Properties

Label 528.2.y.a.49.1
Level $528$
Weight $2$
Character 528.49
Analytic conductor $4.216$
Analytic rank $1$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [528,2,Mod(49,528)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("528.49"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(528, base_ring=CyclotomicField(10)) chi = DirichletCharacter(H, H._module([0, 0, 0, 4])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 528 = 2^{4} \cdot 3 \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 528.y (of order \(5\), degree \(4\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,-1,0,-7] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(4.21610122672\)
Analytic rank: \(1\)
Dimension: \(4\)
Coefficient field: \(\Q(\zeta_{10})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} + x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 132)
Sato-Tate group: $\mathrm{SU}(2)[C_{5}]$

Embedding invariants

Embedding label 49.1
Root \(-0.309017 + 0.951057i\) of defining polynomial
Character \(\chi\) \(=\) 528.49
Dual form 528.2.y.a.97.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.809017 - 0.587785i) q^{3} +(-1.19098 + 3.66547i) q^{5} +(-0.190983 + 0.138757i) q^{7} +(0.309017 + 0.951057i) q^{9} +(-3.30902 + 0.224514i) q^{11} +(-1.92705 - 5.93085i) q^{13} +(3.11803 - 2.26538i) q^{15} +(0.736068 - 2.26538i) q^{17} +(-4.11803 - 2.99193i) q^{19} +0.236068 q^{21} +0.236068 q^{23} +(-7.97214 - 5.79210i) q^{25} +(0.309017 - 0.951057i) q^{27} +(-3.61803 + 2.62866i) q^{29} +(1.97214 + 6.06961i) q^{31} +(2.80902 + 1.76336i) q^{33} +(-0.281153 - 0.865300i) q^{35} +(3.04508 - 2.21238i) q^{37} +(-1.92705 + 5.93085i) q^{39} +(-7.66312 - 5.56758i) q^{41} -9.47214 q^{43} -3.85410 q^{45} +(2.92705 + 2.12663i) q^{47} +(-2.14590 + 6.60440i) q^{49} +(-1.92705 + 1.40008i) q^{51} +(2.02786 + 6.24112i) q^{53} +(3.11803 - 12.3965i) q^{55} +(1.57295 + 4.84104i) q^{57} +(1.73607 - 1.26133i) q^{59} +(-0.809017 + 2.48990i) q^{61} +(-0.190983 - 0.138757i) q^{63} +24.0344 q^{65} +0.145898 q^{67} +(-0.190983 - 0.138757i) q^{69} +(0.427051 - 1.31433i) q^{71} +(-2.61803 + 1.90211i) q^{73} +(3.04508 + 9.37181i) q^{75} +(0.600813 - 0.502029i) q^{77} +(-4.39919 - 13.5393i) q^{79} +(-0.809017 + 0.587785i) q^{81} +(-4.78115 + 14.7149i) q^{83} +(7.42705 + 5.39607i) q^{85} +4.47214 q^{87} +1.00000 q^{89} +(1.19098 + 0.865300i) q^{91} +(1.97214 - 6.06961i) q^{93} +(15.8713 - 11.5312i) q^{95} +(-1.57295 - 4.84104i) q^{97} +(-1.23607 - 3.07768i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - q^{3} - 7 q^{5} - 3 q^{7} - q^{9} - 11 q^{11} - q^{13} + 8 q^{15} - 6 q^{17} - 12 q^{19} - 8 q^{21} - 8 q^{23} - 14 q^{25} - q^{27} - 10 q^{29} - 10 q^{31} + 9 q^{33} + 19 q^{35} + q^{37} - q^{39}+ \cdots + 4 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/528\mathbb{Z}\right)^\times\).

\(n\) \(133\) \(145\) \(353\) \(463\)
\(\chi(n)\) \(1\) \(e\left(\frac{2}{5}\right)\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −0.809017 0.587785i −0.467086 0.339358i
\(4\) 0 0
\(5\) −1.19098 + 3.66547i −0.532624 + 1.63925i 0.216104 + 0.976370i \(0.430665\pi\)
−0.748728 + 0.662877i \(0.769335\pi\)
\(6\) 0 0
\(7\) −0.190983 + 0.138757i −0.0721848 + 0.0524453i −0.623292 0.781989i \(-0.714205\pi\)
0.551108 + 0.834434i \(0.314205\pi\)
\(8\) 0 0
\(9\) 0.309017 + 0.951057i 0.103006 + 0.317019i
\(10\) 0 0
\(11\) −3.30902 + 0.224514i −0.997706 + 0.0676935i
\(12\) 0 0
\(13\) −1.92705 5.93085i −0.534468 1.64492i −0.744796 0.667292i \(-0.767453\pi\)
0.210329 0.977631i \(-0.432547\pi\)
\(14\) 0 0
\(15\) 3.11803 2.26538i 0.805073 0.584920i
\(16\) 0 0
\(17\) 0.736068 2.26538i 0.178523 0.549436i −0.821254 0.570563i \(-0.806725\pi\)
0.999777 + 0.0211262i \(0.00672518\pi\)
\(18\) 0 0
\(19\) −4.11803 2.99193i −0.944742 0.686395i 0.00481560 0.999988i \(-0.498467\pi\)
−0.949557 + 0.313593i \(0.898467\pi\)
\(20\) 0 0
\(21\) 0.236068 0.0515143
\(22\) 0 0
\(23\) 0.236068 0.0492236 0.0246118 0.999697i \(-0.492165\pi\)
0.0246118 + 0.999697i \(0.492165\pi\)
\(24\) 0 0
\(25\) −7.97214 5.79210i −1.59443 1.15842i
\(26\) 0 0
\(27\) 0.309017 0.951057i 0.0594703 0.183031i
\(28\) 0 0
\(29\) −3.61803 + 2.62866i −0.671852 + 0.488129i −0.870645 0.491912i \(-0.836298\pi\)
0.198793 + 0.980042i \(0.436298\pi\)
\(30\) 0 0
\(31\) 1.97214 + 6.06961i 0.354206 + 1.09013i 0.956468 + 0.291836i \(0.0942661\pi\)
−0.602262 + 0.798298i \(0.705734\pi\)
\(32\) 0 0
\(33\) 2.80902 + 1.76336i 0.488987 + 0.306961i
\(34\) 0 0
\(35\) −0.281153 0.865300i −0.0475235 0.146262i
\(36\) 0 0
\(37\) 3.04508 2.21238i 0.500609 0.363714i −0.308641 0.951179i \(-0.599874\pi\)
0.809250 + 0.587465i \(0.199874\pi\)
\(38\) 0 0
\(39\) −1.92705 + 5.93085i −0.308575 + 0.949697i
\(40\) 0 0
\(41\) −7.66312 5.56758i −1.19678 0.869510i −0.202814 0.979217i \(-0.565009\pi\)
−0.993964 + 0.109707i \(0.965009\pi\)
\(42\) 0 0
\(43\) −9.47214 −1.44449 −0.722244 0.691639i \(-0.756889\pi\)
−0.722244 + 0.691639i \(0.756889\pi\)
\(44\) 0 0
\(45\) −3.85410 −0.574536
\(46\) 0 0
\(47\) 2.92705 + 2.12663i 0.426954 + 0.310200i 0.780430 0.625243i \(-0.215000\pi\)
−0.353476 + 0.935444i \(0.615000\pi\)
\(48\) 0 0
\(49\) −2.14590 + 6.60440i −0.306557 + 0.943485i
\(50\) 0 0
\(51\) −1.92705 + 1.40008i −0.269841 + 0.196051i
\(52\) 0 0
\(53\) 2.02786 + 6.24112i 0.278549 + 0.857284i 0.988259 + 0.152790i \(0.0488259\pi\)
−0.709710 + 0.704494i \(0.751174\pi\)
\(54\) 0 0
\(55\) 3.11803 12.3965i 0.420436 1.67154i
\(56\) 0 0
\(57\) 1.57295 + 4.84104i 0.208342 + 0.641211i
\(58\) 0 0
\(59\) 1.73607 1.26133i 0.226017 0.164211i −0.469014 0.883191i \(-0.655391\pi\)
