Properties

Label 528.2.y.a.97.1
Level $528$
Weight $2$
Character 528.97
Analytic conductor $4.216$
Analytic rank $1$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [528,2,Mod(49,528)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("528.49"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(528, base_ring=CyclotomicField(10)) chi = DirichletCharacter(H, H._module([0, 0, 0, 4])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 528 = 2^{4} \cdot 3 \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 528.y (of order \(5\), degree \(4\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,-1,0,-7] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(4.21610122672\)
Analytic rank: \(1\)
Dimension: \(4\)
Coefficient field: \(\Q(\zeta_{10})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} + x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 132)
Sato-Tate group: $\mathrm{SU}(2)[C_{5}]$

Embedding invariants

Embedding label 97.1
Root \(-0.309017 - 0.951057i\) of defining polynomial
Character \(\chi\) \(=\) 528.97
Dual form 528.2.y.a.49.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.809017 + 0.587785i) q^{3} +(-1.19098 - 3.66547i) q^{5} +(-0.190983 - 0.138757i) q^{7} +(0.309017 - 0.951057i) q^{9} +(-3.30902 - 0.224514i) q^{11} +(-1.92705 + 5.93085i) q^{13} +(3.11803 + 2.26538i) q^{15} +(0.736068 + 2.26538i) q^{17} +(-4.11803 + 2.99193i) q^{19} +0.236068 q^{21} +0.236068 q^{23} +(-7.97214 + 5.79210i) q^{25} +(0.309017 + 0.951057i) q^{27} +(-3.61803 - 2.62866i) q^{29} +(1.97214 - 6.06961i) q^{31} +(2.80902 - 1.76336i) q^{33} +(-0.281153 + 0.865300i) q^{35} +(3.04508 + 2.21238i) q^{37} +(-1.92705 - 5.93085i) q^{39} +(-7.66312 + 5.56758i) q^{41} -9.47214 q^{43} -3.85410 q^{45} +(2.92705 - 2.12663i) q^{47} +(-2.14590 - 6.60440i) q^{49} +(-1.92705 - 1.40008i) q^{51} +(2.02786 - 6.24112i) q^{53} +(3.11803 + 12.3965i) q^{55} +(1.57295 - 4.84104i) q^{57} +(1.73607 + 1.26133i) q^{59} +(-0.809017 - 2.48990i) q^{61} +(-0.190983 + 0.138757i) q^{63} +24.0344 q^{65} +0.145898 q^{67} +(-0.190983 + 0.138757i) q^{69} +(0.427051 + 1.31433i) q^{71} +(-2.61803 - 1.90211i) q^{73} +(3.04508 - 9.37181i) q^{75} +(0.600813 + 0.502029i) q^{77} +(-4.39919 + 13.5393i) q^{79} +(-0.809017 - 0.587785i) q^{81} +(-4.78115 - 14.7149i) q^{83} +(7.42705 - 5.39607i) q^{85} +4.47214 q^{87} +1.00000 q^{89} +(1.19098 - 0.865300i) q^{91} +(1.97214 + 6.06961i) q^{93} +(15.8713 + 11.5312i) q^{95} +(-1.57295 + 4.84104i) q^{97} +(-1.23607 + 3.07768i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - q^{3} - 7 q^{5} - 3 q^{7} - q^{9} - 11 q^{11} - q^{13} + 8 q^{15} - 6 q^{17} - 12 q^{19} - 8 q^{21} - 8 q^{23} - 14 q^{25} - q^{27} - 10 q^{29} - 10 q^{31} + 9 q^{33} + 19 q^{35} + q^{37} - q^{39}+ \cdots + 4 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/528\mathbb{Z}\right)^\times\).

\(n\) \(133\) \(145\) \(353\) \(463\)
\(\chi(n)\) \(1\) \(e\left(\frac{3}{5}\right)\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −0.809017 + 0.587785i −0.467086 + 0.339358i
\(4\) 0 0
\(5\) −1.19098 3.66547i −0.532624 1.63925i −0.748728 0.662877i \(-0.769335\pi\)
0.216104 0.976370i \(-0.430665\pi\)
\(6\) 0 0
\(7\) −0.190983 0.138757i −0.0721848 0.0524453i 0.551108 0.834434i \(-0.314205\pi\)
−0.623292 + 0.781989i \(0.714205\pi\)
\(8\) 0 0
\(9\) 0.309017 0.951057i 0.103006 0.317019i
\(10\) 0 0
\(11\) −3.30902 0.224514i −0.997706 0.0676935i
\(12\) 0 0
\(13\) −1.92705 + 5.93085i −0.534468 + 1.64492i 0.210329 + 0.977631i \(0.432547\pi\)
−0.744796 + 0.667292i \(0.767453\pi\)
\(14\) 0 0
\(15\) 3.11803 + 2.26538i 0.805073 + 0.584920i
\(16\) 0 0
\(17\) 0.736068 + 2.26538i 0.178523 + 0.549436i 0.999777 0.0211262i \(-0.00672518\pi\)
−0.821254 + 0.570563i \(0.806725\pi\)
\(18\) 0 0
\(19\) −4.11803 + 2.99193i −0.944742 + 0.686395i −0.949557 0.313593i \(-0.898467\pi\)
0.00481560 + 0.999988i \(0.498467\pi\)
\(20\) 0 0
\(21\) 0.236068 0.0515143
\(22\) 0 0
\(23\) 0.236068 0.0492236 0.0246118 0.999697i \(-0.492165\pi\)
0.0246118 + 0.999697i \(0.492165\pi\)
\(24\) 0 0
\(25\) −7.97214 + 5.79210i −1.59443 + 1.15842i
\(26\) 0 0
\(27\) 0.309017 + 0.951057i 0.0594703 + 0.183031i
\(28\) 0 0
\(29\) −3.61803 2.62866i −0.671852 0.488129i 0.198793 0.980042i \(-0.436298\pi\)
−0.870645 + 0.491912i \(0.836298\pi\)
\(30\) 0 0
\(31\) 1.97214 6.06961i 0.354206 1.09013i −0.602262 0.798298i \(-0.705734\pi\)
0.956468 0.291836i \(-0.0942661\pi\)
\(32\) 0 0
\(33\) 2.80902 1.76336i 0.488987 0.306961i
\(34\) 0 0
\(35\) −0.281153 + 0.865300i −0.0475235 + 0.146262i
\(36\) 0 0
\(37\) 3.04508 + 2.21238i 0.500609 + 0.363714i 0.809250 0.587465i \(-0.199874\pi\)
−0.308641 + 0.951179i \(0.599874\pi\)
\(38\) 0 0
\(39\) −1.92705 5.93085i −0.308575 0.949697i
\(40\) 0 0
\(41\) −7.66312 + 5.56758i −1.19678 + 0.869510i −0.993964 0.109707i \(-0.965009\pi\)
−0.202814 + 0.979217i \(0.565009\pi\)
\(42\) 0 0
\(43\) −9.47214 −1.44449 −0.722244 0.691639i \(-0.756889\pi\)
−0.722244 + 0.691639i \(0.756889\pi\)
\(44\) 0 0
\(45\) −3.85410 −0.574536
\(46\) 0 0
\(47\) 2.92705 2.12663i 0.426954 0.310200i −0.353476 0.935444i \(-0.615000\pi\)
0.780430 + 0.625243i \(0.215000\pi\)
\(48\) 0 0
\(49\) −2.14590 6.60440i −0.306557 0.943485i
\(50\) 0 0
\(51\) −1.92705 1.40008i −0.269841 0.196051i
\(52\) 0 0
\(53\) 2.02786 6.24112i 0.278549 0.857284i −0.709710 0.704494i \(-0.751174\pi\)
0.988259 0.152790i \(-0.0488259\pi\)
\(54\) 0 0
\(55\) 3.11803 + 12.3965i 0.420436 + 1.67154i
\(56\) 0 0
\(57\) 1.57295 4.84104i 0.208342 0.641211i
\(58\) 0 0
\(59\) 1.73607 + 1.26133i 0.226017 + 0.164211i 0.695031 0.718980i \(-0.255391\pi\)
