Properties

Label 528.2.a.a.1.1
Level 528
Weight 2
Character 528.1
Self dual yes
Analytic conductor 4.216
Analytic rank 0
Dimension 1
CM no
Inner twists 1

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) = \( 528 = 2^{4} \cdot 3 \cdot 11 \)
Weight: \( k \) = \( 2 \)
Character orbit: \([\chi]\) = 528.a (trivial)

Newform invariants

Self dual: yes
Analytic conductor: \(4.21610122672\)
Analytic rank: \(0\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 66)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(0\)
Character \(\chi\) = 528.1

$q$-expansion

\(f(q)\) \(=\) \(q-1.00000 q^{3} -4.00000 q^{5} +2.00000 q^{7} +1.00000 q^{9} +O(q^{10})\) \(q-1.00000 q^{3} -4.00000 q^{5} +2.00000 q^{7} +1.00000 q^{9} -1.00000 q^{11} +4.00000 q^{13} +4.00000 q^{15} -2.00000 q^{17} -2.00000 q^{21} +6.00000 q^{23} +11.0000 q^{25} -1.00000 q^{27} +10.0000 q^{29} +8.00000 q^{31} +1.00000 q^{33} -8.00000 q^{35} -2.00000 q^{37} -4.00000 q^{39} +2.00000 q^{41} -4.00000 q^{43} -4.00000 q^{45} +2.00000 q^{47} -3.00000 q^{49} +2.00000 q^{51} +4.00000 q^{53} +4.00000 q^{55} -8.00000 q^{61} +2.00000 q^{63} -16.0000 q^{65} +12.0000 q^{67} -6.00000 q^{69} -2.00000 q^{71} -6.00000 q^{73} -11.0000 q^{75} -2.00000 q^{77} -10.0000 q^{79} +1.00000 q^{81} -4.00000 q^{83} +8.00000 q^{85} -10.0000 q^{87} +10.0000 q^{89} +8.00000 q^{91} -8.00000 q^{93} -2.00000 q^{97} -1.00000 q^{99} +O(q^{100})\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −1.00000 −0.577350
\(4\) 0 0
\(5\) −4.00000 −1.78885 −0.894427 0.447214i \(-0.852416\pi\)
−0.894427 + 0.447214i \(0.852416\pi\)
\(6\) 0 0
\(7\) 2.00000 0.755929 0.377964 0.925820i \(-0.376624\pi\)
0.377964 + 0.925820i \(0.376624\pi\)
\(8\) 0 0
\(9\) 1.00000 0.333333
\(10\) 0 0
\(11\) −1.00000 −0.301511
\(12\) 0 0
\(13\) 4.00000 1.10940 0.554700 0.832050i \(-0.312833\pi\)
0.554700 + 0.832050i \(0.312833\pi\)
\(14\) 0 0
\(15\) 4.00000 1.03280
\(16\) 0 0
\(17\) −2.00000 −0.485071 −0.242536 0.970143i \(-0.577979\pi\)
−0.242536 + 0.970143i \(0.577979\pi\)
\(18\) 0 0
\(19\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(20\) 0 0
\(21\) −2.00000 −0.436436
\(22\) 0 0
\(23\) 6.00000 1.25109 0.625543 0.780189i \(-0.284877\pi\)
0.625543 + 0.780189i \(0.284877\pi\)
\(24\) 0 0
\(25\) 11.0000 2.20000
\(26\) 0 0
\(27\) −1.00000 −0.192450
\(28\) 0 0
\(29\) 10.0000 1.85695 0.928477 0.371391i \(-0.121119\pi\)
0.928477 + 0.371391i \(0.121119\pi\)