0.695031 + 0.718980i \(0.255391\pi\)
\(60\) 0 0
\(61\) −0.809017 + 2.48990i −0.103584 + 0.318799i −0.989396 0.145246i \(-0.953602\pi\)
0.885811 + 0.464045i \(0.153602\pi\)
\(62\) 0 0
\(63\) −0.190983 0.138757i −0.0240616 0.0174818i
\(64\) 0 0
\(65\) 24.0344 2.98111
\(66\) 0 0
\(67\) 0.145898 0.0178243 0.00891214 0.999960i \(-0.497163\pi\)
0.00891214 + 0.999960i \(0.497163\pi\)
\(68\) 0 0
\(69\) −0.190983 0.138757i −0.0229917 0.0167044i
\(70\) 0 0
\(71\) 0.427051 1.31433i 0.0506816 0.155982i −0.922512 0.385967i \(-0.873868\pi\)
0.973194 + 0.229985i \(0.0738678\pi\)
\(72\) 0 0
\(73\) −2.61803 + 1.90211i −0.306418 + 0.222625i −0.730358 0.683065i \(-0.760647\pi\)
0.423940 + 0.905690i \(0.360647\pi\)
\(74\) 0 0
\(75\) 3.04508 + 9.37181i 0.351616 + 1.08216i
\(76\) 0 0
\(77\) 0.600813 0.502029i 0.0684690 0.0572115i
\(78\) 0 0
\(79\) −4.39919 13.5393i −0.494947 1.52329i −0.817039 0.576582i \(-0.804386\pi\)
0.322092 0.946708i \(-0.395614\pi\)
\(80\) 0 0
\(81\) −0.809017 + 0.587785i −0.0898908 + 0.0653095i
\(82\) 0 0
\(83\) −4.78115 + 14.7149i −0.524800 + 1.61517i 0.239912 + 0.970795i \(0.422881\pi\)
−0.764712 + 0.644373i \(0.777119\pi\)
\(84\) 0 0
\(85\) 7.42705 + 5.39607i 0.805577 + 0.585286i
\(86\) 0 0
\(87\) 4.47214 0.479463
\(88\) 0 0
\(89\) 1.00000 0.106000 0.0529999 0.998595i \(-0.483122\pi\)
0.0529999 + 0.998595i \(0.483122\pi\)
\(90\) 0 0
\(91\) 1.19098 + 0.865300i 0.124849 + 0.0907081i
\(92\) 0 0
\(93\) 1.97214 6.06961i 0.204501 0.629389i
\(94\) 0 0
\(95\) 15.8713 11.5312i 1.62836 1.18308i
\(96\) 0 0
\(97\) −1.57295 4.84104i −0.159709 0.491533i 0.838899 0.544288i \(-0.183200\pi\)
−0.998608 + 0.0527545i \(0.983200\pi\)
\(98\) 0 0
\(99\) −1.23607 3.07768i −0.124230 0.309319i
\(100\) 0 0
\(101\) −1.83688 5.65334i −0.182776 0.562528i 0.817126 0.576458i \(-0.195566\pi\)
−0.999903 + 0.0139302i \(0.995566\pi\)
\(102\) 0 0
\(103\) 10.0902 7.33094i 0.994214 0.722339i 0.0333741 0.999443i \(-0.489375\pi\)
0.960840 + 0.277104i \(0.0893747\pi\)
\(104\) 0 0
\(105\) −0.281153 + 0.865300i −0.0274377 + 0.0844446i
\(106\) 0 0
\(107\) 5.28115 + 3.83698i 0.510548 + 0.370935i 0.813032 0.582220i \(-0.197816\pi\)
−0.302483 + 0.953155i \(0.597816\pi\)
\(108\) 0 0
\(109\) −8.00000 −0.766261 −0.383131 0.923694i \(-0.625154\pi\)
−0.383131 + 0.923694i \(0.625154\pi\)
\(110\) 0 0
\(111\) −3.76393 −0.357257
\(112\) 0 0
\(113\) −9.89919 7.19218i −0.931237 0.676583i 0.0150583 0.999887i \(-0.495207\pi\)
−0.946295 + 0.323303i \(0.895207\pi\)
\(114\) 0 0
\(115\) −0.281153 + 0.865300i −0.0262176 + 0.0806896i
\(116\) 0 0
\(117\) 5.04508 3.66547i 0.466418 0.338873i
\(118\) 0 0
\(119\) 0.173762 + 0.534785i 0.0159287 + 0.0490236i
\(120\) 0 0
\(121\) 10.8992 1.48584i 0.990835 0.135076i
\(122\) 0 0
\(123\) 2.92705 + 9.00854i 0.263923 + 0.812272i
\(124\) 0 0
\(125\) 15.1353 10.9964i 1.35374 0.983548i
\(126\) 0 0
\(127\) −4.85410 + 14.9394i −0.430732 + 1.32566i 0.466666 + 0.884434i \(0.345455\pi\)
−0.897398 + 0.441223i \(0.854545\pi\)
\(128\) 0 0
\(129\) 7.66312 + 5.56758i 0.674700 + 0.490198i
\(130\) 0 0
\(131\) 8.56231 0.748092 0.374046 0.927410i \(-0.377970\pi\)
0.374046 + 0.927410i \(0.377970\pi\)
\(132\) 0 0
\(133\) 1.20163 0.104194
\(134\) 0 0
\(135\) 3.11803 + 2.26538i 0.268358 + 0.194973i
\(136\) 0 0
\(137\) −6.48936 + 19.9722i −0.554423 + 1.70634i 0.143039 + 0.989717i \(0.454313\pi\)
−0.697462 + 0.716622i \(0.745687\pi\)
\(138\) 0 0
\(139\) 3.07295 2.23263i 0.260644 0.189369i −0.449787 0.893136i \(-0.648500\pi\)
0.710431 + 0.703767i \(0.248500\pi\)
\(140\) 0 0
\(141\) −1.11803 3.44095i −0.0941554 0.289781i
\(142\) 0 0
\(143\) 7.70820 + 19.1926i 0.644592 + 1.60497i
\(144\) 0 0
\(145\) −5.32624 16.3925i −0.442320 1.36132i
\(146\) 0 0
\(147\) 5.61803 4.08174i 0.463368 0.336656i
\(148\) 0 0
\(149\) −5.21885 + 16.0620i −0.427545 + 1.31585i 0.472992 + 0.881067i \(0.343174\pi\)
−0.900537 + 0.434780i \(0.856826\pi\)
\(150\) 0 0
\(151\) 3.61803 + 2.62866i 0.294431 + 0.213917i 0.725188 0.688551i \(-0.241753\pi\)
−0.430756 + 0.902468i \(0.641753\pi\)
\(152\) 0 0
\(153\) 2.38197 0.192571
\(154\) 0 0
\(155\) −24.5967 −1.97566
\(156\) 0 0
\(157\) 13.9443 + 10.1311i 1.11287 + 0.808550i 0.983114 0.182995i \(-0.0585792\pi\)
0.129760 + 0.991545i \(0.458579\pi\)
\(158\) 0 0
\(159\) 2.02786 6.24112i 0.160820 0.494953i
\(160\) 0 0
\(161\) −0.0450850 + 0.0327561i −0.00355319 + 0.00258155i
\(162\) 0 0
\(163\) 1.50000 + 4.61653i 0.117489 + 0.361594i 0.992458 0.122585i \(-0.0391184\pi\)
−0.874969 + 0.484179i \(0.839118\pi\)
\(164\) 0 0
\(165\) −9.80902 + 8.19624i −0.763631 + 0.638076i
\(166\) 0 0
\(167\) 0.190983 + 0.587785i 0.0147787 + 0.0454842i 0.958174 0.286187i \(-0.0923877\pi\)
−0.943395 + 0.331671i \(0.892388\pi\)
\(168\) 0 0
\(169\) −20.9443 + 15.2169i −1.61110 + 1.17053i
\(170\) 0 0
\(171\) 1.57295 4.84104i 0.120286 0.370204i
\(172\) 0 0
\(173\) −4.50000 3.26944i −0.342129 0.248571i 0.403431 0.915010i \(-0.367818\pi\)
−0.745559 + 0.666439i \(0.767818\pi\)
\(174\) 0 0
\(175\) 2.32624 0.175847
\(176\) 0 0
\(177\) −2.14590 −0.161296
\(178\) 0 0
\(179\) −14.5172 10.5474i −1.08507 0.788348i −0.106508 0.994312i \(-0.533967\pi\)
−0.978560 + 0.205964i \(0.933967\pi\)
\(180\) 0 0
\(181\) 1.83688 5.65334i 0.136534 0.420209i −0.859291 0.511487i \(-0.829095\pi\)
0.995826 + 0.0912773i \(0.0290950\pi\)
\(182\) 0 0
\(183\) 2.11803 1.53884i 0.156570 0.113754i
\(184\) 0 0
\(185\) 4.48278 + 13.7966i 0.329580 + 1.01434i
\(186\) 0 0
\(187\) −1.92705 + 7.66145i −0.140920 + 0.560261i
\(188\) 0 0
\(189\) 0.0729490 + 0.224514i 0.00530626 + 0.0163310i
\(190\) 0 0