−0.469014 + 0.883191i \(0.655391\pi\)
\(60\) 0 0
\(61\) −0.809017 2.48990i −0.103584 0.318799i 0.885811 0.464045i \(-0.153602\pi\)
−0.989396 + 0.145246i \(0.953602\pi\)
\(62\) 0 0
\(63\) −0.190983 + 0.138757i −0.0240616 + 0.0174818i
\(64\) 0 0
\(65\) 24.0344 2.98111
\(66\) 0 0
\(67\) 0.145898 0.0178243 0.00891214 0.999960i \(-0.497163\pi\)
0.00891214 + 0.999960i \(0.497163\pi\)
\(68\) 0 0
\(69\) −0.190983 + 0.138757i −0.0229917 + 0.0167044i
\(70\) 0 0
\(71\) 0.427051 + 1.31433i 0.0506816 + 0.155982i 0.973194 0.229985i \(-0.0738678\pi\)
−0.922512 + 0.385967i \(0.873868\pi\)
\(72\) 0 0
\(73\) −2.61803 1.90211i −0.306418 0.222625i 0.423940 0.905690i \(-0.360647\pi\)
−0.730358 + 0.683065i \(0.760647\pi\)
\(74\) 0 0
\(75\) 3.04508 9.37181i 0.351616 1.08216i
\(76\) 0 0
\(77\) 0.600813 + 0.502029i 0.0684690 + 0.0572115i
\(78\) 0 0
\(79\) −4.39919 + 13.5393i −0.494947 + 1.52329i 0.322092 + 0.946708i \(0.395614\pi\)
−0.817039 + 0.576582i \(0.804386\pi\)
\(80\) 0 0
\(81\) −0.809017 0.587785i −0.0898908 0.0653095i
\(82\) 0 0
\(83\) −4.78115 14.7149i −0.524800 1.61517i −0.764712 0.644373i \(-0.777119\pi\)
0.239912 0.970795i \(-0.422881\pi\)
\(84\) 0 0
\(85\) 7.42705 5.39607i 0.805577 0.585286i
\(86\) 0 0
\(87\) 4.47214 0.479463
\(88\) 0 0
\(89\) 1.00000 0.106000 0.0529999 0.998595i \(-0.483122\pi\)
0.0529999 + 0.998595i \(0.483122\pi\)
\(90\) 0 0
\(91\) 1.19098 0.865300i 0.124849 0.0907081i
\(92\) 0 0
\(93\) 1.97214 + 6.06961i 0.204501 + 0.629389i
\(94\) 0 0
\(95\) 15.8713 + 11.5312i 1.62836 + 1.18308i
\(96\) 0 0
\(97\) −1.57295 + 4.84104i −0.159709 + 0.491533i −0.998608 0.0527545i \(-0.983200\pi\)
0.838899 + 0.544288i \(0.183200\pi\)
\(98\) 0 0
\(99\) −1.23607 + 3.07768i −0.124230 + 0.309319i
\(100\) 0 0
\(101\) −1.83688 + 5.65334i −0.182776 + 0.562528i −0.999903 0.0139302i \(-0.995566\pi\)
0.817126 + 0.576458i \(0.195566\pi\)
\(102\) 0 0
\(103\) 10.0902 + 7.33094i 0.994214 + 0.722339i 0.960840 0.277104i \(-0.0893747\pi\)
0.0333741 + 0.999443i \(0.489375\pi\)
\(104\) 0 0
\(105\) −0.281153 0.865300i −0.0274377 0.0844446i
\(106\) 0 0
\(107\) 5.28115 3.83698i 0.510548 0.370935i −0.302483 0.953155i \(-0.597816\pi\)
0.813032 + 0.582220i \(0.197816\pi\)
\(108\) 0 0
\(109\) −8.00000 −0.766261 −0.383131 0.923694i \(-0.625154\pi\)
−0.383131 + 0.923694i \(0.625154\pi\)
\(110\) 0 0
\(111\) −3.76393 −0.357257
\(112\) 0 0
\(113\) −9.89919 + 7.19218i −0.931237 + 0.676583i −0.946295 0.323303i \(-0.895207\pi\)
0.0150583 + 0.999887i \(0.495207\pi\)
\(114\) 0 0
\(115\) −0.281153 0.865300i −0.0262176 0.0806896i
\(116\) 0 0
\(117\) 5.04508 + 3.66547i 0.466418 + 0.338873i
\(118\) 0 0
\(119\) 0.173762 0.534785i 0.0159287 0.0490236i
\(120\) 0 0
\(121\) 10.8992 + 1.48584i 0.990835 + 0.135076i
\(122\) 0 0
\(123\) 2.92705 9.00854i 0.263923 0.812272i
\(124\) 0 0
\(125\) 15.1353 + 10.9964i 1.35374 + 0.983548i
\(126\) 0 0
\(127\) −4.85410 14.9394i −0.430732 1.32566i −0.897398 0.441223i \(-0.854545\pi\)
0.466666 0.884434i \(-0.345455\pi\)
\(128\) 0 0
\(129\) 7.66312 5.56758i 0.674700 0.490198i
\(130\) 0 0
\(131\) 8.56231 0.748092 0.374046 0.927410i \(-0.377970\pi\)
0.374046 + 0.927410i \(0.377970\pi\)
\(132\) 0 0
\(133\) 1.20163 0.104194
\(134\) 0 0
\(135\) 3.11803 2.26538i 0.268358 0.194973i
\(136\) 0 0
\(137\) −6.48936 19.9722i −0.554423 1.70634i −0.697462 0.716622i \(-0.745687\pi\)
0.143039 0.989717i \(-0.454313\pi\)
\(138\) 0 0
\(139\) 3.07295 + 2.23263i 0.260644 + 0.189369i 0.710431 0.703767i \(-0.248500\pi\)
−0.449787 + 0.893136i \(0.648500\pi\)
\(140\) 0 0
\(141\) −1.11803 + 3.44095i −0.0941554 + 0.289781i
\(142\) 0 0
\(143\) 7.70820 19.1926i 0.644592 1.60497i
\(144\) 0 0
\(145\) −5.32624 + 16.3925i −0.442320 + 1.36132i
\(146\) 0 0
\(147\) 5.61803 + 4.08174i 0.463368 + 0.336656i
\(148\) 0 0
\(149\) −5.21885 16.0620i −0.427545 1.31585i −0.900537 0.434780i \(-0.856826\pi\)
0.472992 0.881067i \(-0.343174\pi\)
\(150\) 0 0
\(151\) 3.61803 2.62866i 0.294431 0.213917i −0.430756 0.902468i \(-0.641753\pi\)
0.725188 + 0.688551i \(0.241753\pi\)
\(152\) 0 0
\(153\) 2.38197 0.192571
\(154\) 0 0
\(155\) −24.5967 −1.97566
\(156\) 0 0
\(157\) 13.9443 10.1311i 1.11287 0.808550i 0.129760 0.991545i \(-0.458579\pi\)
0.983114 + 0.182995i \(0.0585792\pi\)
\(158\) 0 0
\(159\) 2.02786 + 6.24112i 0.160820 + 0.494953i
\(160\) 0 0
\(161\) −0.0450850 0.0327561i −0.00355319 0.00258155i
\(162\) 0 0
\(163\) 1.50000 4.61653i 0.117489 0.361594i −0.874969 0.484179i \(-0.839118\pi\)
0.992458 + 0.122585i \(0.0391184\pi\)
\(164\) 0 0
\(165\) −9.80902 8.19624i −0.763631 0.638076i
\(166\) 0 0
\(167\) 0.190983 0.587785i 0.0147787 0.0454842i −0.943395 0.331671i \(-0.892388\pi\)
0.958174 + 0.286187i \(0.0923877\pi\)
\(168\) 0 0
\(169\) −20.9443 15.2169i −1.61110 1.17053i
\(170\) 0 0
\(171\) 1.57295 + 4.84104i 0.120286 + 0.370204i
\(172\) 0 0
\(173\) −4.50000 + 3.26944i −0.342129 + 0.248571i −0.745559 0.666439i \(-0.767818\pi\)
0.403431 + 0.915010i \(0.367818\pi\)
\(174\) 0 0
\(175\) 2.32624 0.175847
\(176\) 0 0
\(177\) −2.14590 −0.161296
\(178\) 0 0
\(179\) −14.5172 + 10.5474i −1.08507 + 0.788348i −0.978560 0.205964i \(-0.933967\pi\)
−0.106508 + 0.994312i \(0.533967\pi\)
\(180\) 0 0
\(181\) 1.83688 + 5.65334i 0.136534 + 0.420209i 0.995826 0.0912773i \(-0.0290950\pi\)
−0.859291 + 0.511487i \(0.829095\pi\)
\(182\) 0 0
\(183\) 2.11803 + 1.53884i 0.156570 + 0.113754i
\(184\) 0 0
\(185\) 4.48278 13.7966i 0.329580 1.01434i
\(186\) 0 0
\(187\) −1.92705 7.66145i −0.140920 0.560261i
\(188\) 0 0
\(189\) 0.0729490 0.224514i 0.00530626 0.0163310i
\(190\) 0 0
\(191\) −17.5172 12.7270i −1.26750 0.920894i −0.268401 0.963307i \(-0.586495\pi\)