\(30\) 0 0
\(31\) 8.00000 1.43684 0.718421 0.695608i \(-0.244865\pi\)
0.718421 + 0.695608i \(0.244865\pi\)
\(32\) 0 0
\(33\) 1.00000 0.174078
\(34\) 0 0
\(35\) −8.00000 −1.35225
\(36\) 0 0
\(37\) −2.00000 −0.328798 −0.164399 0.986394i \(-0.552568\pi\)
−0.164399 + 0.986394i \(0.552568\pi\)
\(38\) 0 0
\(39\) −4.00000 −0.640513
\(40\) 0 0
\(41\) 2.00000 0.312348 0.156174 0.987730i \(-0.450084\pi\)
0.156174 + 0.987730i \(0.450084\pi\)
\(42\) 0 0
\(43\) −4.00000 −0.609994 −0.304997 0.952353i \(-0.598656\pi\)
−0.304997 + 0.952353i \(0.598656\pi\)
\(44\) 0 0
\(45\) −4.00000 −0.596285
\(46\) 0 0
\(47\) 2.00000 0.291730 0.145865 0.989305i \(-0.453403\pi\)
0.145865 + 0.989305i \(0.453403\pi\)
\(48\) 0 0
\(49\) −3.00000 −0.428571
\(50\) 0 0
\(51\) 2.00000 0.280056
\(52\) 0 0
\(53\) 4.00000 0.549442 0.274721 0.961524i \(-0.411414\pi\)
0.274721 + 0.961524i \(0.411414\pi\)
\(54\) 0 0
\(55\) 4.00000 0.539360
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(60\) 0 0
\(61\) −8.00000 −1.02430 −0.512148 0.858898i \(-0.671150\pi\)
−0.512148 + 0.858898i \(0.671150\pi\)
\(62\) 0 0
\(63\) 2.00000 0.251976
\(64\) 0 0
\(65\) −16.0000 −1.98456
\(66\) 0 0
\(67\) 12.0000 1.46603 0.733017 0.680211i \(-0.238112\pi\)
0.733017 + 0.680211i \(0.238112\pi\)
\(68\) 0 0
\(69\) −6.00000 −0.722315
\(70\) 0 0
\(71\) −2.00000 −0.237356 −0.118678 0.992933i \(-0.537866\pi\)
−0.118678 + 0.992933i \(0.537866\pi\)
\(72\) 0 0
\(73\) −6.00000 −0.702247 −0.351123 0.936329i \(-0.614200\pi\)
−0.351123 + 0.936329i \(0.614200\pi\)
\(74\) 0 0
\(75\) −11.0000 −1.27017
\(76\) 0 0
\(77\) −2.00000 −0.227921
\(78\) 0 0
\(79\) −10.0000 −1.12509 −0.562544 0.826767i \(-0.690177\pi\)
−0.562544 + 0.826767i \(0.690177\pi\)
\(80\) 0 0
\(81\) 1.00000 0.111111
\(82\) 0 0
\(83\) −4.00000 −0.439057 −0.219529 0.975606i \(-0.570452\pi\)
−0.219529 + 0.975606i \(0.570452\pi\)
\(84\) 0 0
\(85\) 8.00000 0.867722
\(86\) 0 0
\(87\) −10.0000 −1.07211
\(88\) 0 0
\(89\) 10.0000 1.06000 0.529999 0.847998i \(-0.322192\pi\)
0.529999 + 0.847998i \(0.322192\pi\)
\(90\) 0 0
\(91\) 8.00000 0.838628
\(92\) 0 0
\(93\) −8.00000 −0.829561
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) −2.00000 −0.203069 −0.101535 0.994832i \(-0.532375\pi\)
−0.101535 + 0.994832i \(0.532375\pi\)
\(98\) 0 0
\(99\) −1.00000 −0.100504
\(100\) 0 0
\(101\) 2.00000 0.199007 0.0995037 0.995037i \(-0.468274\pi\)
0.0995037 + 0.995037i \(0.468274\pi\)