\(191\) −17.5172 + 12.7270i −1.26750 + 0.920894i −0.999100 0.0424133i \(-0.986495\pi\)
−0.268401 + 0.963307i \(0.586495\pi\)
\(192\) 0 0
\(193\) 4.73607 14.5761i 0.340910 1.04921i −0.622828 0.782359i \(-0.714016\pi\)
0.963737 0.266853i \(-0.0859838\pi\)
\(194\) 0 0
\(195\) −19.4443 14.1271i −1.39243 1.01166i
\(196\) 0 0
\(197\) −5.90983 −0.421058 −0.210529 0.977588i \(-0.567519\pi\)
−0.210529 + 0.977588i \(0.567519\pi\)
\(198\) 0 0
\(199\) 10.4164 0.738400 0.369200 0.929350i \(-0.379632\pi\)
0.369200 + 0.929350i \(0.379632\pi\)
\(200\) 0 0
\(201\) −0.118034 0.0857567i −0.00832548 0.00604881i
\(202\) 0 0
\(203\) 0.326238 1.00406i 0.0228974 0.0704710i
\(204\) 0 0
\(205\) 29.5344 21.4580i 2.06277 1.49869i
\(206\) 0 0
\(207\) 0.0729490 + 0.224514i 0.00507031 + 0.0156048i
\(208\) 0 0
\(209\) 14.2984 + 8.97578i 0.989039 + 0.620868i
\(210\) 0 0
\(211\) −5.79180 17.8253i −0.398724 1.22715i −0.926023 0.377466i \(-0.876796\pi\)
0.527300 0.849679i \(-0.323204\pi\)
\(212\) 0 0
\(213\) −1.11803 + 0.812299i −0.0766064 + 0.0556578i
\(214\) 0 0
\(215\) 11.2812 34.7198i 0.769368 2.36787i
\(216\) 0 0
\(217\) −1.21885 0.885544i −0.0827407 0.0601147i
\(218\) 0 0
\(219\) 3.23607 0.218673
\(220\) 0 0
\(221\) −14.8541 −0.999195
\(222\) 0 0
\(223\) −6.04508 4.39201i −0.404809 0.294111i 0.366688 0.930344i \(-0.380492\pi\)
−0.771497 + 0.636233i \(0.780492\pi\)
\(224\) 0 0
\(225\) 3.04508 9.37181i 0.203006 0.624787i
\(226\) 0 0
\(227\) 10.2812 7.46969i 0.682384 0.495781i −0.191764 0.981441i \(-0.561421\pi\)
0.874148 + 0.485660i \(0.161421\pi\)
\(228\) 0 0
\(229\) 3.38197 + 10.4086i 0.223487 + 0.687821i 0.998442 + 0.0558047i \(0.0177724\pi\)
−0.774955 + 0.632016i \(0.782228\pi\)
\(230\) 0 0
\(231\) −0.781153 + 0.0530006i −0.0513961 + 0.00348718i
\(232\) 0 0
\(233\) 0.371323 + 1.14281i 0.0243262 + 0.0748683i 0.962483 0.271343i \(-0.0874679\pi\)
−0.938156 + 0.346212i \(0.887468\pi\)
\(234\) 0 0
\(235\) −11.2812 + 8.19624i −0.735901 + 0.534664i
\(236\) 0 0
\(237\) −4.39919 + 13.5393i −0.285758 + 0.879472i
\(238\) 0 0
\(239\) 14.1631 + 10.2901i 0.916136 + 0.665612i 0.942559 0.334039i \(-0.108412\pi\)
−0.0264232 + 0.999651i \(0.508412\pi\)
\(240\) 0 0
\(241\) −23.7082 −1.52718 −0.763590 0.645702i \(-0.776565\pi\)
−0.763590 + 0.645702i \(0.776565\pi\)
\(242\) 0 0
\(243\) 1.00000 0.0641500
\(244\) 0 0
\(245\) −21.6525 15.7314i −1.38333 1.00505i
\(246\) 0 0
\(247\) −9.80902 + 30.1891i −0.624133 + 1.92088i
\(248\) 0 0
\(249\) 12.5172 9.09429i 0.793247 0.576327i
\(250\) 0 0
\(251\) −7.44427 22.9111i −0.469878 1.44614i −0.852742 0.522332i \(-0.825062\pi\)
0.382864 0.923805i \(-0.374938\pi\)
\(252\) 0 0
\(253\) −0.781153 + 0.0530006i −0.0491107 + 0.00333212i
\(254\) 0 0
\(255\) −2.83688 8.73102i −0.177652 0.546758i
\(256\) 0 0
\(257\) 2.26393 1.64484i 0.141220 0.102602i −0.514932 0.857231i \(-0.672183\pi\)
0.656152 + 0.754628i \(0.272183\pi\)
\(258\) 0 0
\(259\) −0.274575 + 0.845055i −0.0170613 + 0.0525092i
\(260\) 0 0
\(261\) −3.61803 2.62866i −0.223951 0.162710i
\(262\) 0 0
\(263\) −23.8541 −1.47091 −0.735453 0.677575i \(-0.763031\pi\)
−0.735453 + 0.677575i \(0.763031\pi\)
\(264\) 0 0
\(265\) −25.2918 −1.55366
\(266\) 0 0
\(267\) −0.809017 0.587785i −0.0495110 0.0359719i
\(268\) 0 0
\(269\) 8.79837 27.0786i 0.536446 1.65101i −0.204057 0.978959i \(-0.565413\pi\)
0.740503 0.672053i \(-0.234587\pi\)
\(270\) 0 0
\(271\) −1.97214 + 1.43284i −0.119799 + 0.0870389i −0.646071 0.763277i \(-0.723589\pi\)
0.526273 + 0.850316i \(0.323589\pi\)
\(272\) 0 0
\(273\) −0.454915 1.40008i −0.0275327 0.0847370i
\(274\) 0 0
\(275\) 27.6803 + 17.3763i 1.66919 + 1.04783i
\(276\) 0 0
\(277\) 0.791796 + 2.43690i 0.0475744 + 0.146419i 0.972022 0.234891i \(-0.0754732\pi\)
−0.924447 + 0.381310i \(0.875473\pi\)
\(278\) 0 0
\(279\) −5.16312 + 3.75123i −0.309108 + 0.224580i
\(280\) 0 0
\(281\) 5.29180 16.2865i 0.315682 0.971570i −0.659791 0.751449i \(-0.729355\pi\)
0.975473 0.220120i \(-0.0706449\pi\)
\(282\) 0 0
\(283\) 18.7984 + 13.6578i 1.11745 + 0.811873i 0.983820 0.179159i \(-0.0573375\pi\)
0.133627 + 0.991032i \(0.457338\pi\)
\(284\) 0 0
\(285\) −19.6180 −1.16207
\(286\) 0 0
\(287\) 2.23607 0.131991
\(288\) 0 0
\(289\) 9.16312 + 6.65740i 0.539007 + 0.391612i
\(290\) 0 0
\(291\) −1.57295 + 4.84104i −0.0922079 + 0.283787i
\(292\) 0 0
\(293\) 4.04508 2.93893i 0.236316 0.171694i −0.463324 0.886189i \(-0.653343\pi\)
0.699641 + 0.714495i \(0.253343\pi\)
\(294\) 0 0
\(295\) 2.55573 + 7.86572i 0.148800 + 0.457960i
\(296\) 0 0
\(297\) −0.809017 + 3.21644i −0.0469439 + 0.186637i
\(298\) 0 0
\(299\) −0.454915 1.40008i −0.0263084 0.0809690i
\(300\) 0 0
\(301\) 1.80902 1.31433i 0.104270 0.0757566i
\(302\) 0 0
\(303\) −1.83688 + 5.65334i −0.105526 + 0.324776i
\(304\) 0 0
\(305\) −8.16312 5.93085i −0.467419 0.339600i
\(306\) 0 0
\(307\) 0.673762 0.0384536 0.0192268 0.999815i \(-0.493880\pi\)
0.0192268 + 0.999815i \(0.493880\pi\)
\(308\) 0 0
\(309\) −12.4721 −0.709515
\(310\) 0 0
\(311\) −23.6074 17.1518i −1.33865 0.972588i −0.999492 0.0318591i \(-0.989857\pi\)
−0.339160 0.940729i \(-0.610143\pi\)
\(312\) 0 0
\(313\) −0.309017 + 0.951057i −0.0174667 + 0.0537569i −0.959410 0.282015i \(-0.908997\pi\)
0.941943 + 0.335772i \(0.108997\pi\)
\(314\) 0 0
\(315\) 0.736068 0.534785i 0.0414727 0.0301317i
\(316\) 0 0
\(317\) 2.63525 + 8.11048i 0.148011 + 0.455530i 0.997386 0.0722595i \(-0.0230210\pi\)
−0.849375 + 0.527790i \(0.823021\pi\)
\(318\) 0 0
\(319\) 11.3820 9.51057i 0.637268 0.532489i
\(320\) 0 0
\(321\) −2.01722 6.20837i −0.112590 0.346517i
\(322\) 0 0
\(323\) −9.80902 + 7.12667i −0.545788 + 0.396538i
\(324\) 0 0
\(325\) −18.9894 + 58.4432i −1.05334 + 3.24185i