−0.999100 + 0.0424133i \(0.986495\pi\)
\(192\) 0 0
\(193\) 4.73607 + 14.5761i 0.340910 + 1.04921i 0.963737 + 0.266853i \(0.0859838\pi\)
−0.622828 + 0.782359i \(0.714016\pi\)
\(194\) 0 0
\(195\) −19.4443 + 14.1271i −1.39243 + 1.01166i
\(196\) 0 0
\(197\) −5.90983 −0.421058 −0.210529 0.977588i \(-0.567519\pi\)
−0.210529 + 0.977588i \(0.567519\pi\)
\(198\) 0 0
\(199\) 10.4164 0.738400 0.369200 0.929350i \(-0.379632\pi\)
0.369200 + 0.929350i \(0.379632\pi\)
\(200\) 0 0
\(201\) −0.118034 + 0.0857567i −0.00832548 + 0.00604881i
\(202\) 0 0
\(203\) 0.326238 + 1.00406i 0.0228974 + 0.0704710i
\(204\) 0 0
\(205\) 29.5344 + 21.4580i 2.06277 + 1.49869i
\(206\) 0 0
\(207\) 0.0729490 0.224514i 0.00507031 0.0156048i
\(208\) 0 0
\(209\) 14.2984 8.97578i 0.989039 0.620868i
\(210\) 0 0
\(211\) −5.79180 + 17.8253i −0.398724 + 1.22715i 0.527300 + 0.849679i \(0.323204\pi\)
−0.926023 + 0.377466i \(0.876796\pi\)
\(212\) 0 0
\(213\) −1.11803 0.812299i −0.0766064 0.0556578i
\(214\) 0 0
\(215\) 11.2812 + 34.7198i 0.769368 + 2.36787i
\(216\) 0 0
\(217\) −1.21885 + 0.885544i −0.0827407 + 0.0601147i
\(218\) 0 0
\(219\) 3.23607 0.218673
\(220\) 0 0
\(221\) −14.8541 −0.999195
\(222\) 0 0
\(223\) −6.04508 + 4.39201i −0.404809 + 0.294111i −0.771497 0.636233i \(-0.780492\pi\)
0.366688 + 0.930344i \(0.380492\pi\)
\(224\) 0 0
\(225\) 3.04508 + 9.37181i 0.203006 + 0.624787i
\(226\) 0 0
\(227\) 10.2812 + 7.46969i 0.682384 + 0.495781i 0.874148 0.485660i \(-0.161421\pi\)
−0.191764 + 0.981441i \(0.561421\pi\)
\(228\) 0 0
\(229\) 3.38197 10.4086i 0.223487 0.687821i −0.774955 0.632016i \(-0.782228\pi\)
0.998442 0.0558047i \(-0.0177724\pi\)
\(230\) 0 0
\(231\) −0.781153 0.0530006i −0.0513961 0.00348718i
\(232\) 0 0
\(233\) 0.371323 1.14281i 0.0243262 0.0748683i −0.938156 0.346212i \(-0.887468\pi\)
0.962483 + 0.271343i \(0.0874679\pi\)
\(234\) 0 0
\(235\) −11.2812 8.19624i −0.735901 0.534664i
\(236\) 0 0
\(237\) −4.39919 13.5393i −0.285758 0.879472i
\(238\) 0 0
\(239\) 14.1631 10.2901i 0.916136 0.665612i −0.0264232 0.999651i \(-0.508412\pi\)
0.942559 + 0.334039i \(0.108412\pi\)
\(240\) 0 0
\(241\) −23.7082 −1.52718 −0.763590 0.645702i \(-0.776565\pi\)
−0.763590 + 0.645702i \(0.776565\pi\)
\(242\) 0 0
\(243\) 1.00000 0.0641500
\(244\) 0 0
\(245\) −21.6525 + 15.7314i −1.38333 + 1.00505i
\(246\) 0 0
\(247\) −9.80902 30.1891i −0.624133 1.92088i
\(248\) 0 0
\(249\) 12.5172 + 9.09429i 0.793247 + 0.576327i
\(250\) 0 0
\(251\) −7.44427 + 22.9111i −0.469878 + 1.44614i 0.382864 + 0.923805i \(0.374938\pi\)
−0.852742 + 0.522332i \(0.825062\pi\)
\(252\) 0 0
\(253\) −0.781153 0.0530006i −0.0491107 0.00333212i
\(254\) 0 0
\(255\) −2.83688 + 8.73102i −0.177652 + 0.546758i
\(256\) 0 0
\(257\) 2.26393 + 1.64484i 0.141220 + 0.102602i 0.656152 0.754628i \(-0.272183\pi\)
−0.514932 + 0.857231i \(0.672183\pi\)
\(258\) 0 0
\(259\) −0.274575 0.845055i −0.0170613 0.0525092i
\(260\) 0 0
\(261\) −3.61803 + 2.62866i −0.223951 + 0.162710i
\(262\) 0 0
\(263\) −23.8541 −1.47091 −0.735453 0.677575i \(-0.763031\pi\)
−0.735453 + 0.677575i \(0.763031\pi\)
\(264\) 0 0
\(265\) −25.2918 −1.55366
\(266\) 0 0
\(267\) −0.809017 + 0.587785i −0.0495110 + 0.0359719i
\(268\) 0 0
\(269\) 8.79837 + 27.0786i 0.536446 + 1.65101i 0.740503 + 0.672053i \(0.234587\pi\)
−0.204057 + 0.978959i \(0.565413\pi\)
\(270\) 0 0
\(271\) −1.97214 1.43284i −0.119799 0.0870389i 0.526273 0.850316i \(-0.323589\pi\)
−0.646071 + 0.763277i \(0.723589\pi\)
\(272\) 0 0
\(273\) −0.454915 + 1.40008i −0.0275327 + 0.0847370i
\(274\) 0 0
\(275\) 27.6803 17.3763i 1.66919 1.04783i
\(276\) 0 0
\(277\) 0.791796 2.43690i 0.0475744 0.146419i −0.924447 0.381310i \(-0.875473\pi\)
0.972022 + 0.234891i \(0.0754732\pi\)
\(278\) 0 0
\(279\) −5.16312 3.75123i −0.309108 0.224580i
\(280\) 0 0
\(281\) 5.29180 + 16.2865i 0.315682 + 0.971570i 0.975473 + 0.220120i \(0.0706449\pi\)
−0.659791 + 0.751449i \(0.729355\pi\)
\(282\) 0 0
\(283\) 18.7984 13.6578i 1.11745 0.811873i 0.133627 0.991032i \(-0.457338\pi\)
0.983820 + 0.179159i \(0.0573375\pi\)
\(284\) 0 0
\(285\) −19.6180 −1.16207
\(286\) 0 0
\(287\) 2.23607 0.131991
\(288\) 0 0
\(289\) 9.16312 6.65740i 0.539007 0.391612i
\(290\) 0 0
\(291\) −1.57295 4.84104i −0.0922079 0.283787i
\(292\) 0 0
\(293\) 4.04508 + 2.93893i 0.236316 + 0.171694i 0.699641 0.714495i \(-0.253343\pi\)
−0.463324 + 0.886189i \(0.653343\pi\)
\(294\) 0 0
\(295\) 2.55573 7.86572i 0.148800 0.457960i
\(296\) 0 0
\(297\) −0.809017 3.21644i −0.0469439 0.186637i
\(298\) 0 0
\(299\) −0.454915 + 1.40008i −0.0263084 + 0.0809690i
\(300\) 0 0
\(301\) 1.80902 + 1.31433i 0.104270 + 0.0757566i
\(302\) 0 0
\(303\) −1.83688 5.65334i −0.105526 0.324776i
\(304\) 0 0
\(305\) −8.16312 + 5.93085i −0.467419 + 0.339600i
\(306\) 0 0
\(307\) 0.673762 0.0384536 0.0192268 0.999815i \(-0.493880\pi\)
0.0192268 + 0.999815i \(0.493880\pi\)
\(308\) 0 0
\(309\) −12.4721 −0.709515
\(310\) 0 0
\(311\) −23.6074 + 17.1518i −1.33865 + 0.972588i −0.339160 + 0.940729i \(0.610143\pi\)
−0.999492 + 0.0318591i \(0.989857\pi\)
\(312\) 0 0
\(313\) −0.309017 0.951057i −0.0174667 0.0537569i 0.941943 0.335772i \(-0.108997\pi\)
−0.959410 + 0.282015i \(0.908997\pi\)
\(314\) 0 0
\(315\) 0.736068 + 0.534785i 0.0414727 + 0.0301317i
\(316\) 0 0
\(317\) 2.63525 8.11048i 0.148011 0.455530i −0.849375 0.527790i \(-0.823021\pi\)
0.997386 + 0.0722595i \(0.0230210\pi\)
\(318\) 0 0
\(319\) 11.3820 + 9.51057i 0.637268 + 0.532489i
\(320\) 0 0
\(321\) −2.01722 + 6.20837i −0.112590 + 0.346517i
\(322\) 0 0
\(323\) −9.80902 7.12667i −0.545788 0.396538i
\(324\) 0 0
\(325\) −18.9894 58.4432i −1.05334 3.24185i