\(102\) 0 0
\(103\) −4.00000 −0.394132 −0.197066 0.980390i \(-0.563141\pi\)
−0.197066 + 0.980390i \(0.563141\pi\)
\(104\) 0 0
\(105\) 8.00000 0.780720
\(106\) 0 0
\(107\) 12.0000 1.16008 0.580042 0.814587i \(-0.303036\pi\)
0.580042 + 0.814587i \(0.303036\pi\)
\(108\) 0 0
\(109\) 20.0000 1.91565 0.957826 0.287348i \(-0.0927736\pi\)
0.957826 + 0.287348i \(0.0927736\pi\)
\(110\) 0 0
\(111\) 2.00000 0.189832
\(112\) 0 0
\(113\) −6.00000 −0.564433 −0.282216 0.959351i \(-0.591070\pi\)
−0.282216 + 0.959351i \(0.591070\pi\)
\(114\) 0 0
\(115\) −24.0000 −2.23801
\(116\) 0 0
\(117\) 4.00000 0.369800
\(118\) 0 0
\(119\) −4.00000 −0.366679
\(120\) 0 0
\(121\) 1.00000 0.0909091
\(122\) 0 0
\(123\) −2.00000 −0.180334
\(124\) 0 0
\(125\) −24.0000 −2.14663
\(126\) 0 0
\(127\) 22.0000 1.95218 0.976092 0.217357i \(-0.0697436\pi\)
0.976092 + 0.217357i \(0.0697436\pi\)
\(128\) 0 0
\(129\) 4.00000 0.352180
\(130\) 0 0
\(131\) −12.0000 −1.04844 −0.524222 0.851581i \(-0.675644\pi\)
−0.524222 + 0.851581i \(0.675644\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) 4.00000 0.344265
\(136\) 0 0
\(137\) −2.00000 −0.170872 −0.0854358 0.996344i \(-0.527228\pi\)
−0.0854358 + 0.996344i \(0.527228\pi\)
\(138\) 0 0
\(139\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(140\) 0 0
\(141\) −2.00000 −0.168430
\(142\) 0 0
\(143\) −4.00000 −0.334497
\(144\) 0 0
\(145\) −40.0000 −3.32182
\(146\) 0 0
\(147\) 3.00000 0.247436
\(148\) 0 0
\(149\) −10.0000 −0.819232 −0.409616 0.912258i \(-0.634337\pi\)
−0.409616 + 0.912258i \(0.634337\pi\)
\(150\) 0 0
\(151\) −2.00000 −0.162758 −0.0813788 0.996683i \(-0.525932\pi\)
−0.0813788 + 0.996683i \(0.525932\pi\)
\(152\) 0 0
\(153\) −2.00000 −0.161690
\(154\) 0 0
\(155\) −32.0000 −2.57030
\(156\) 0 0
\(157\) 18.0000 1.43656 0.718278 0.695756i \(-0.244931\pi\)
0.718278 + 0.695756i \(0.244931\pi\)
\(158\) 0 0
\(159\) −4.00000 −0.317221
\(160\) 0 0
\(161\) 12.0000 0.945732
\(162\) 0 0
\(163\) −4.00000 −0.313304 −0.156652 0.987654i \(-0.550070\pi\)
−0.156652 + 0.987654i \(0.550070\pi\)
\(164\) 0 0
\(165\) −4.00000 −0.311400
\(166\) 0 0
\(167\) 12.0000 0.928588 0.464294 0.885681i \(-0.346308\pi\)
0.464294 + 0.885681i \(0.346308\pi\)
\(168\) 0 0
\(169\) 3.00000 0.230769
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) −6.00000 −0.456172 −0.228086 0.973641i \(-0.573247\pi\)
−0.228086 + 0.973641i \(0.573247\pi\)
\(174\) 0 0
\(175\) 22.0000 1.66304