\(326\) 0 0
\(327\) 6.47214 + 4.70228i 0.357910 + 0.260037i
\(328\) 0 0
\(329\) −0.854102 −0.0470882
\(330\) 0 0
\(331\) −11.9443 −0.656517 −0.328258 0.944588i \(-0.606462\pi\)
−0.328258 + 0.944588i \(0.606462\pi\)
\(332\) 0 0
\(333\) 3.04508 + 2.21238i 0.166870 + 0.121238i
\(334\) 0 0
\(335\) −0.173762 + 0.534785i −0.00949364 + 0.0292184i
\(336\) 0 0
\(337\) 14.2361 10.3431i 0.775488 0.563425i −0.128133 0.991757i \(-0.540899\pi\)
0.903621 + 0.428332i \(0.140899\pi\)
\(338\) 0 0
\(339\) 3.78115 + 11.6372i 0.205364 + 0.632046i
\(340\) 0 0
\(341\) −7.88854 19.6417i −0.427189 1.06366i
\(342\) 0 0
\(343\) −1.01722 3.13068i −0.0549248 0.169041i
\(344\) 0 0
\(345\) 0.736068 0.534785i 0.0396286 0.0287918i
\(346\) 0 0
\(347\) 2.47214 7.60845i 0.132711 0.408443i −0.862516 0.506030i \(-0.831112\pi\)
0.995227 + 0.0975871i \(0.0311124\pi\)
\(348\) 0 0
\(349\) 22.8435 + 16.5967i 1.22278 + 0.888403i 0.996328 0.0856184i \(-0.0272866\pi\)
0.226454 + 0.974022i \(0.427287\pi\)
\(350\) 0 0
\(351\) −6.23607 −0.332857
\(352\) 0 0
\(353\) −10.4721 −0.557376 −0.278688 0.960382i \(-0.589899\pi\)
−0.278688 + 0.960382i \(0.589899\pi\)
\(354\) 0 0
\(355\) 4.30902 + 3.13068i 0.228699 + 0.166159i
\(356\) 0 0
\(357\) 0.173762 0.534785i 0.00919646 0.0283038i
\(358\) 0 0
\(359\) −18.7984 + 13.6578i −0.992140 + 0.720832i −0.960389 0.278664i \(-0.910109\pi\)
−0.0317515 + 0.999496i \(0.510109\pi\)
\(360\) 0 0
\(361\) 2.13525 + 6.57164i 0.112382 + 0.345876i
\(362\) 0 0
\(363\) −9.69098 5.20431i −0.508645 0.273155i
\(364\) 0 0
\(365\) −3.85410 11.8617i −0.201733 0.620870i
\(366\) 0 0
\(367\) −4.35410 + 3.16344i −0.227282 + 0.165130i −0.695599 0.718431i \(-0.744861\pi\)
0.468316 + 0.883561i \(0.344861\pi\)
\(368\) 0 0
\(369\) 2.92705 9.00854i 0.152376 0.468966i
\(370\) 0 0
\(371\) −1.25329 0.910568i −0.0650675 0.0472743i
\(372\) 0 0
\(373\) −13.9443 −0.722007 −0.361004 0.932564i \(-0.617566\pi\)
−0.361004 + 0.932564i \(0.617566\pi\)
\(374\) 0 0
\(375\) −18.7082 −0.966087
\(376\) 0 0
\(377\) 22.5623 + 16.3925i 1.16202 + 0.844255i
\(378\) 0 0
\(379\) 3.92705 12.0862i 0.201719 0.620827i −0.798113 0.602508i \(-0.794168\pi\)
0.999832 0.0183198i \(-0.00583170\pi\)
\(380\) 0 0
\(381\) 12.7082 9.23305i 0.651061 0.473024i
\(382\) 0 0
\(383\) −3.16312 9.73508i −0.161628 0.497439i 0.837144 0.546982i \(-0.184224\pi\)
−0.998772 + 0.0495430i \(0.984224\pi\)
\(384\) 0 0
\(385\) 1.12461 + 2.80017i 0.0573155 + 0.142710i
\(386\) 0 0
\(387\) −2.92705 9.00854i −0.148790 0.457930i
\(388\) 0 0
\(389\) −13.0172 + 9.45756i −0.659999 + 0.479518i −0.866663 0.498895i \(-0.833739\pi\)
0.206663 + 0.978412i \(0.433739\pi\)
\(390\) 0 0
\(391\) 0.173762 0.534785i 0.00878753 0.0270452i
\(392\) 0 0
\(393\) −6.92705 5.03280i −0.349423 0.253871i
\(394\) 0 0
\(395\) 54.8673 2.76067
\(396\) 0 0
\(397\) 27.1803 1.36414 0.682071 0.731286i \(-0.261079\pi\)
0.682071 + 0.731286i \(0.261079\pi\)
\(398\) 0 0
\(399\) −0.972136 0.706298i −0.0486677 0.0353591i
\(400\) 0 0
\(401\) −0.881966 + 2.71441i −0.0440433 + 0.135551i −0.970660 0.240456i \(-0.922703\pi\)
0.926617 + 0.376007i \(0.122703\pi\)
\(402\) 0 0
\(403\) 32.1976 23.3929i 1.60387 1.16528i
\(404\) 0 0
\(405\) −1.19098 3.66547i −0.0591804 0.182139i
\(406\) 0 0
\(407\) −9.57953 + 8.00448i −0.474840 + 0.396767i
\(408\) 0 0
\(409\) 3.05573 + 9.40456i 0.151096 + 0.465026i 0.997744 0.0671269i \(-0.0213832\pi\)
−0.846648 + 0.532153i \(0.821383\pi\)
\(410\) 0 0
\(411\) 16.9894 12.3435i 0.838023 0.608859i
\(412\) 0 0
\(413\) −0.156541 + 0.481784i −0.00770289 + 0.0237070i
\(414\) 0 0
\(415\) −48.2426 35.0503i −2.36814 1.72055i
\(416\) 0 0
\(417\) −3.79837 −0.186007
\(418\) 0 0
\(419\) −17.8541 −0.872230 −0.436115 0.899891i \(-0.643646\pi\)
−0.436115 + 0.899891i \(0.643646\pi\)
\(420\) 0 0
\(421\) 7.50000 + 5.44907i 0.365528 + 0.265571i 0.755354 0.655317i \(-0.227465\pi\)
−0.389826 + 0.920888i \(0.627465\pi\)
\(422\) 0 0
\(423\) −1.11803 + 3.44095i −0.0543607 + 0.167305i
\(424\) 0 0
\(425\) −18.9894 + 13.7966i −0.921119 + 0.669232i
\(426\) 0 0
\(427\) −0.190983 0.587785i −0.00924232 0.0284449i
\(428\) 0 0
\(429\) 5.04508 20.0579i 0.243579 0.968407i
\(430\) 0 0
\(431\) −4.11803 12.6740i −0.198359 0.610485i −0.999921 0.0125740i \(-0.995997\pi\)
0.801562 0.597911i \(-0.204003\pi\)
\(432\) 0 0
\(433\) 12.0902 8.78402i 0.581016 0.422133i −0.258074 0.966125i \(-0.583088\pi\)
0.839090 + 0.543992i \(0.183088\pi\)
\(434\) 0 0
\(435\) −5.32624 + 16.3925i −0.255374 + 0.785959i
\(436\) 0 0
\(437\) −0.972136 0.706298i −0.0465036 0.0337868i
\(438\) 0 0
\(439\) 19.3607 0.924035 0.462017 0.886871i \(-0.347126\pi\)
0.462017 + 0.886871i \(0.347126\pi\)
\(440\) 0 0
\(441\) −6.94427 −0.330680
\(442\) 0 0
\(443\) 0.145898 + 0.106001i 0.00693182 + 0.00503627i 0.591246 0.806491i \(-0.298636\pi\)
−0.584314 + 0.811528i \(0.698636\pi\)
\(444\) 0 0
\(445\) −1.19098 + 3.66547i −0.0564580 + 0.173760i
\(446\) 0 0
\(447\) 13.6631 9.92684i 0.646243 0.469523i
\(448\) 0 0
\(449\) −2.32624 7.15942i −0.109782 0.337874i 0.881041 0.473040i \(-0.156843\pi\)
−0.990823 + 0.135166i \(0.956843\pi\)
\(450\) 0 0
\(451\) 26.6074 + 16.7027i 1.25289 + 0.786502i
\(452\) 0 0
\(453\) −1.38197 4.25325i −0.0649304 0.199835i
\(454\) 0 0
\(455\) −4.59017 + 3.33495i −0.215190 + 0.156345i
\(456\) 0 0
\(457\) 0.354102 1.08981i 0.0165642 0.0509793i −0.942433 0.334396i \(-0.891468\pi\)
0.958997 + 0.283416i \(0.0914678\pi\)
\(458\) 0 0
\(459\) −1.92705 1.40008i −0.0899470 0.0653503i
\(460\) 0 0
\(461\) 19.5623 0.911107 0.455554 0.890208i \(-0.349441\pi\)
0.455554 + 0.890208i \(0.349441\pi\)
\(462\) 0 0