\(326\) 0 0
\(327\) 6.47214 4.70228i 0.357910 0.260037i
\(328\) 0 0
\(329\) −0.854102 −0.0470882
\(330\) 0 0
\(331\) −11.9443 −0.656517 −0.328258 0.944588i \(-0.606462\pi\)
−0.328258 + 0.944588i \(0.606462\pi\)
\(332\) 0 0
\(333\) 3.04508 2.21238i 0.166870 0.121238i
\(334\) 0 0
\(335\) −0.173762 0.534785i −0.00949364 0.0292184i
\(336\) 0 0
\(337\) 14.2361 + 10.3431i 0.775488 + 0.563425i 0.903621 0.428332i \(-0.140899\pi\)
−0.128133 + 0.991757i \(0.540899\pi\)
\(338\) 0 0
\(339\) 3.78115 11.6372i 0.205364 0.632046i
\(340\) 0 0
\(341\) −7.88854 + 19.6417i −0.427189 + 1.06366i
\(342\) 0 0
\(343\) −1.01722 + 3.13068i −0.0549248 + 0.169041i
\(344\) 0 0
\(345\) 0.736068 + 0.534785i 0.0396286 + 0.0287918i
\(346\) 0 0
\(347\) 2.47214 + 7.60845i 0.132711 + 0.408443i 0.995227 0.0975871i \(-0.0311124\pi\)
−0.862516 + 0.506030i \(0.831112\pi\)
\(348\) 0 0
\(349\) 22.8435 16.5967i 1.22278 0.888403i 0.226454 0.974022i \(-0.427287\pi\)
0.996328 + 0.0856184i \(0.0272866\pi\)
\(350\) 0 0
\(351\) −6.23607 −0.332857
\(352\) 0 0
\(353\) −10.4721 −0.557376 −0.278688 0.960382i \(-0.589899\pi\)
−0.278688 + 0.960382i \(0.589899\pi\)
\(354\) 0 0
\(355\) 4.30902 3.13068i 0.228699 0.166159i
\(356\) 0 0
\(357\) 0.173762 + 0.534785i 0.00919646 + 0.0283038i
\(358\) 0 0
\(359\) −18.7984 13.6578i −0.992140 0.720832i −0.0317515 0.999496i \(-0.510109\pi\)
−0.960389 + 0.278664i \(0.910109\pi\)
\(360\) 0 0
\(361\) 2.13525 6.57164i 0.112382 0.345876i
\(362\) 0 0
\(363\) −9.69098 + 5.20431i −0.508645 + 0.273155i
\(364\) 0 0
\(365\) −3.85410 + 11.8617i −0.201733 + 0.620870i
\(366\) 0 0
\(367\) −4.35410 3.16344i −0.227282 0.165130i 0.468316 0.883561i \(-0.344861\pi\)
−0.695599 + 0.718431i \(0.744861\pi\)
\(368\) 0 0
\(369\) 2.92705 + 9.00854i 0.152376 + 0.468966i
\(370\) 0 0
\(371\) −1.25329 + 0.910568i −0.0650675 + 0.0472743i
\(372\) 0 0
\(373\) −13.9443 −0.722007 −0.361004 0.932564i \(-0.617566\pi\)
−0.361004 + 0.932564i \(0.617566\pi\)
\(374\) 0 0
\(375\) −18.7082 −0.966087
\(376\) 0 0
\(377\) 22.5623 16.3925i 1.16202 0.844255i
\(378\) 0 0
\(379\) 3.92705 + 12.0862i 0.201719 + 0.620827i 0.999832 + 0.0183198i \(0.00583170\pi\)
−0.798113 + 0.602508i \(0.794168\pi\)
\(380\) 0 0
\(381\) 12.7082 + 9.23305i 0.651061 + 0.473024i
\(382\) 0 0
\(383\) −3.16312 + 9.73508i −0.161628 + 0.497439i −0.998772 0.0495430i \(-0.984224\pi\)
0.837144 + 0.546982i \(0.184224\pi\)
\(384\) 0 0
\(385\) 1.12461 2.80017i 0.0573155 0.142710i
\(386\) 0 0
\(387\) −2.92705 + 9.00854i −0.148790 + 0.457930i
\(388\) 0 0
\(389\) −13.0172 9.45756i −0.659999 0.479518i 0.206663 0.978412i \(-0.433739\pi\)
−0.866663 + 0.498895i \(0.833739\pi\)
\(390\) 0 0
\(391\) 0.173762 + 0.534785i 0.00878753 + 0.0270452i
\(392\) 0 0
\(393\) −6.92705 + 5.03280i −0.349423 + 0.253871i
\(394\) 0 0
\(395\) 54.8673 2.76067
\(396\) 0 0
\(397\) 27.1803 1.36414 0.682071 0.731286i \(-0.261079\pi\)
0.682071 + 0.731286i \(0.261079\pi\)
\(398\) 0 0
\(399\) −0.972136 + 0.706298i −0.0486677 + 0.0353591i
\(400\) 0 0
\(401\) −0.881966 2.71441i −0.0440433 0.135551i 0.926617 0.376007i \(-0.122703\pi\)
−0.970660 + 0.240456i \(0.922703\pi\)
\(402\) 0 0
\(403\) 32.1976 + 23.3929i 1.60387 + 1.16528i
\(404\) 0 0
\(405\) −1.19098 + 3.66547i −0.0591804 + 0.182139i
\(406\) 0 0
\(407\) −9.57953 8.00448i −0.474840 0.396767i
\(408\) 0 0
\(409\) 3.05573 9.40456i 0.151096 0.465026i −0.846648 0.532153i \(-0.821383\pi\)
0.997744 + 0.0671269i \(0.0213832\pi\)
\(410\) 0 0
\(411\) 16.9894 + 12.3435i 0.838023 + 0.608859i
\(412\) 0 0
\(413\) −0.156541 0.481784i −0.00770289 0.0237070i
\(414\) 0 0
\(415\) −48.2426 + 35.0503i −2.36814 + 1.72055i
\(416\) 0 0
\(417\) −3.79837 −0.186007
\(418\) 0 0
\(419\) −17.8541 −0.872230 −0.436115 0.899891i \(-0.643646\pi\)
−0.436115 + 0.899891i \(0.643646\pi\)
\(420\) 0 0
\(421\) 7.50000 5.44907i 0.365528 0.265571i −0.389826 0.920888i \(-0.627465\pi\)
0.755354 + 0.655317i \(0.227465\pi\)
\(422\) 0 0
\(423\) −1.11803 3.44095i −0.0543607 0.167305i
\(424\) 0 0
\(425\) −18.9894 13.7966i −0.921119 0.669232i
\(426\) 0 0
\(427\) −0.190983 + 0.587785i −0.00924232 + 0.0284449i
\(428\) 0 0
\(429\) 5.04508 + 20.0579i 0.243579 + 0.968407i
\(430\) 0 0
\(431\) −4.11803 + 12.6740i −0.198359 + 0.610485i 0.801562 + 0.597911i \(0.204003\pi\)
−0.999921 + 0.0125740i \(0.995997\pi\)
\(432\) 0 0
\(433\) 12.0902 + 8.78402i 0.581016 + 0.422133i 0.839090 0.543992i \(-0.183088\pi\)
−0.258074 + 0.966125i \(0.583088\pi\)
\(434\) 0 0
\(435\) −5.32624 16.3925i −0.255374 0.785959i
\(436\) 0 0
\(437\) −0.972136 + 0.706298i −0.0465036 + 0.0337868i
\(438\) 0 0
\(439\) 19.3607 0.924035 0.462017 0.886871i \(-0.347126\pi\)
0.462017 + 0.886871i \(0.347126\pi\)
\(440\) 0 0
\(441\) −6.94427 −0.330680
\(442\) 0 0
\(443\) 0.145898 0.106001i 0.00693182 0.00503627i −0.584314 0.811528i \(-0.698636\pi\)
0.591246 + 0.806491i \(0.298636\pi\)
\(444\) 0 0
\(445\) −1.19098 3.66547i −0.0564580 0.173760i
\(446\) 0 0
\(447\) 13.6631 + 9.92684i 0.646243 + 0.469523i
\(448\) 0 0
\(449\) −2.32624 + 7.15942i −0.109782 + 0.337874i −0.990823 0.135166i \(-0.956843\pi\)
0.881041 + 0.473040i \(0.156843\pi\)
\(450\) 0 0
\(451\) 26.6074 16.7027i 1.25289 0.786502i
\(452\) 0 0
\(453\) −1.38197 + 4.25325i −0.0649304 + 0.199835i
\(454\) 0 0
\(455\) −4.59017 3.33495i −0.215190 0.156345i
\(456\) 0 0
\(457\) 0.354102 + 1.08981i 0.0165642 + 0.0509793i 0.958997 0.283416i \(-0.0914678\pi\)
−0.942433 + 0.334396i \(0.891468\pi\)
\(458\) 0 0
\(459\) −1.92705 + 1.40008i −0.0899470 + 0.0653503i
\(460\) 0 0
\(461\) 19.5623 0.911107 0.455554 0.890208i \(-0.349441\pi\)
0.455554 + 0.890208i \(0.349441\pi\)
