Properties

Label 528.2.y.b
Level $528$
Weight $2$
Character orbit 528.y
Analytic conductor $4.216$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [528,2,Mod(49,528)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(528, base_ring=CyclotomicField(10))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 4]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("528.49");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 528 = 2^{4} \cdot 3 \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 528.y (of order \(5\), degree \(4\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(4.21610122672\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\zeta_{10})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} + x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 33)
Sato-Tate group: $\mathrm{SU}(2)[C_{5}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a primitive root of unity \(\zeta_{10}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \zeta_{10}^{2} q^{3} + ( - \zeta_{10}^{2} - 1) q^{5} - \zeta_{10}^{3} q^{7} + (\zeta_{10}^{3} - \zeta_{10}^{2} + \cdots - 1) q^{9} + (2 \zeta_{10}^{3} + \zeta_{10} + 2) q^{11} + ( - 3 \zeta_{10}^{3} + \zeta_{10}^{2} + \cdots + 3) q^{13} + \cdots + (2 \zeta_{10}^{3} - 4 \zeta_{10}^{2} + \cdots - 3) q^{99} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - q^{3} - 3 q^{5} - q^{7} - q^{9} + 11 q^{11} + 7 q^{13} + 2 q^{15} + 12 q^{17} + 10 q^{19} + 4 q^{21} + 8 q^{23} + 6 q^{25} - q^{27} + 6 q^{29} + 12 q^{31} - 9 q^{33} - 3 q^{35} + 9 q^{37} + 7 q^{39}+ \cdots - 4 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/528\mathbb{Z}\right)^\times\).

\(n\) \(133\) \(145\) \(353\) \(463\)
\(\chi(n)\) \(1\) \(-\zeta_{10}^{3}\) \(1\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
49.1
−0.309017 + 0.951057i
−0.309017 0.951057i
0.809017 + 0.587785i
0.809017 0.587785i
0 −0.809017 0.587785i 0 −0.190983 + 0.587785i 0 −0.809017 + 0.587785i 0 0.309017 + 0.951057i 0
97.1 0 −0.809017 + 0.587785i 0 −0.190983 0.587785i 0 −0.809017 0.587785i 0 0.309017 0.951057i 0
289.1 0 0.309017 + 0.951057i 0 −1.30902 0.951057i 0 0.309017 0.951057i 0 −0.809017 + 0.587785i 0
433.1 0 0.309017 0.951057i 0 −1.30902 + 0.951057i 0 0.309017 + 0.951057i 0 −0.809017 0.587785i 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
11.c even 5 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 528.2.y.b 4
4.b odd 2 1 33.2.e.b 4
11.c even 5 1 inner 528.2.y.b 4
11.c even 5 1 5808.2.a.cj 2
11.d odd 10 1 5808.2.a.ci 2
12.b even 2 1 99.2.f.a 4
20.d odd 2 1 825.2.n.c 4
20.e even 4 2 825.2.bx.d 8
36.f odd 6 2 891.2.n.c 8
36.h even 6 2 891.2.n.b 8
44.c even 2 1 363.2.e.f 4
44.g even 10 1 363.2.a.i 2
44.g even 10 2 363.2.e.b 4
44.g even 10 1 363.2.e.f 4
44.h odd 10 1 33.2.e.b 4
44.h odd 10 1 363.2.a.d 2
44.h odd 10 2 363.2.e.k 4
132.n odd 10 1 1089.2.a.l 2
132.o even 10 1 99.2.f.a 4
132.o even 10 1 1089.2.a.t 2
220.n odd 10 1 825.2.n.c 4
220.n odd 10 1 9075.2.a.cb 2
220.o even 10 1 9075.2.a.u 2
220.v even 20 2 825.2.bx.d 8
396.ba even 30 2 891.2.n.b 8
396.be odd 30 2 891.2.n.c 8
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
33.2.e.b 4 4.b odd 2 1
33.2.e.b 4 44.h odd 10 1
99.2.f.a 4 12.b even 2 1
99.2.f.a 4 132.o even 10 1
363.2.a.d 2 44.h odd 10 1
363.2.a.i 2 44.g even 10 1
363.2.e.b 4 44.g even 10 2
363.2.e.f 4 44.c even 2 1
363.2.e.f 4 44.g even 10 1
363.2.e.k 4 44.h odd 10 2
528.2.y.b 4 1.a even 1 1 trivial
528.2.y.b 4 11.c even 5 1 inner
825.2.n.c 4 20.d odd 2 1
825.2.n.c 4 220.n odd 10 1
825.2.bx.d 8 20.e even 4 2
825.2.bx.d 8 220.v even 20 2
891.2.n.b 8 36.h even 6 2
891.2.n.b 8 396.ba even 30 2
891.2.n.c 8 36.f odd 6 2
891.2.n.c 8 396.be odd 30 2
1089.2.a.l 2 132.n odd 10 1
1089.2.a.t 2 132.o even 10 1
5808.2.a.ci 2 11.d odd 10 1
5808.2.a.cj 2 11.c even 5 1
9075.2.a.u 2 220.o even 10 1
9075.2.a.cb 2 220.n odd 10 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(528, [\chi])\):

