Defining parameters
| Level: | \( N \) | \(=\) | \( 528 = 2^{4} \cdot 3 \cdot 11 \) |
| Weight: | \( k \) | \(=\) | \( 2 \) |
| Character orbit: | \([\chi]\) | \(=\) | 528.o (of order \(2\) and degree \(1\)) |
| Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 44 \) |
| Character field: | \(\Q\) | ||
| Newform subspaces: | \( 2 \) | ||
| Sturm bound: | \(192\) | ||
| Trace bound: | \(1\) | ||
| Distinguishing \(T_p\): | \(5\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(528, [\chi])\).
| Total | New | Old | |
|---|---|---|---|
| Modular forms | 108 | 12 | 96 |
| Cusp forms | 84 | 12 | 72 |
| Eisenstein series | 24 | 0 | 24 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(528, [\chi])\) into newform subspaces
| Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
|---|---|---|---|---|---|---|---|---|---|
| $a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
| 528.2.o.a | $4$ | $4.216$ | \(\Q(i, \sqrt{10})\) | None | \(0\) | \(0\) | \(-8\) | \(0\) | \(q+\beta _{1}q^{3}-2q^{5}-\beta _{3}q^{7}-q^{9}+(\beta _{1}+\cdots)q^{11}+\cdots\) |
| 528.2.o.b | $8$ | $4.216$ | 8.0.454201344.7 | None | \(0\) | \(0\) | \(8\) | \(0\) | \(q+\beta _{2}q^{3}+(1-\beta _{1})q^{5}-\beta _{7}q^{7}-q^{9}+\cdots\) |
Decomposition of \(S_{2}^{\mathrm{old}}(528, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(528, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(44, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(132, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(176, [\chi])\)\(^{\oplus 2}\)