\(463\) −21.2148 −0.985935 −0.492967 0.870048i \(-0.664088\pi\)
−0.492967 + 0.870048i \(0.664088\pi\)
\(464\) 0 0
\(465\) 19.8992 + 14.4576i 0.922803 + 0.670455i
\(466\) 0 0
\(467\) −6.12868 + 18.8621i −0.283601 + 0.872835i 0.703213 + 0.710979i \(0.251748\pi\)
−0.986814 + 0.161856i \(0.948252\pi\)
\(468\) 0 0
\(469\) −0.0278640 + 0.0202444i −0.00128664 + 0.000934800i
\(470\) 0 0
\(471\) −5.32624 16.3925i −0.245420 0.755325i
\(472\) 0 0
\(473\) 31.3435 2.12663i 1.44117 0.0977824i
\(474\) 0 0
\(475\) 15.5000 + 47.7041i 0.711189 + 2.18881i
\(476\) 0 0
\(477\) −5.30902 + 3.85723i −0.243083 + 0.176610i
\(478\) 0 0
\(479\) −4.11803 + 12.6740i −0.188158 + 0.579090i −0.999988 0.00480282i \(-0.998471\pi\)
0.811831 + 0.583893i \(0.198471\pi\)
\(480\) 0 0
\(481\) −18.9894 13.7966i −0.865840 0.629070i
\(482\) 0 0
\(483\) 0.0557281 0.00253572
\(484\) 0 0
\(485\) 19.6180 0.890809
\(486\) 0 0
\(487\) 28.9894 + 21.0620i 1.31363 + 0.954410i 0.999988 + 0.00487004i \(0.00155019\pi\)
0.313645 + 0.949540i \(0.398450\pi\)
\(488\) 0 0
\(489\) 1.50000 4.61653i 0.0678323 0.208766i
\(490\) 0 0
\(491\) −4.16312 + 3.02468i −0.187879 + 0.136502i −0.677749 0.735294i \(-0.737044\pi\)
0.489870 + 0.871796i \(0.337044\pi\)
\(492\) 0 0
\(493\) 3.29180 + 10.1311i 0.148255 + 0.456282i
\(494\) 0 0
\(495\) 12.7533 0.865300i 0.573218 0.0388923i
\(496\) 0 0
\(497\) 0.100813 + 0.310271i 0.00452208 + 0.0139175i
\(498\) 0 0
\(499\) 12.3541 8.97578i 0.553046 0.401811i −0.275862 0.961197i \(-0.588963\pi\)
0.828907 + 0.559386i \(0.188963\pi\)
\(500\) 0 0
\(501\) 0.190983 0.587785i 0.00853249 0.0262603i
\(502\) 0 0
\(503\) 13.9443 + 10.1311i 0.621744 + 0.451724i 0.853530 0.521043i \(-0.174457\pi\)
−0.231786 + 0.972767i \(0.574457\pi\)
\(504\) 0 0
\(505\) 22.9098 1.01947
\(506\) 0 0
\(507\) 25.8885 1.14975
\(508\) 0 0
\(509\) −10.3090 7.48994i −0.456939 0.331986i 0.335390 0.942079i \(-0.391132\pi\)
−0.792329 + 0.610094i \(0.791132\pi\)
\(510\) 0 0
\(511\) 0.236068 0.726543i 0.0104430 0.0321403i
\(512\) 0 0
\(513\) −4.11803 + 2.99193i −0.181816 + 0.132097i
\(514\) 0 0
\(515\) 14.8541 + 45.7162i 0.654550 + 2.01450i
\(516\) 0 0
\(517\) −10.1631 6.37988i −0.446973 0.280587i
\(518\) 0 0
\(519\) 1.71885 + 5.29007i 0.0754490 + 0.232208i
\(520\) 0 0
\(521\) −12.0000 + 8.71851i −0.525730 + 0.381965i −0.818758 0.574139i \(-0.805337\pi\)
0.293028 + 0.956104i \(0.405337\pi\)
\(522\) 0 0
\(523\) 6.73607 20.7315i 0.294548 0.906525i −0.688825 0.724927i \(-0.741873\pi\)
0.983373 0.181597i \(-0.0581267\pi\)
\(524\) 0 0
\(525\) −1.88197 1.36733i −0.0821357 0.0596751i
\(526\) 0 0
\(527\) 15.2016 0.662193
\(528\) 0 0
\(529\) −22.9443 −0.997577
\(530\) 0 0
\(531\) 1.73607 + 1.26133i 0.0753389 + 0.0547369i
\(532\) 0 0
\(533\) −18.2533 + 56.1778i −0.790638 + 2.43333i
\(534\) 0 0
\(535\) −20.3541 + 14.7881i −0.879985 + 0.639346i
\(536\) 0 0
\(537\) 5.54508 + 17.0660i 0.239288 + 0.736453i
\(538\) 0 0
\(539\) 5.61803 22.3358i 0.241986 0.962073i
\(540\) 0 0
\(541\) −1.95492 6.01661i −0.0840484 0.258674i 0.900197 0.435483i \(-0.143423\pi\)
−0.984245 + 0.176809i \(0.943423\pi\)
\(542\) 0 0
\(543\) −4.80902 + 3.49396i −0.206375 + 0.149940i
\(544\) 0 0
\(545\) 9.52786 29.3238i 0.408129 1.25609i
\(546\) 0 0
\(547\) 10.7812 + 7.83297i 0.460969 + 0.334913i 0.793911 0.608034i \(-0.208041\pi\)
−0.332942 + 0.942947i \(0.608041\pi\)
\(548\) 0 0
\(549\) −2.61803 −0.111735
\(550\) 0 0
\(551\) 22.7639 0.969776
\(552\) 0 0
\(553\) 2.71885 + 1.97536i 0.115617 + 0.0840008i
\(554\) 0 0
\(555\) 4.48278 13.7966i 0.190283 0.585632i
\(556\) 0 0
\(557\) −4.11803 + 2.99193i −0.174487 + 0.126772i −0.671601 0.740913i \(-0.734393\pi\)
0.497114 + 0.867685i \(0.334393\pi\)
\(558\) 0 0
\(559\) 18.2533 + 56.1778i 0.772032 + 2.37607i
\(560\) 0 0
\(561\) 6.06231 5.06555i 0.255951 0.213868i
\(562\) 0 0
\(563\) −12.5795 38.7158i −0.530164 1.63168i −0.753873 0.657021i \(-0.771816\pi\)
0.223709 0.974656i \(-0.428184\pi\)
\(564\) 0 0
\(565\) 38.1525 27.7194i 1.60509 1.16616i
\(566\) 0 0
\(567\) 0.0729490 0.224514i 0.00306357 0.00942870i
\(568\) 0 0
\(569\) −3.94427 2.86568i −0.165352 0.120136i 0.502032 0.864849i \(-0.332586\pi\)
−0.667384 + 0.744714i \(0.732586\pi\)
\(570\) 0 0
\(571\) −24.3262 −1.01802 −0.509011 0.860760i \(-0.669989\pi\)
−0.509011 + 0.860760i \(0.669989\pi\)
\(572\) 0 0
\(573\) 21.6525 0.904545
\(574\) 0 0
\(575\) −1.88197 1.36733i −0.0784834 0.0570215i
\(576\) 0 0
\(577\) 9.03444 27.8052i 0.376109 1.15754i −0.566619 0.823980i \(-0.691749\pi\)
0.942728 0.333564i \(-0.108251\pi\)
\(578\) 0 0
\(579\) −12.3992 + 9.00854i −0.515293 + 0.374382i
\(580\) 0 0
\(581\) −1.12868 3.47371i −0.0468254 0.144114i
\(582\) 0 0
\(583\) −8.11146 20.1967i −0.335942 0.836462i
\(584\) 0 0
\(585\) 7.42705 + 22.8581i 0.307071 + 0.945067i
\(586\) 0 0
\(587\) 20.8435 15.1437i 0.860302 0.625046i −0.0676654 0.997708i \(-0.521555\pi\)
0.927967 + 0.372662i \(0.121555\pi\)
\(588\) 0 0
\(589\) 10.0385 30.8953i 0.413629 1.27302i
\(590\) 0 0
\(591\) 4.78115 + 3.47371i 0.196670 + 0.142889i
\(592\) 0 0
\(593\) 19.4508 0.798751 0.399375 0.916788i \(-0.369227\pi\)
0.399375 + 0.916788i \(0.369227\pi\)
\(594\) 0 0
\(595\) −2.16718 −0.0888459
\(596\) 0 0
\(597\) −8.42705 6.12261i −0.344896 0.250582i
\(598\) 0 0
\(599\) −12.5623 + 38.6628i −0.513282 + 1.57972i 0.273105 + 0.961984i \(0.411950\pi\)
−0.786386 + 0.617735i \(0.788050\pi\)
\(600\) 0 0
\(601\) −16.1353 + 11.7229i −0.658171 + 0.478189i −0.866045 0.499967i \(-0.833346\pi\)
0.207874 + 0.978156i \(0.433346\pi\)
\(602\) 0 0
\(603\) 0.0450850 + 0.138757i 0.00183600 + 0.00565063i
\(604\) 0 0