\(462\) 0 0
\(463\) −21.2148 −0.985935 −0.492967 0.870048i \(-0.664088\pi\)
−0.492967 + 0.870048i \(0.664088\pi\)
\(464\) 0 0
\(465\) 19.8992 14.4576i 0.922803 0.670455i
\(466\) 0 0
\(467\) −6.12868 18.8621i −0.283601 0.872835i −0.986814 0.161856i \(-0.948252\pi\)
0.703213 0.710979i \(-0.251748\pi\)
\(468\) 0 0
\(469\) −0.0278640 0.0202444i −0.00128664 0.000934800i
\(470\) 0 0
\(471\) −5.32624 + 16.3925i −0.245420 + 0.755325i
\(472\) 0 0
\(473\) 31.3435 + 2.12663i 1.44117 + 0.0977824i
\(474\) 0 0
\(475\) 15.5000 47.7041i 0.711189 2.18881i
\(476\) 0 0
\(477\) −5.30902 3.85723i −0.243083 0.176610i
\(478\) 0 0
\(479\) −4.11803 12.6740i −0.188158 0.579090i 0.811831 0.583893i \(-0.198471\pi\)
−0.999988 + 0.00480282i \(0.998471\pi\)
\(480\) 0 0
\(481\) −18.9894 + 13.7966i −0.865840 + 0.629070i
\(482\) 0 0
\(483\) 0.0557281 0.00253572
\(484\) 0 0
\(485\) 19.6180 0.890809
\(486\) 0 0
\(487\) 28.9894 21.0620i 1.31363 0.954410i 0.313645 0.949540i \(-0.398450\pi\)
0.999988 0.00487004i \(-0.00155019\pi\)
\(488\) 0 0
\(489\) 1.50000 + 4.61653i 0.0678323 + 0.208766i
\(490\) 0 0
\(491\) −4.16312 3.02468i −0.187879 0.136502i 0.489870 0.871796i \(-0.337044\pi\)
−0.677749 + 0.735294i \(0.737044\pi\)
\(492\) 0 0
\(493\) 3.29180 10.1311i 0.148255 0.456282i
\(494\) 0 0
\(495\) 12.7533 + 0.865300i 0.573218 + 0.0388923i
\(496\) 0 0
\(497\) 0.100813 0.310271i 0.00452208 0.0139175i
\(498\) 0 0
\(499\) 12.3541 + 8.97578i 0.553046 + 0.401811i 0.828907 0.559386i \(-0.188963\pi\)
−0.275862 + 0.961197i \(0.588963\pi\)
\(500\) 0 0
\(501\) 0.190983 + 0.587785i 0.00853249 + 0.0262603i
\(502\) 0 0
\(503\) 13.9443 10.1311i 0.621744 0.451724i −0.231786 0.972767i \(-0.574457\pi\)
0.853530 + 0.521043i \(0.174457\pi\)
\(504\) 0 0
\(505\) 22.9098 1.01947
\(506\) 0 0
\(507\) 25.8885 1.14975
\(508\) 0 0
\(509\) −10.3090 + 7.48994i −0.456939 + 0.331986i −0.792329 0.610094i \(-0.791132\pi\)
0.335390 + 0.942079i \(0.391132\pi\)
\(510\) 0 0
\(511\) 0.236068 + 0.726543i 0.0104430 + 0.0321403i
\(512\) 0 0
\(513\) −4.11803 2.99193i −0.181816 0.132097i
\(514\) 0 0
\(515\) 14.8541 45.7162i 0.654550 2.01450i
\(516\) 0 0
\(517\) −10.1631 + 6.37988i −0.446973 + 0.280587i
\(518\) 0 0
\(519\) 1.71885 5.29007i 0.0754490 0.232208i
\(520\) 0 0
\(521\) −12.0000 8.71851i −0.525730 0.381965i 0.293028 0.956104i \(-0.405337\pi\)
−0.818758 + 0.574139i \(0.805337\pi\)
\(522\) 0 0
\(523\) 6.73607 + 20.7315i 0.294548 + 0.906525i 0.983373 + 0.181597i \(0.0581267\pi\)
−0.688825 + 0.724927i \(0.741873\pi\)
\(524\) 0 0
\(525\) −1.88197 + 1.36733i −0.0821357 + 0.0596751i
\(526\) 0 0
\(527\) 15.2016 0.662193
\(528\) 0 0
\(529\) −22.9443 −0.997577
\(530\) 0 0
\(531\) 1.73607 1.26133i 0.0753389 0.0547369i
\(532\) 0 0
\(533\) −18.2533 56.1778i −0.790638 2.43333i
\(534\) 0 0
\(535\) −20.3541 14.7881i −0.879985 0.639346i
\(536\) 0 0
\(537\) 5.54508 17.0660i 0.239288 0.736453i
\(538\) 0 0
\(539\) 5.61803 + 22.3358i 0.241986 + 0.962073i
\(540\) 0 0
\(541\) −1.95492 + 6.01661i −0.0840484 + 0.258674i −0.984245 0.176809i \(-0.943423\pi\)
0.900197 + 0.435483i \(0.143423\pi\)
\(542\) 0 0
\(543\) −4.80902 3.49396i −0.206375 0.149940i
\(544\) 0 0
\(545\) 9.52786 + 29.3238i 0.408129 + 1.25609i
\(546\) 0 0
\(547\) 10.7812 7.83297i 0.460969 0.334913i −0.332942 0.942947i \(-0.608041\pi\)
0.793911 + 0.608034i \(0.208041\pi\)
\(548\) 0 0
\(549\) −2.61803 −0.111735
\(550\) 0 0
\(551\) 22.7639 0.969776
\(552\) 0 0
\(553\) 2.71885 1.97536i 0.115617 0.0840008i
\(554\) 0 0
\(555\) 4.48278 + 13.7966i 0.190283 + 0.585632i
\(556\) 0 0
\(557\) −4.11803 2.99193i −0.174487 0.126772i 0.497114 0.867685i \(-0.334393\pi\)
−0.671601 + 0.740913i \(0.734393\pi\)
\(558\) 0 0
\(559\) 18.2533 56.1778i 0.772032 2.37607i
\(560\) 0 0
\(561\) 6.06231 + 5.06555i 0.255951 + 0.213868i
\(562\) 0 0
\(563\) −12.5795 + 38.7158i −0.530164 + 1.63168i 0.223709 + 0.974656i \(0.428184\pi\)
−0.753873 + 0.657021i \(0.771816\pi\)
\(564\) 0 0
\(565\) 38.1525 + 27.7194i 1.60509 + 1.16616i
\(566\) 0 0
\(567\) 0.0729490 + 0.224514i 0.00306357 + 0.00942870i
\(568\) 0 0
\(569\) −3.94427 + 2.86568i −0.165352 + 0.120136i −0.667384 0.744714i \(-0.732586\pi\)
0.502032 + 0.864849i \(0.332586\pi\)
\(570\) 0 0
\(571\) −24.3262 −1.01802 −0.509011 0.860760i \(-0.669989\pi\)
−0.509011 + 0.860760i \(0.669989\pi\)
\(572\) 0 0
\(573\) 21.6525 0.904545
\(574\) 0 0
\(575\) −1.88197 + 1.36733i −0.0784834 + 0.0570215i
\(576\) 0 0
\(577\) 9.03444 + 27.8052i 0.376109 + 1.15754i 0.942728 + 0.333564i \(0.108251\pi\)
−0.566619 + 0.823980i \(0.691749\pi\)
\(578\) 0 0
\(579\) −12.3992 9.00854i −0.515293 0.374382i
\(580\) 0 0
\(581\) −1.12868 + 3.47371i −0.0468254 + 0.144114i
\(582\) 0 0
\(583\) −8.11146 + 20.1967i −0.335942 + 0.836462i
\(584\) 0 0
\(585\) 7.42705 22.8581i 0.307071 0.945067i
\(586\) 0 0
\(587\) 20.8435 + 15.1437i 0.860302 + 0.625046i 0.927967 0.372662i \(-0.121555\pi\)
−0.0676654 + 0.997708i \(0.521555\pi\)
\(588\) 0 0
\(589\) 10.0385 + 30.8953i 0.413629 + 1.27302i
\(590\) 0 0
\(591\) 4.78115 3.47371i 0.196670 0.142889i
\(592\) 0 0
\(593\) 19.4508 0.798751 0.399375 0.916788i \(-0.369227\pi\)
0.399375 + 0.916788i \(0.369227\pi\)
\(594\) 0 0
\(595\) −2.16718 −0.0888459
\(596\) 0 0
\(597\) −8.42705 + 6.12261i −0.344896 + 0.250582i
\(598\) 0 0
\(599\) −12.5623 38.6628i −0.513282 1.57972i −0.786386 0.617735i \(-0.788050\pi\)
0.273105 0.961984i \(-0.411950\pi\)
\(600\) 0 0
\(601\) −16.1353 11.7229i −0.658171 0.478189i 0.207874 0.978156i \(-0.433346\pi\)
−0.866045 + 0.499967i \(0.833346\pi\)
\(602\) 0 0
\(603\) 0.0450850 0.138757i 0.00183600 0.00565063i
\(604\) 0 0