\( T_{5}^{4} + 3T_{5}^{3} + 4T_{5}^{2} + 2T_{5} + 1 \) Copy content Toggle raw display
\( T_{7}^{4} + T_{7}^{3} + T_{7}^{2} + T_{7} + 1 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{4} \) Copy content Toggle raw display
$3$ \( T^{4} + T^{3} + T^{2} + \cdots + 1 \) Copy content Toggle raw display
$5$ \( T^{4} + 3 T^{3} + \cdots + 1 \) Copy content Toggle raw display
$7$ \( T^{4} + T^{3} + T^{2} + \cdots + 1 \) Copy content Toggle raw display
$11$ \( T^{4} - 11 T^{3} + \cdots + 121 \) Copy content Toggle raw display
$13$ \( T^{4} - 7 T^{3} + \cdots + 1 \) Copy content Toggle raw display
$17$ \( T^{4} - 12 T^{3} + \cdots + 81 \) Copy content Toggle raw display
$19$ \( T^{4} - 10 T^{3} + \cdots + 25 \) Copy content Toggle raw display
$23$ \( (T^{2} - 4 T - 1)^{2} \) Copy content Toggle raw display
$29$ \( T^{4} - 6 T^{3} + \cdots + 1296 \) Copy content Toggle raw display
$31$ \( T^{4} - 12 T^{3} + \cdots + 961 \) Copy content Toggle raw display
$37$ \( T^{4} - 9 T^{3} + \cdots + 121 \) Copy content Toggle raw display
$41$ \( T^{4} + 3 T^{3} + \cdots + 1 \) Copy content Toggle raw display
$43$ \( (T^{2} - 45)^{2} \) Copy content Toggle raw display
$47$ \( T^{4} + 17 T^{3} + \cdots + 121 \) Copy content Toggle raw display
$53$ \( T^{4} - 4 T^{3} + \cdots + 1 \) Copy content Toggle raw display
$59$ \( T^{4} - 6 T^{3} + \cdots + 5041 \) Copy content Toggle raw display
$61$ \( T^{4} + 21 T^{3} + \cdots + 9801 \) Copy content Toggle raw display
$67$ \( (T^{2} - 3 T - 9)^{2} \) Copy content Toggle raw display
$71$ \( T^{4} + 15 T^{3} + \cdots + 3025 \) Copy content Toggle raw display
$73$ \( T^{4} - 14 T^{3} + \cdots + 1936 \) Copy content Toggle raw display
$79$ \( T^{4} - 11 T^{3} + \cdots + 14641 \) Copy content Toggle raw display
$83$ \( T^{4} + 13 T^{3} + \cdots + 121 \) Copy content Toggle raw display
$89$ \( (T^{2} + 12 T + 31)^{2} \) Copy content Toggle raw display
$97$ \( T^{4} - 3 T^{3} + \cdots + 81 \) Copy content Toggle raw display
show more
show less