\(605\) −7.53444 + 41.7202i −0.306319 + 1.69617i
\(606\) 0 0
\(607\) −2.68034 8.24924i −0.108792 0.334826i 0.881810 0.471605i \(-0.156325\pi\)
−0.990602 + 0.136779i \(0.956325\pi\)
\(608\) 0 0
\(609\) −0.854102 + 0.620541i −0.0346100 + 0.0251456i
\(610\) 0 0
\(611\) 6.97214 21.4580i 0.282062 0.868099i
\(612\) 0 0
\(613\) −13.8541 10.0656i −0.559562 0.406546i 0.271737 0.962372i \(-0.412402\pi\)
−0.831299 + 0.555826i \(0.812402\pi\)
\(614\) 0 0
\(615\) −36.5066 −1.47209
\(616\) 0 0
\(617\) −7.00000 −0.281809 −0.140905 0.990023i \(-0.545001\pi\)
−0.140905 + 0.990023i \(0.545001\pi\)
\(618\) 0 0
\(619\) −6.04508 4.39201i −0.242972 0.176530i 0.459634 0.888108i \(-0.347981\pi\)
−0.702607 + 0.711579i \(0.747981\pi\)
\(620\) 0 0
\(621\) 0.0729490 0.224514i 0.00292734 0.00900944i
\(622\) 0 0
\(623\) −0.190983 + 0.138757i −0.00765157 + 0.00555919i
\(624\) 0 0
\(625\) 7.05573 + 21.7153i 0.282229 + 0.868612i
\(626\) 0 0
\(627\) −6.29180 15.6659i −0.251270 0.625637i
\(628\) 0 0
\(629\) −2.77051 8.52675i −0.110467 0.339984i
\(630\) 0 0
\(631\) 6.25329 4.54328i 0.248940 0.180865i −0.456317 0.889817i \(-0.650832\pi\)
0.705257 + 0.708952i \(0.250832\pi\)
\(632\) 0 0
\(633\) −5.79180 + 17.8253i −0.230203 + 0.708493i
\(634\) 0 0
\(635\) −48.9787 35.5851i −1.94366 1.41215i
\(636\) 0 0
\(637\) 43.3050 1.71580
\(638\) 0 0
\(639\) 1.38197 0.0546697
\(640\) 0 0
\(641\) −20.2082 14.6821i −0.798176 0.579909i 0.112202 0.993685i \(-0.464209\pi\)
−0.910378 + 0.413777i \(0.864209\pi\)
\(642\) 0 0
\(643\) 12.4098 38.1935i 0.489396 1.50621i −0.336116 0.941821i \(-0.609113\pi\)
0.825512 0.564385i \(-0.190887\pi\)
\(644\) 0 0
\(645\) −29.5344 + 21.4580i −1.16292 + 0.844909i
\(646\) 0 0
\(647\) −11.0279 33.9403i −0.433550 1.33433i −0.894565 0.446938i \(-0.852515\pi\)
0.461015 0.887392i \(-0.347485\pi\)
\(648\) 0 0
\(649\) −5.46149 + 4.56352i −0.214382 + 0.179134i
\(650\) 0 0
\(651\) 0.465558 + 1.43284i 0.0182467 + 0.0561575i
\(652\) 0 0
\(653\) 17.1074 12.4292i 0.669464 0.486394i −0.200382 0.979718i \(-0.564218\pi\)
0.869846 + 0.493324i \(0.164218\pi\)
\(654\) 0 0
\(655\) −10.1976 + 31.3849i −0.398452 + 1.22631i
\(656\) 0 0
\(657\) −2.61803 1.90211i −0.102139 0.0742085i
\(658\) 0 0
\(659\) −9.70820 −0.378178 −0.189089 0.981960i \(-0.560553\pi\)
−0.189089 + 0.981960i \(0.560553\pi\)
\(660\) 0 0
\(661\) −13.3262 −0.518331 −0.259165 0.965833i \(-0.583447\pi\)
−0.259165 + 0.965833i \(0.583447\pi\)
\(662\) 0 0
\(663\) 12.0172 + 8.73102i 0.466710 + 0.339085i
\(664\) 0 0
\(665\) −1.43112 + 4.40452i −0.0554963 + 0.170800i
\(666\) 0 0
\(667\) −0.854102 + 0.620541i −0.0330710 + 0.0240275i
\(668\) 0 0
\(669\) 2.30902 + 7.10642i 0.0892718 + 0.274750i
\(670\) 0 0
\(671\) 2.11803 8.42075i 0.0817658 0.325080i
\(672\) 0 0
\(673\) 10.9615 + 33.7360i 0.422534 + 1.30043i 0.905335 + 0.424697i \(0.139619\pi\)
−0.482801 + 0.875730i \(0.660381\pi\)
\(674\) 0 0
\(675\) −7.97214 + 5.79210i −0.306848 + 0.222938i
\(676\) 0 0
\(677\) 0.763932 2.35114i 0.0293603 0.0903617i −0.935303 0.353849i \(-0.884873\pi\)
0.964663 + 0.263487i \(0.0848727\pi\)
\(678\) 0 0
\(679\) 0.972136 + 0.706298i 0.0373072 + 0.0271052i
\(680\) 0 0
\(681\) −12.7082 −0.486979
\(682\) 0 0
\(683\) 37.6525 1.44073 0.720366 0.693594i \(-0.243974\pi\)
0.720366 + 0.693594i \(0.243974\pi\)
\(684\) 0 0
\(685\) −65.4787 47.5731i −2.50181 1.81767i
\(686\) 0 0
\(687\) 3.38197 10.4086i 0.129030 0.397114i
\(688\) 0 0
\(689\) 33.1074 24.0539i 1.26129 0.916382i
\(690\) 0 0
\(691\) −10.0557 30.9483i −0.382538 1.17733i −0.938251 0.345956i \(-0.887555\pi\)
0.555713 0.831374i \(-0.312445\pi\)
\(692\) 0 0
\(693\) 0.663119 + 0.416272i 0.0251898 + 0.0158129i
\(694\) 0 0
\(695\) 4.52380 + 13.9228i 0.171597 + 0.528123i
\(696\) 0 0
\(697\) −18.2533 + 13.2618i −0.691393 + 0.502326i
\(698\) 0 0
\(699\) 0.371323 1.14281i 0.0140447 0.0432252i
\(700\) 0 0
\(701\) 23.0623 + 16.7557i 0.871051 + 0.632856i 0.930869 0.365354i \(-0.119052\pi\)
−0.0598176 + 0.998209i \(0.519052\pi\)
\(702\) 0 0
\(703\) −19.1591 −0.722597
\(704\) 0 0
\(705\) 13.9443 0.525172
\(706\) 0 0
\(707\) 1.13525 + 0.824811i 0.0426957 + 0.0310202i
\(708\) 0 0
\(709\) 5.17376 15.9232i 0.194305 0.598008i −0.805679 0.592352i \(-0.798199\pi\)
0.999984 0.00565642i \(-0.00180051\pi\)
\(710\) 0 0
\(711\) 11.5172 8.36775i 0.431930 0.313815i
\(712\) 0 0
\(713\) 0.465558 + 1.43284i 0.0174353 + 0.0536603i
\(714\) 0 0
\(715\) −79.5304 + 5.39607i −2.97427 + 0.201802i
\(716\) 0 0
\(717\) −5.40983 16.6497i −0.202034 0.621796i
\(718\) 0 0
\(719\) 15.4271 11.2084i 0.575332 0.418003i −0.261706 0.965148i \(-0.584285\pi\)
0.837038 + 0.547144i \(0.184285\pi\)
\(720\) 0 0
\(721\) −0.909830 + 2.80017i −0.0338838 + 0.104284i
\(722\) 0 0
\(723\) 19.1803 + 13.9353i 0.713325 + 0.518261i
\(724\) 0 0
\(725\) 44.0689 1.63668
\(726\) 0 0
\(727\) 8.85410 0.328380 0.164190 0.986429i \(-0.447499\pi\)
0.164190 + 0.986429i \(0.447499\pi\)
\(728\) 0 0
\(729\) −0.809017 0.587785i −0.0299636 0.0217698i
\(730\) 0 0
\(731\) −6.97214 + 21.4580i −0.257874 + 0.793654i
\(732\) 0 0
\(733\) −36.0344 + 26.1806i −1.33096 + 0.967001i −0.331238 + 0.943547i \(0.607466\pi\)
−0.999725 + 0.0234534i \(0.992534\pi\)
\(734\) 0 0
\(735\) 8.27051 + 25.4540i 0.305062 + 0.938885i
\(736\) 0 0
\(737\) −0.482779 + 0.0327561i −0.0177834 + 0.00120659i
\(738\) 0 0
\(739\) 3.96149 + 12.1922i 0.145726 + 0.448498i 0.997104 0.0760550i \(-0.0242324\pi\)
−0.851378 + 0.524553i \(0.824232\pi\)
\(740\) 0 0
\(741\) 25.6803 18.6579i 0.943391 0.685414i
\(742\) 0 0
\(743\) −3.54508 + 10.9106i −0.130057 + 0.400273i −0.994788 0.101961i \(-0.967488\pi\)
0.864732 + 0.502234i \(0.167488\pi\)
