132.107 odd 10 363.3.h.d.251.2 8
132.119 even 10 363.3.h.e.323.1 8
132.131 odd 2 363.3.b.d.122.2 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
33.3.b.a.23.1 2 12.11 even 2
33.3.b.a.23.2 yes 2 4.3 odd 2
363.3.b.d.122.1 2 44.43 even 2
363.3.b.d.122.2 2 132.131 odd 2
363.3.h.d.245.1 8 132.83 odd 10
363.3.h.d.245.2 8 44.39 even 10
363.3.h.d.251.1 8 44.19 even 10
363.3.h.d.251.2 8 132.107 odd 10
363.3.h.d.269.1 8 132.95 odd 10
363.3.h.d.269.2 8 44.7 even 10
363.3.h.d.323.1 8 44.35 even 10
363.3.h.d.323.2 8 132.35 odd 10
363.3.h.e.245.1 8 44.27 odd 10
363.3.h.e.245.2 8 132.71 even 10
363.3.h.e.251.1 8 132.47 even 10
363.3.h.e.251.2 8 44.3 odd 10
363.3.h.e.269.1 8 44.15 odd 10
363.3.h.e.269.2 8 132.59 even 10
363.3.h.e.323.1 8 132.119 even 10
363.3.h.e.323.2 8 44.31 odd 10
528.3.i.a.353.1 2 1.1 even 1 trivial
528.3.i.a.353.2 2 3.2 odd 2 inner