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(180\) 0 0
\(181\) 2.00000 0.148659 0.0743294 0.997234i \(-0.476318\pi\)
0.0743294 + 0.997234i \(0.476318\pi\)
\(182\) 0 0
\(183\) 8.00000 0.591377
\(184\) 0 0
\(185\) 8.00000 0.588172
\(186\) 0 0
\(187\) 2.00000 0.146254
\(188\) 0 0
\(189\) −2.00000 −0.145479
\(190\) 0 0
\(191\) −22.0000 −1.59186 −0.795932 0.605386i \(-0.793019\pi\)
−0.795932 + 0.605386i \(0.793019\pi\)
\(192\) 0 0
\(193\) 14.0000 1.00774 0.503871 0.863779i \(-0.331909\pi\)
0.503871 + 0.863779i \(0.331909\pi\)
\(194\) 0 0
\(195\) 16.0000 1.14578
\(196\) 0 0
\(197\) 18.0000 1.28245 0.641223 0.767354i \(-0.278427\pi\)
0.641223 + 0.767354i \(0.278427\pi\)
\(198\) 0 0
\(199\) −20.0000 −1.41776 −0.708881 0.705328i \(-0.750800\pi\)
−0.708881 + 0.705328i \(0.750800\pi\)
\(200\) 0 0
\(201\) −12.0000 −0.846415
\(202\) 0 0
\(203\) 20.0000 1.40372
\(204\) 0 0
\(205\) −8.00000 −0.558744
\(206\) 0 0
\(207\) 6.00000 0.417029
\(208\) 0 0
\(209\) 0 0
\(210\) 0 0
\(211\) −12.0000 −0.826114 −0.413057 0.910705i \(-0.635539\pi\)
−0.413057 + 0.910705i \(0.635539\pi\)
\(212\) 0 0
\(213\) 2.00000 0.137038
\(214\) 0 0
\(215\) 16.0000 1.09119
\(216\) 0 0
\(217\) 16.0000 1.08615
\(218\) 0 0
\(219\) 6.00000 0.405442
\(220\) 0 0
\(221\) −8.00000 −0.538138
\(222\) 0 0
\(223\) 16.0000 1.07144 0.535720 0.844396i \(-0.320040\pi\)
0.535720 + 0.844396i \(0.320040\pi\)
\(224\) 0 0
\(225\) 11.0000 0.733333
\(226\) 0 0
\(227\) 12.0000 0.796468 0.398234 0.917284i \(-0.369623\pi\)
0.398234 + 0.917284i \(0.369623\pi\)
\(228\) 0 0
\(229\) 10.0000 0.660819 0.330409 0.943838i \(-0.392813\pi\)
0.330409 + 0.943838i \(0.392813\pi\)
\(230\) 0 0
\(231\) 2.00000 0.131590
\(232\) 0 0
\(233\) −6.00000 −0.393073 −0.196537 0.980497i \(-0.562969\pi\)
−0.196537 + 0.980497i \(0.562969\pi\)
\(234\) 0 0
\(235\) −8.00000 −0.521862
\(236\) 0 0
\(237\) 10.0000 0.649570
\(238\) 0 0
\(239\) 20.0000 1.29369 0.646846 0.762620i \(-0.276088\pi\)
0.646846 + 0.762620i \(0.276088\pi\)
\(240\) 0 0
\(241\) −18.0000 −1.15948 −0.579741 0.814801i \(-0.696846\pi\)
−0.579741 + 0.814801i \(0.696846\pi\)
\(242\) 0 0
\(243\) −1.00000 −0.0641500
\(244\) 0 0
\(245\) 12.0000 0.766652
\(246\) 0 0
\(247\) 0 0
\(248\) 0 0
\(249\) 4.00000 0.253490
\(250\) 0 0
\(251\) 8.00000 0.504956 0.252478 0.967603i \(-0.418755\pi\)
0.252478 + 0.967603i \(0.418755\pi\)
\(252\) 0 0
\(253\) −6.00000 −0.377217
\(254\) 0 0