\(744\) 0 0
\(745\) −52.6591 38.2590i −1.92928 1.40170i
\(746\) 0 0
\(747\) −15.4721 −0.566096
\(748\) 0 0
\(749\) −1.54102 −0.0563076
\(750\) 0 0
\(751\) −33.6803 24.4702i −1.22901 0.892930i −0.232197 0.972669i \(-0.574591\pi\)
−0.996816 + 0.0797385i \(0.974591\pi\)
\(752\) 0 0
\(753\) −7.44427 + 22.9111i −0.271284 + 0.834927i
\(754\) 0 0
\(755\) −13.9443 + 10.1311i −0.507484 + 0.368709i
\(756\) 0 0
\(757\) −3.21885 9.90659i −0.116991 0.360061i 0.875366 0.483461i \(-0.160620\pi\)
−0.992357 + 0.123399i \(0.960620\pi\)
\(758\) 0 0
\(759\) 0.663119 + 0.416272i 0.0240697 + 0.0151097i
\(760\) 0 0
\(761\) −9.03851 27.8177i −0.327646 1.00839i −0.970232 0.242176i \(-0.922139\pi\)
0.642587 0.766213i \(-0.277861\pi\)
\(762\) 0 0
\(763\) 1.52786 1.11006i 0.0553124 0.0401868i
\(764\) 0 0
\(765\) −2.83688 + 8.73102i −0.102568 + 0.315671i
\(766\) 0 0
\(767\) −10.8262 7.86572i −0.390913 0.284015i
\(768\) 0 0
\(769\) −33.5623 −1.21029 −0.605144 0.796116i \(-0.706884\pi\)
−0.605144 + 0.796116i \(0.706884\pi\)
\(770\) 0 0
\(771\) −2.79837 −0.100781
\(772\) 0 0
\(773\) −23.7533 17.2578i −0.854346 0.620719i 0.0719946 0.997405i \(-0.477064\pi\)
−0.926341 + 0.376686i \(0.877064\pi\)
\(774\) 0 0
\(775\) 19.4336 59.8106i 0.698077 2.14846i
\(776\) 0 0
\(777\) 0.718847 0.522273i 0.0257885 0.0187364i
\(778\) 0 0
\(779\) 14.8992 + 45.8550i 0.533819 + 1.64293i
\(780\) 0 0
\(781\) −1.11803 + 4.44501i −0.0400064 + 0.159055i
\(782\) 0 0
\(783\) 1.38197 + 4.25325i 0.0493874 + 0.151999i
\(784\) 0 0
\(785\) −53.7426 + 39.0463i −1.91816 + 1.39362i
\(786\) 0 0
\(787\) −13.8328 + 42.5730i −0.493087 + 1.51756i 0.326831 + 0.945083i \(0.394019\pi\)
−0.819917 + 0.572482i \(0.805981\pi\)
\(788\) 0 0
\(789\) 19.2984 + 14.0211i 0.687040 + 0.499164i
\(790\) 0 0
\(791\) 2.88854 0.102705
\(792\) 0 0
\(793\) 16.3262 0.579762
\(794\) 0 0
\(795\) 20.4615 + 14.8661i 0.725694 + 0.527248i
\(796\) 0 0
\(797\) −15.1459 + 46.6143i −0.536495 + 1.65116i 0.203901 + 0.978992i \(0.434638\pi\)
−0.740396 + 0.672171i \(0.765362\pi\)
\(798\) 0 0
\(799\) 6.97214 5.06555i 0.246656 0.179206i
\(800\) 0 0
\(801\) 0.309017 + 0.951057i 0.0109186 + 0.0336039i
\(802\) 0 0
\(803\) 8.23607 6.88191i 0.290645 0.242857i
\(804\) 0 0
\(805\) −0.0663712 0.204270i −0.00233928 0.00719956i
\(806\) 0 0
\(807\) −23.0344 + 16.7355i −0.810851 + 0.589118i
\(808\) 0 0
\(809\) 10.8992 33.5442i 0.383195 1.17935i −0.554586 0.832126i \(-0.687123\pi\)
0.937781 0.347227i \(-0.112877\pi\)
\(810\) 0 0
\(811\) −1.78115 1.29408i −0.0625447 0.0454414i 0.556074 0.831133i \(-0.312307\pi\)
−0.618618 + 0.785692i \(0.712307\pi\)
\(812\) 0 0
\(813\) 2.43769 0.0854937
\(814\) 0 0
\(815\) −18.7082 −0.655320
\(816\) 0 0
\(817\) 39.0066 + 28.3399i 1.36467 + 0.991489i
\(818\) 0 0
\(819\) −0.454915 + 1.40008i −0.0158960 + 0.0489229i
\(820\) 0 0
\(821\) −22.1353 + 16.0822i −0.772526 + 0.561273i −0.902727 0.430215i \(-0.858438\pi\)
0.130201 + 0.991488i \(0.458438\pi\)
\(822\) 0 0
\(823\) −7.16312 22.0458i −0.249691 0.768469i −0.994829 0.101559i \(-0.967617\pi\)
0.745139 0.666909i \(-0.232383\pi\)
\(824\) 0 0
\(825\) −12.1803 30.3278i −0.424065 1.05588i
\(826\) 0 0
\(827\) 12.7082 + 39.1118i 0.441908 + 1.36005i 0.885840 + 0.463991i \(0.153583\pi\)
−0.443932 + 0.896060i \(0.646417\pi\)
\(828\) 0 0
\(829\) −3.83688 + 2.78766i −0.133260 + 0.0968193i −0.652419 0.757859i \(-0.726246\pi\)
0.519158 + 0.854678i \(0.326246\pi\)
\(830\) 0 0
\(831\) 0.791796 2.43690i 0.0274671 0.0845350i
\(832\) 0 0
\(833\) 13.3820 + 9.72257i 0.463658 + 0.336867i
\(834\) 0 0
\(835\) −2.38197 −0.0824313
\(836\) 0 0
\(837\) 6.38197 0.220593
\(838\) 0 0
\(839\) 30.6074 + 22.2376i 1.05668 + 0.767726i 0.973472 0.228806i \(-0.0734820\pi\)
0.0832124 + 0.996532i \(0.473482\pi\)
\(840\) 0 0
\(841\) −2.78115 + 8.55951i −0.0959018 + 0.295155i
\(842\) 0 0
\(843\) −13.8541 + 10.0656i −0.477161 + 0.346677i
\(844\) 0 0
\(845\) −30.8328 94.8936i −1.06068 3.26444i
\(846\) 0 0
\(847\) −1.87539 + 1.79611i −0.0644391 + 0.0617151i
\(848\) 0 0
\(849\) −7.18034 22.0988i −0.246429 0.758429i
\(850\) 0 0
\(851\) 0.718847 0.522273i 0.0246418 0.0179033i
\(852\) 0 0
\(853\) 3.28773 10.1186i 0.112570 0.346454i −0.878863 0.477075i \(-0.841697\pi\)
0.991432 + 0.130621i \(0.0416970\pi\)
\(854\) 0 0
\(855\) 15.8713 + 11.5312i 0.542788 + 0.394358i
\(856\) 0 0
\(857\) −50.1935 −1.71458 −0.857289 0.514836i \(-0.827853\pi\)
−0.857289 + 0.514836i \(0.827853\pi\)
\(858\) 0 0
\(859\) −8.81966 −0.300923 −0.150461 0.988616i \(-0.548076\pi\)
−0.150461 + 0.988616i \(0.548076\pi\)
\(860\) 0 0
\(861\) −1.80902 1.31433i −0.0616511 0.0447922i
\(862\) 0 0
\(863\) 4.43769 13.6578i 0.151061 0.464918i −0.846680 0.532103i \(-0.821402\pi\)
0.997741 + 0.0671854i \(0.0214019\pi\)
\(864\) 0 0
\(865\) 17.3435 12.6008i 0.589695 0.428439i
\(866\) 0 0
\(867\) −3.50000 10.7719i −0.118866 0.365833i
\(868\) 0 0
\(869\) 17.5967 + 43.8141i 0.596929 + 1.48629i
\(870\) 0 0
\(871\) −0.281153 0.865300i −0.00952650 0.0293196i
\(872\) 0 0
\(873\) 4.11803 2.99193i 0.139374 0.101261i
\(874\) 0 0
\(875\) −1.36475 + 4.20025i −0.0461368 + 0.141994i
\(876\) 0 0
\(877\) −0.718847 0.522273i −0.0242737 0.0176359i 0.575582 0.817744i \(-0.304775\pi\)
−0.599856 + 0.800108i \(0.704775\pi\)
\(878\) 0 0
\(879\) −5.00000 −0.168646
\(880\) 0 0
\(881\) 40.5623 1.36658 0.683289 0.730148i \(-0.260549\pi\)
0.683289 + 0.730148i \(0.260549\pi\)
\(882\) 0 0
\(883\) 12.0902 + 8.78402i 0.406867 + 0.295606i 0.772332 0.635219i \(-0.219090\pi\)
−0.365465 + 0.930825i \(0.619090\pi\)
\(884\) 0 0
\(885\) 2.55573 7.86572i 0.0859099 0.264403i
\(886\) 0 0