\(605\) −7.53444 41.7202i −0.306319 1.69617i
\(606\) 0 0
\(607\) −2.68034 + 8.24924i −0.108792 + 0.334826i −0.990602 0.136779i \(-0.956325\pi\)
0.881810 + 0.471605i \(0.156325\pi\)
\(608\) 0 0
\(609\) −0.854102 0.620541i −0.0346100 0.0251456i
\(610\) 0 0
\(611\) 6.97214 + 21.4580i 0.282062 + 0.868099i
\(612\) 0 0
\(613\) −13.8541 + 10.0656i −0.559562 + 0.406546i −0.831299 0.555826i \(-0.812402\pi\)
0.271737 + 0.962372i \(0.412402\pi\)
\(614\) 0 0
\(615\) −36.5066 −1.47209
\(616\) 0 0
\(617\) −7.00000 −0.281809 −0.140905 0.990023i \(-0.545001\pi\)
−0.140905 + 0.990023i \(0.545001\pi\)
\(618\) 0 0
\(619\) −6.04508 + 4.39201i −0.242972 + 0.176530i −0.702607 0.711579i \(-0.747981\pi\)
0.459634 + 0.888108i \(0.347981\pi\)
\(620\) 0 0
\(621\) 0.0729490 + 0.224514i 0.00292734 + 0.00900944i
\(622\) 0 0
\(623\) −0.190983 0.138757i −0.00765157 0.00555919i
\(624\) 0 0
\(625\) 7.05573 21.7153i 0.282229 0.868612i
\(626\) 0 0
\(627\) −6.29180 + 15.6659i −0.251270 + 0.625637i
\(628\) 0 0
\(629\) −2.77051 + 8.52675i −0.110467 + 0.339984i
\(630\) 0 0
\(631\) 6.25329 + 4.54328i 0.248940 + 0.180865i 0.705257 0.708952i \(-0.250832\pi\)
−0.456317 + 0.889817i \(0.650832\pi\)
\(632\) 0 0
\(633\) −5.79180 17.8253i −0.230203 0.708493i
\(634\) 0 0
\(635\) −48.9787 + 35.5851i −1.94366 + 1.41215i
\(636\) 0 0
\(637\) 43.3050 1.71580
\(638\) 0 0
\(639\) 1.38197 0.0546697
\(640\) 0 0
\(641\) −20.2082 + 14.6821i −0.798176 + 0.579909i −0.910378 0.413777i \(-0.864209\pi\)
0.112202 + 0.993685i \(0.464209\pi\)
\(642\) 0 0
\(643\) 12.4098 + 38.1935i 0.489396 + 1.50621i 0.825512 + 0.564385i \(0.190887\pi\)
−0.336116 + 0.941821i \(0.609113\pi\)
\(644\) 0 0
\(645\) −29.5344 21.4580i −1.16292 0.844909i
\(646\) 0 0
\(647\) −11.0279 + 33.9403i −0.433550 + 1.33433i 0.461015 + 0.887392i \(0.347485\pi\)
−0.894565 + 0.446938i \(0.852515\pi\)
\(648\) 0 0
\(649\) −5.46149 4.56352i −0.214382 0.179134i
\(650\) 0 0
\(651\) 0.465558 1.43284i 0.0182467 0.0561575i
\(652\) 0 0
\(653\) 17.1074 + 12.4292i 0.669464 + 0.486394i 0.869846 0.493324i \(-0.164218\pi\)
−0.200382 + 0.979718i \(0.564218\pi\)
\(654\) 0 0
\(655\) −10.1976 31.3849i −0.398452 1.22631i
\(656\) 0 0
\(657\) −2.61803 + 1.90211i −0.102139 + 0.0742085i
\(658\) 0 0
\(659\) −9.70820 −0.378178 −0.189089 0.981960i \(-0.560553\pi\)
−0.189089 + 0.981960i \(0.560553\pi\)
\(660\) 0 0
\(661\) −13.3262 −0.518331 −0.259165 0.965833i \(-0.583447\pi\)
−0.259165 + 0.965833i \(0.583447\pi\)
\(662\) 0 0
\(663\) 12.0172 8.73102i 0.466710 0.339085i
\(664\) 0 0
\(665\) −1.43112 4.40452i −0.0554963 0.170800i
\(666\) 0 0
\(667\) −0.854102 0.620541i −0.0330710 0.0240275i
\(668\) 0 0
\(669\) 2.30902 7.10642i 0.0892718 0.274750i
\(670\) 0 0
\(671\) 2.11803 + 8.42075i 0.0817658 + 0.325080i
\(672\) 0 0
\(673\) 10.9615 33.7360i 0.422534 1.30043i −0.482801 0.875730i \(-0.660381\pi\)
0.905335 0.424697i \(-0.139619\pi\)
\(674\) 0 0
\(675\) −7.97214 5.79210i −0.306848 0.222938i
\(676\) 0 0
\(677\) 0.763932 + 2.35114i 0.0293603 + 0.0903617i 0.964663 0.263487i \(-0.0848727\pi\)
−0.935303 + 0.353849i \(0.884873\pi\)
\(678\) 0 0
\(679\) 0.972136 0.706298i 0.0373072 0.0271052i
\(680\) 0 0
\(681\) −12.7082 −0.486979
\(682\) 0 0
\(683\) 37.6525 1.44073 0.720366 0.693594i \(-0.243974\pi\)
0.720366 + 0.693594i \(0.243974\pi\)
\(684\) 0 0
\(685\) −65.4787 + 47.5731i −2.50181 + 1.81767i
\(686\) 0 0
\(687\) 3.38197 + 10.4086i 0.129030 + 0.397114i
\(688\) 0 0
\(689\) 33.1074 + 24.0539i 1.26129 + 0.916382i
\(690\) 0 0
\(691\) −10.0557 + 30.9483i −0.382538 + 1.17733i 0.555713 + 0.831374i \(0.312445\pi\)
−0.938251 + 0.345956i \(0.887555\pi\)
\(692\) 0 0
\(693\) 0.663119 0.416272i 0.0251898 0.0158129i
\(694\) 0 0
\(695\) 4.52380 13.9228i 0.171597 0.528123i
\(696\) 0 0
\(697\) −18.2533 13.2618i −0.691393 0.502326i
\(698\) 0 0
\(699\) 0.371323 + 1.14281i 0.0140447 + 0.0432252i
\(700\) 0 0
\(701\) 23.0623 16.7557i 0.871051 0.632856i −0.0598176 0.998209i \(-0.519052\pi\)
0.930869 + 0.365354i \(0.119052\pi\)
\(702\) 0 0
\(703\) −19.1591 −0.722597
\(704\) 0 0
\(705\) 13.9443 0.525172
\(706\) 0 0
\(707\) 1.13525 0.824811i 0.0426957 0.0310202i
\(708\) 0 0
\(709\) 5.17376 + 15.9232i 0.194305 + 0.598008i 0.999984 + 0.00565642i \(0.00180051\pi\)
−0.805679 + 0.592352i \(0.798199\pi\)
\(710\) 0 0
\(711\) 11.5172 + 8.36775i 0.431930 + 0.313815i
\(712\) 0 0
\(713\) 0.465558 1.43284i 0.0174353 0.0536603i
\(714\) 0 0
\(715\) −79.5304 5.39607i −2.97427 0.201802i
\(716\) 0 0
\(717\) −5.40983 + 16.6497i −0.202034 + 0.621796i
\(718\) 0 0
\(719\) 15.4271 + 11.2084i 0.575332 + 0.418003i 0.837038 0.547144i \(-0.184285\pi\)
−0.261706 + 0.965148i \(0.584285\pi\)
\(720\) 0 0
\(721\) −0.909830 2.80017i −0.0338838 0.104284i
\(722\) 0 0
\(723\) 19.1803 13.9353i 0.713325 0.518261i
\(724\) 0 0
\(725\) 44.0689 1.63668
\(726\) 0 0
\(727\) 8.85410 0.328380 0.164190 0.986429i \(-0.447499\pi\)
0.164190 + 0.986429i \(0.447499\pi\)
\(728\) 0 0
\(729\) −0.809017 + 0.587785i −0.0299636 + 0.0217698i
\(730\) 0 0
\(731\) −6.97214 21.4580i −0.257874 0.793654i
\(732\) 0 0
\(733\) −36.0344 26.1806i −1.33096 0.967001i −0.999725 0.0234534i \(-0.992534\pi\)
−0.331238 0.943547i \(-0.607466\pi\)
\(734\) 0 0
\(735\) 8.27051 25.4540i 0.305062 0.938885i
\(736\) 0 0
\(737\) −0.482779 0.0327561i −0.0177834 0.00120659i
\(738\) 0 0
\(739\) 3.96149 12.1922i 0.145726 0.448498i −0.851378 0.524553i \(-0.824232\pi\)
0.997104 + 0.0760550i \(0.0242324\pi\)
\(740\) 0 0
\(741\) 25.6803 + 18.6579i 0.943391 + 0.685414i
\(742\) 0 0
\(743\) −3.54508 10.9106i −0.130057 0.400273i 0.864732 0.502234i \(-0.167488\pi\)
−0.994788 + 0.101961i \(0.967488\pi\)