\(887\) −26.9336 + 19.5684i −0.904343 + 0.657043i −0.939578 0.342336i \(-0.888782\pi\)
0.0352350 + 0.999379i \(0.488782\pi\)
\(888\) 0 0
\(889\) −1.14590 3.52671i −0.0384322 0.118282i
\(890\) 0 0
\(891\) 2.54508 2.12663i 0.0852636 0.0712447i
\(892\) 0 0
\(893\) −5.69098 17.5150i −0.190441 0.586119i
\(894\) 0 0
\(895\) 55.9508 40.6507i 1.87023 1.35880i
\(896\) 0 0
\(897\) −0.454915 + 1.40008i −0.0151892 + 0.0467475i
\(898\) 0 0
\(899\) −23.0902 16.7760i −0.770100 0.559511i
\(900\) 0 0
\(901\) 15.6312 0.520750
\(902\) 0 0
\(903\) −2.23607 −0.0744117
\(904\) 0 0
\(905\) 18.5344 + 13.4661i 0.616106 + 0.447627i
\(906\) 0 0
\(907\) 13.2467 40.7692i 0.439850 1.35372i −0.448184 0.893941i \(-0.647929\pi\)
0.888034 0.459777i \(-0.152071\pi\)
\(908\) 0 0
\(909\) 4.80902 3.49396i 0.159505 0.115887i
\(910\) 0 0
\(911\) −7.89261 24.2910i −0.261494 0.804795i −0.992480 0.122403i \(-0.960940\pi\)
0.730987 0.682392i \(-0.239060\pi\)
\(912\) 0 0
\(913\) 12.5172 49.7652i 0.414260 1.64699i
\(914\) 0 0
\(915\) 3.11803 + 9.59632i 0.103079 + 0.317245i
\(916\) 0 0
\(917\) −1.63525 + 1.18808i −0.0540009 + 0.0392339i
\(918\) 0 0
\(919\) 4.89261 15.0579i 0.161392 0.496714i −0.837360 0.546652i \(-0.815902\pi\)
0.998752 + 0.0499374i \(0.0159022\pi\)
\(920\) 0 0
\(921\) −0.545085 0.396027i −0.0179612 0.0130495i
\(922\) 0 0
\(923\) −8.61803 −0.283666
\(924\) 0 0
\(925\) −37.0902 −1.21952
\(926\) 0 0
\(927\) 10.0902 + 7.33094i 0.331405 + 0.240780i
\(928\) 0 0
\(929\) 6.05166 18.6251i 0.198549 0.611070i −0.801368 0.598171i \(-0.795894\pi\)
0.999917 0.0128984i \(-0.00410581\pi\)
\(930\) 0 0
\(931\) 28.5967 20.7768i 0.937221 0.680931i
\(932\) 0 0
\(933\) 9.01722 + 27.7522i 0.295211 + 0.908565i
\(934\) 0 0
\(935\) −25.7877 16.1882i −0.843349 0.529411i
\(936\) 0 0
\(937\) 6.10739 + 18.7966i 0.199520 + 0.614059i 0.999894 + 0.0145580i \(0.00463413\pi\)
−0.800374 + 0.599501i \(0.795366\pi\)
\(938\) 0 0
\(939\) 0.809017 0.587785i 0.0264013 0.0191816i
\(940\) 0 0
\(941\) −0.791796 + 2.43690i −0.0258118 + 0.0794406i −0.963133 0.269027i \(-0.913298\pi\)
0.937321 + 0.348468i \(0.113298\pi\)
\(942\) 0 0
\(943\) −1.80902 1.31433i −0.0589097 0.0428004i
\(944\) 0 0
\(945\) −0.909830 −0.0295968
\(946\) 0 0
\(947\) 2.79837 0.0909349 0.0454675 0.998966i \(-0.485522\pi\)
0.0454675 + 0.998966i \(0.485522\pi\)
\(948\) 0 0
\(949\) 16.3262 + 11.8617i 0.529972 + 0.385047i
\(950\) 0 0
\(951\) 2.63525 8.11048i 0.0854540 0.263000i
\(952\) 0 0
\(953\) −28.1246 + 20.4337i −0.911046 + 0.661913i −0.941279 0.337630i \(-0.890375\pi\)
0.0302335 + 0.999543i \(0.490375\pi\)
\(954\) 0 0
\(955\) −25.7877 79.3665i −0.834471 2.56824i
\(956\) 0 0
\(957\) −14.7984 + 1.00406i −0.478363 + 0.0324566i
\(958\) 0 0
\(959\) −1.53193 4.71479i −0.0494686 0.152249i
\(960\) 0 0
\(961\) −7.87132 + 5.71885i −0.253914 + 0.184479i
\(962\) 0 0
\(963\) −2.01722 + 6.20837i −0.0650040 + 0.200062i
\(964\) 0 0
\(965\) 47.7877 + 34.7198i 1.53834 + 1.11767i
\(966\) 0 0
\(967\) −14.7295 −0.473668 −0.236834 0.971550i \(-0.576110\pi\)
−0.236834 + 0.971550i \(0.576110\pi\)
\(968\) 0 0
\(969\) 12.1246 0.389499
\(970\) 0 0
\(971\) 1.90983 + 1.38757i 0.0612894 + 0.0445293i 0.618008 0.786172i \(-0.287940\pi\)
−0.556719 + 0.830701i \(0.687940\pi\)
\(972\) 0 0
\(973\) −0.277088 + 0.852788i −0.00888302 + 0.0273391i
\(974\) 0 0
\(975\) 49.7148 36.1199i 1.59215 1.15676i
\(976\) 0 0
\(977\) −10.1631 31.2789i −0.325147 1.00070i −0.971374 0.237554i \(-0.923654\pi\)
0.646227 0.763145i \(-0.276346\pi\)
\(978\) 0 0
\(979\) −3.30902 + 0.224514i −0.105757 + 0.00717550i
\(980\) 0 0
\(981\) −2.47214 7.60845i −0.0789292 0.242919i
\(982\) 0 0
\(983\) −29.7984 + 21.6498i −0.950421 + 0.690521i −0.950906 0.309479i \(-0.899845\pi\)
0.000485770 1.00000i \(0.499845\pi\)
\(984\) 0 0
\(985\) 7.03851 21.6623i 0.224265 0.690218i
\(986\) 0 0
\(987\) 0.690983 + 0.502029i 0.0219942 + 0.0159797i
\(988\) 0 0
\(989\) −2.23607 −0.0711028
\(990\) 0 0
\(991\) −43.2705 −1.37453 −0.687267 0.726405i \(-0.741190\pi\)
−0.687267 + 0.726405i \(0.741190\pi\)
\(992\) 0 0
\(993\) 9.66312 + 7.02067i 0.306650 + 0.222794i
\(994\) 0 0
\(995\) −12.4058 + 38.1810i −0.393289 + 1.21042i
\(996\) 0 0
\(997\) −23.6803 + 17.2048i −0.749964 + 0.544881i −0.895816 0.444426i \(-0.853408\pi\)
0.145852 + 0.989306i \(0.453408\pi\)
\(998\) 0 0
\(999\) −1.16312 3.57971i −0.0367995 0.113257i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 528.2.y.a.49.1 4
4.3 odd 2 132.2.i.b.49.1 4
11.3 even 5 5808.2.a.cc.1.1 2
11.8 odd 10 5808.2.a.cf.1.1 2
11.9 even 5 inner 528.2.y.a.97.1 4
12.11 even 2 396.2.j.c.181.1 4
44.3 odd 10 1452.2.a.j.1.1 2
44.7 even 10 1452.2.i.p.1213.1 4
44.15 odd 10 1452.2.i.o.1213.1 4
44.19 even 10 1452.2.a.i.1.1 2
44.27 odd 10 1452.2.i.o.565.1 4
44.31 odd 10 132.2.i.b.97.1 yes 4
44.35 even 10 1452.2.i.j.493.1 4
44.39 even 10 1452.2.i.p.565.1 4
44.43 even 2 1452.2.i.j.1237.1 4
132.47 even 10 4356.2.a.v.1.2 2
132.107 odd 10 4356.2.a.s.1.2 2
132.119 even 10 396.2.j.c.361.1 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
132.2.i.b.49.1 4 4.3 odd 2
132.2.i.b.97.1 yes 4 44.31 odd 10
396.2.j.c.181.1 4 12.11 even 2
396.2.j.c.361.1 4 132.119 even 10
528.2.y.a.49.1 4 1.1 even 1 trivial
528.2.y.a.97.1 4 11.9 even 5 inner
1452.2.a.i.1.1 2 44.19 even 10
1452.2.a.j.1.1 2 44.3 odd 10
1452.2.i.j.493.1 4 44.35 even 10
1452.2.i.j.1237.1 4 44.43 even 2
1452.2.i.o.565.1 4 44.27 odd 10
1452.2.i.o.1213.1 4 44.15 odd 10
1452.2.i.p.565.1 4 44.39 even 10
1452.2.i.p.1213.1 4 44.7 even 10
4356.2.a.s.1.2 2 132.107 odd 10
4356.2.a.v.1.2 2 132.47 even 10
5808.2.a.cc.1.1 2 11.3 even 5
5808.2.a.cf.1.1 2 11.8 odd 10