\(744\) 0 0
\(745\) −52.6591 + 38.2590i −1.92928 + 1.40170i
\(746\) 0 0
\(747\) −15.4721 −0.566096
\(748\) 0 0
\(749\) −1.54102 −0.0563076
\(750\) 0 0
\(751\) −33.6803 + 24.4702i −1.22901 + 0.892930i −0.996816 0.0797385i \(-0.974591\pi\)
−0.232197 + 0.972669i \(0.574591\pi\)
\(752\) 0 0
\(753\) −7.44427 22.9111i −0.271284 0.834927i
\(754\) 0 0
\(755\) −13.9443 10.1311i −0.507484 0.368709i
\(756\) 0 0
\(757\) −3.21885 + 9.90659i −0.116991 + 0.360061i −0.992357 0.123399i \(-0.960620\pi\)
0.875366 + 0.483461i \(0.160620\pi\)
\(758\) 0 0
\(759\) 0.663119 0.416272i 0.0240697 0.0151097i
\(760\) 0 0
\(761\) −9.03851 + 27.8177i −0.327646 + 1.00839i 0.642587 + 0.766213i \(0.277861\pi\)
−0.970232 + 0.242176i \(0.922139\pi\)
\(762\) 0 0
\(763\) 1.52786 + 1.11006i 0.0553124 + 0.0401868i
\(764\) 0 0
\(765\) −2.83688 8.73102i −0.102568 0.315671i
\(766\) 0 0
\(767\) −10.8262 + 7.86572i −0.390913 + 0.284015i
\(768\) 0 0
\(769\) −33.5623 −1.21029 −0.605144 0.796116i \(-0.706884\pi\)
−0.605144 + 0.796116i \(0.706884\pi\)
\(770\) 0 0
\(771\) −2.79837 −0.100781
\(772\) 0 0
\(773\) −23.7533 + 17.2578i −0.854346 + 0.620719i −0.926341 0.376686i \(-0.877064\pi\)
0.0719946 + 0.997405i \(0.477064\pi\)
\(774\) 0 0
\(775\) 19.4336 + 59.8106i 0.698077 + 2.14846i
\(776\) 0 0
\(777\) 0.718847 + 0.522273i 0.0257885 + 0.0187364i
\(778\) 0 0
\(779\) 14.8992 45.8550i 0.533819 1.64293i
\(780\) 0 0
\(781\) −1.11803 4.44501i −0.0400064 0.159055i
\(782\) 0 0
\(783\) 1.38197 4.25325i 0.0493874 0.151999i
\(784\) 0 0
\(785\) −53.7426 39.0463i −1.91816 1.39362i
\(786\) 0 0
\(787\) −13.8328 42.5730i −0.493087 1.51756i −0.819917 0.572482i \(-0.805981\pi\)
0.326831 0.945083i \(-0.394019\pi\)
\(788\) 0 0
\(789\) 19.2984 14.0211i 0.687040 0.499164i
\(790\) 0 0
\(791\) 2.88854 0.102705
\(792\) 0 0
\(793\) 16.3262 0.579762
\(794\) 0 0
\(795\) 20.4615 14.8661i 0.725694 0.527248i
\(796\) 0 0
\(797\) −15.1459 46.6143i −0.536495 1.65116i −0.740396 0.672171i \(-0.765362\pi\)
0.203901 0.978992i \(-0.434638\pi\)
\(798\) 0 0
\(799\) 6.97214 + 5.06555i 0.246656 + 0.179206i
\(800\) 0 0
\(801\) 0.309017 0.951057i 0.0109186 0.0336039i
\(802\) 0 0
\(803\) 8.23607 + 6.88191i 0.290645 + 0.242857i
\(804\) 0 0
\(805\) −0.0663712 + 0.204270i −0.00233928 + 0.00719956i
\(806\) 0 0
\(807\) −23.0344 16.7355i −0.810851 0.589118i
\(808\) 0 0
\(809\) 10.8992 + 33.5442i 0.383195 + 1.17935i 0.937781 + 0.347227i \(0.112877\pi\)
−0.554586 + 0.832126i \(0.687123\pi\)
\(810\) 0 0
\(811\) −1.78115 + 1.29408i −0.0625447 + 0.0454414i −0.618618 0.785692i \(-0.712307\pi\)
0.556074 + 0.831133i \(0.312307\pi\)
\(812\) 0 0
\(813\) 2.43769 0.0854937
\(814\) 0 0
\(815\) −18.7082 −0.655320
\(816\) 0 0
\(817\) 39.0066 28.3399i 1.36467 0.991489i
\(818\) 0 0
\(819\) −0.454915 1.40008i −0.0158960 0.0489229i
\(820\) 0 0
\(821\) −22.1353 16.0822i −0.772526 0.561273i 0.130201 0.991488i \(-0.458438\pi\)
−0.902727 + 0.430215i \(0.858438\pi\)
\(822\) 0 0
\(823\) −7.16312 + 22.0458i −0.249691 + 0.768469i 0.745139 + 0.666909i \(0.232383\pi\)
−0.994829 + 0.101559i \(0.967617\pi\)
\(824\) 0 0
\(825\) −12.1803 + 30.3278i −0.424065 + 1.05588i
\(826\) 0 0
\(827\) 12.7082 39.1118i 0.441908 1.36005i −0.443932 0.896060i \(-0.646417\pi\)
0.885840 0.463991i \(-0.153583\pi\)
\(828\) 0 0
\(829\) −3.83688 2.78766i −0.133260 0.0968193i 0.519158 0.854678i \(-0.326246\pi\)
−0.652419 + 0.757859i \(0.726246\pi\)
\(830\) 0 0
\(831\) 0.791796 + 2.43690i 0.0274671 + 0.0845350i
\(832\) 0 0
\(833\) 13.3820 9.72257i 0.463658 0.336867i
\(834\) 0 0
\(835\) −2.38197 −0.0824313
\(836\) 0 0
\(837\) 6.38197 0.220593
\(838\) 0 0
\(839\) 30.6074 22.2376i 1.05668 0.767726i 0.0832124 0.996532i \(-0.473482\pi\)
0.973472 + 0.228806i \(0.0734820\pi\)
\(840\) 0 0
\(841\) −2.78115 8.55951i −0.0959018 0.295155i
\(842\) 0 0
\(843\) −13.8541 10.0656i −0.477161 0.346677i
\(844\) 0 0
\(845\) −30.8328 + 94.8936i −1.06068 + 3.26444i
\(846\) 0 0
\(847\) −1.87539 1.79611i −0.0644391 0.0617151i
\(848\) 0 0
\(849\) −7.18034 + 22.0988i −0.246429 + 0.758429i
\(850\) 0 0
\(851\) 0.718847 + 0.522273i 0.0246418 + 0.0179033i
\(852\) 0 0
\(853\) 3.28773 + 10.1186i 0.112570 + 0.346454i 0.991432 0.130621i \(-0.0416970\pi\)
−0.878863 + 0.477075i \(0.841697\pi\)
\(854\) 0 0
\(855\) 15.8713 11.5312i 0.542788 0.394358i
\(856\) 0 0
\(857\) −50.1935 −1.71458 −0.857289 0.514836i \(-0.827853\pi\)
−0.857289 + 0.514836i \(0.827853\pi\)
\(858\) 0 0
\(859\) −8.81966 −0.300923 −0.150461 0.988616i \(-0.548076\pi\)
−0.150461 + 0.988616i \(0.548076\pi\)
\(860\) 0 0
\(861\) −1.80902 + 1.31433i −0.0616511 + 0.0447922i
\(862\) 0 0
\(863\) 4.43769 + 13.6578i 0.151061 + 0.464918i 0.997741 0.0671854i \(-0.0214019\pi\)
−0.846680 + 0.532103i \(0.821402\pi\)
\(864\) 0 0
\(865\) 17.3435 + 12.6008i 0.589695 + 0.428439i
\(866\) 0 0
\(867\) −3.50000 + 10.7719i −0.118866 + 0.365833i
\(868\) 0 0
\(869\) 17.5967 43.8141i 0.596929 1.48629i
\(870\) 0 0
\(871\) −0.281153 + 0.865300i −0.00952650 + 0.0293196i
\(872\) 0 0
\(873\) 4.11803 + 2.99193i 0.139374 + 0.101261i
\(874\) 0 0
\(875\) −1.36475 4.20025i −0.0461368 0.141994i
\(876\) 0 0
\(877\) −0.718847 + 0.522273i −0.0242737 + 0.0176359i −0.599856 0.800108i \(-0.704775\pi\)
0.575582 + 0.817744i \(0.304775\pi\)
\(878\) 0 0
\(879\) −5.00000 −0.168646
\(880\) 0 0
\(881\) 40.5623 1.36658 0.683289 0.730148i \(-0.260549\pi\)
0.683289 + 0.730148i \(0.260549\pi\)
\(882\) 0 0
\(883\) 12.0902 8.78402i 0.406867 0.295606i −0.365465 0.930825i \(-0.619090\pi\)
0.772332 + 0.635219i \(0.219090\pi\)
\(884\) 0 0
\(885\) 2.55573 + 7.86572i 0.0859099 + 0.264403i
\(886\) 0 0
\(887\) −26.9336 19.5684i −0.904343 0.657043i 0.0352350 0.999379i \(-0.488782\pi\)
−0.939578 + 0.342336i \(0.888782\pi\)
\(888\) 0 0
\(889\) −1.14590 + 3.52671i −0.0384322 + 0.118282i
\(890\) 0 0
\(891\) 2.54508 + 2.12663i 0.0852636 + 0.0712447i
\(892\) 0 0
\(893\) −5.69098 + 17.5150i −0.190441 + 0.586119i
\(894\) 0 0
\(895\) 55.9508 + 40.6507i 1.87023 + 1.35880i
\(896\) 0 0
\(897\) −0.454915 1.40008i −0.0151892 0.0467475i
\(898\) 0 0
\(899\) −23.0902 + 16.7760i −0.770100 + 0.559511i
\(900\) 0 0
\(901\) 15.6312 0.520750
\(902\) 0 0
\(903\) −2.23607 −0.0744117
\(904\) 0 0
\(905\) 18.5344 13.4661i 0.616106 0.447627i
\(906\) 0 0
\(907\) 13.2467 + 40.7692i 0.439850 + 1.35372i 0.888034 + 0.459777i \(0.152071\pi\)
−0.448184 + 0.893941i \(0.647929\pi\)
\(908\) 0 0
\(909\) 4.80902 + 3.49396i 0.159505 + 0.115887i
\(910\) 0 0
\(911\) −7.89261 + 24.2910i −0.261494 + 0.804795i 0.730987 + 0.682392i \(0.239060\pi\)
−0.992480 + 0.122403i \(0.960940\pi\)
\(912\) 0 0
\(913\) 12.5172 + 49.7652i 0.414260 + 1.64699i
\(914\) 0 0
\(915\) 3.11803 9.59632i 0.103079 0.317245i
\(916\) 0 0
\(917\) −1.63525 1.18808i −0.0540009 0.0392339i
\(918\) 0 0
\(919\) 4.89261 + 15.0579i 0.161392 + 0.496714i 0.998752 0.0499374i \(-0.0159022\pi\)
−0.837360 + 0.546652i \(0.815902\pi\)
\(920\) 0 0
\(921\) −0.545085 + 0.396027i −0.0179612 + 0.0130495i
\(922\) 0 0
\(923\) −8.61803 −0.283666
\(924\) 0 0
\(925\) −37.0902 −1.21952
\(926\) 0 0
\(927\) 10.0902 7.33094i 0.331405 0.240780i
\(928\) 0 0
\(929\) 6.05166 + 18.6251i 0.198549 + 0.611070i 0.999917 + 0.0128984i \(0.00410581\pi\)
−0.801368 + 0.598171i \(0.795894\pi\)
\(930\) 0 0
\(931\) 28.5967 + 20.7768i 0.937221 + 0.680931i
\(932\) 0 0
\(933\) 9.01722 27.7522i 0.295211 0.908565i
\(934\) 0 0
\(935\) −25.7877 + 16.1882i −0.843349 + 0.529411i
\(936\) 0 0
\(937\) 6.10739 18.7966i 0.199520 0.614059i −0.800374 0.599501i \(-0.795366\pi\)
0.999894 0.0145580i \(-0.00463413\pi\)
\(938\) 0 0
\(939\) 0.809017 + 0.587785i 0.0264013 + 0.0191816i
\(940\) 0 0
\(941\) −0.791796 2.43690i −0.0258118 0.0794406i 0.937321 0.348468i \(-0.113298\pi\)
−0.963133 + 0.269027i \(0.913298\pi\)
\(942\) 0 0
\(943\) −1.80902 + 1.31433i −0.0589097 + 0.0428004i
\(944\) 0 0
\(945\) −0.909830 −0.0295968
\(946\) 0 0
\(947\) 2.79837 0.0909349 0.0454675 0.998966i \(-0.485522\pi\)
0.0454675 + 0.998966i \(0.485522\pi\)
\(948\) 0 0
\(949\) 16.3262 11.8617i 0.529972 0.385047i
\(950\) 0 0
\(951\) 2.63525 + 8.11048i 0.0854540 + 0.263000i
\(952\) 0 0
\(953\) −28.1246 20.4337i −0.911046 0.661913i 0.0302335 0.999543i \(-0.490375\pi\)
−0.941279 + 0.337630i \(0.890375\pi\)
\(954\) 0 0
\(955\) −25.7877 + 79.3665i −0.834471 + 2.56824i
\(956\) 0 0
\(957\) −14.7984 1.00406i −0.478363 0.0324566i
\(958\) 0 0
\(959\) −1.53193 + 4.71479i −0.0494686 + 0.152249i
\(960\) 0 0
\(961\) −7.87132 5.71885i −0.253914 0.184479i
\(962\) 0 0
\(963\) −2.01722 6.20837i −0.0650040 0.200062i
\(964\) 0 0
\(965\) 47.7877 34.7198i 1.53834 1.11767i
\(966\) 0 0
\(967\) −14.7295 −0.473668 −0.236834 0.971550i \(-0.576110\pi\)
−0.236834 + 0.971550i \(0.576110\pi\)
\(968\) 0 0
\(969\) 12.1246 0.389499
\(970\) 0 0
\(971\) 1.90983 1.38757i 0.0612894 0.0445293i −0.556719 0.830701i \(-0.687940\pi\)
0.618008 + 0.786172i \(0.287940\pi\)
\(972\) 0 0
\(973\) −0.277088 0.852788i −0.00888302 0.0273391i
\(974\) 0 0
\(975\) 49.7148 + 36.1199i 1.59215 + 1.15676i
\(976\) 0 0
\(977\) −10.1631 + 31.2789i −0.325147 + 1.00070i 0.646227 + 0.763145i \(0.276346\pi\)
−0.971374 + 0.237554i \(0.923654\pi\)
\(978\) 0 0
\(979\) −3.30902 0.224514i −0.105757 0.00717550i
\(980\) 0 0
\(981\) −2.47214 + 7.60845i −0.0789292 + 0.242919i
\(982\) 0 0
\(983\) −29.7984 21.6498i −0.950421 0.690521i 0.000485770 1.00000i \(-0.499845\pi\)
−0.950906 + 0.309479i \(0.899845\pi\)
\(984\) 0 0
\(985\) 7.03851 + 21.6623i 0.224265 + 0.690218i
\(986\) 0 0
\(987\) 0.690983 0.502029i 0.0219942 0.0159797i
\(988\) 0 0
\(989\) −2.23607 −0.0711028
\(990\) 0 0
\(991\) −43.2705 −1.37453 −0.687267 0.726405i \(-0.741190\pi\)
−0.687267 + 0.726405i \(0.741190\pi\)
\(992\) 0 0
\(993\) 9.66312 7.02067i 0.306650 0.222794i
\(994\) 0 0
\(995\) −12.4058 38.1810i −0.393289 1.21042i
\(996\) 0 0
\(997\) −23.6803 17.2048i −0.749964 0.544881i 0.145852 0.989306i \(-0.453408\pi\)
−0.895816 + 0.444426i \(0.853408\pi\)
\(998\) 0 0
\(999\) −1.16312 + 3.57971i −0.0367995 + 0.113257i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 528.2.y.a.97.1 4
4.3 odd 2 132.2.i.b.97.1 yes 4
11.4 even 5 5808.2.a.cc.1.1 2
11.5 even 5 inner 528.2.y.a.49.1 4
11.7 odd 10 5808.2.a.cf.1.1 2
12.11 even 2 396.2.j.c.361.1 4
44.3 odd 10 1452.2.i.o.565.1 4
44.7 even 10 1452.2.a.i.1.1 2
44.15 odd 10 1452.2.a.j.1.1 2
44.19 even 10 1452.2.i.p.565.1 4
44.27 odd 10 132.2.i.b.49.1 4
44.31 odd 10 1452.2.i.o.1213.1 4
44.35 even 10 1452.2.i.p.1213.1 4
44.39 even 10 1452.2.i.j.1237.1 4
44.43 even 2 1452.2.i.j.493.1 4
132.59 even 10 4356.2.a.v.1.2 2
132.71 even 10 396.2.j.c.181.1 4
132.95 odd 10 4356.2.a.s.1.2 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
132.2.i.b.49.1 4 44.27 odd 10
132.2.i.b.97.1 yes 4 4.3 odd 2
396.2.j.c.181.1 4 132.71 even 10
396.2.j.c.361.1 4 12.11 even 2
528.2.y.a.49.1 4 11.5 even 5 inner
528.2.y.a.97.1 4 1.1 even 1 trivial
1452.2.a.i.1.1 2 44.7 even 10
1452.2.a.j.1.1 2 44.15 odd 10
1452.2.i.j.493.1 4 44.43 even 2
1452.2.i.j.1237.1 4 44.39 even 10
1452.2.i.o.565.1 4 44.3 odd 10
1452.2.i.o.1213.1 4 44.31 odd 10
1452.2.i.p.565.1 4 44.19 even 10
1452.2.i.p.1213.1 4 44.35 even 10
4356.2.a.s.1.2 2 132.95 odd 10
4356.2.a.v.1.2 2 132.59 even 10
5808.2.a.cc.1.1 2 11.4 even 5
5808.2.a.cf.1.1 2 11.7 odd 10