\(255\) −8.00000 −0.500979
\(256\) 0 0
\(257\) 18.0000 1.12281 0.561405 0.827541i \(-0.310261\pi\)
0.561405 + 0.827541i \(0.310261\pi\)
\(258\) 0 0
\(259\) −4.00000 −0.248548
\(260\) 0 0
\(261\) 10.0000 0.618984
\(262\) 0 0
\(263\) 16.0000 0.986602 0.493301 0.869859i \(-0.335790\pi\)
0.493301 + 0.869859i \(0.335790\pi\)
\(264\) 0 0
\(265\) −16.0000 −0.982872
\(266\) 0 0
\(267\) −10.0000 −0.611990
\(268\) 0 0
\(269\) −20.0000 −1.21942 −0.609711 0.792624i \(-0.708714\pi\)
−0.609711 + 0.792624i \(0.708714\pi\)
\(270\) 0 0
\(271\) −22.0000 −1.33640 −0.668202 0.743980i \(-0.732936\pi\)
−0.668202 + 0.743980i \(0.732936\pi\)
\(272\) 0 0
\(273\) −8.00000 −0.484182
\(274\) 0 0
\(275\) −11.0000 −0.663325
\(276\) 0 0
\(277\) 8.00000 0.480673 0.240337 0.970690i \(-0.422742\pi\)
0.240337 + 0.970690i \(0.422742\pi\)
\(278\) 0 0
\(279\) 8.00000 0.478947
\(280\) 0 0
\(281\) 22.0000 1.31241 0.656205 0.754583i \(-0.272161\pi\)
0.656205 + 0.754583i \(0.272161\pi\)
\(282\) 0 0
\(283\) −4.00000 −0.237775 −0.118888 0.992908i \(-0.537933\pi\)
−0.118888 + 0.992908i \(0.537933\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 4.00000 0.236113
\(288\) 0 0
\(289\) −13.0000 −0.764706
\(290\) 0 0
\(291\) 2.00000 0.117242
\(292\) 0 0
\(293\) 14.0000 0.817889 0.408944 0.912559i \(-0.365897\pi\)
0.408944 + 0.912559i \(0.365897\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) 1.00000 0.0580259
\(298\) 0 0
\(299\) 24.0000 1.38796
\(300\) 0 0
\(301\) −8.00000 −0.461112
\(302\) 0 0
\(303\) −2.00000 −0.114897
\(304\) 0 0
\(305\) 32.0000 1.83231
\(306\) 0 0
\(307\) −8.00000 −0.456584 −0.228292 0.973593i \(-0.573314\pi\)
−0.228292 + 0.973593i \(0.573314\pi\)
\(308\) 0 0
\(309\) 4.00000 0.227552
\(310\) 0 0
\(311\) −2.00000 −0.113410 −0.0567048 0.998391i \(-0.518059\pi\)
−0.0567048 + 0.998391i \(0.518059\pi\)
\(312\) 0 0
\(313\) −6.00000 −0.339140 −0.169570 0.985518i \(-0.554238\pi\)
−0.169570 + 0.985518i \(0.554238\pi\)
\(314\) 0 0
\(315\) −8.00000 −0.450749
\(316\) 0 0
\(317\) −32.0000 −1.79730 −0.898650 0.438667i \(-0.855451\pi\)
−0.898650 + 0.438667i \(0.855451\pi\)
\(318\) 0 0
\(319\) −10.0000 −0.559893
\(320\) 0 0
\(321\) −12.0000 −0.669775
\(322\) 0 0
\(323\) 0 0
\(324\) 0 0
\(325\) 44.0000 2.44068
\(326\) 0 0
\(327\) −20.0000 −1.10600
\(328\) 0 0
\(329\) 4.00000 0.220527
\(330\) 0 0
\(331\) 28.0000 1.53902 0.769510 0.638635i \(-0.220501\pi\)
0.769510 + 0.638635i \(0.220501\pi\)
\(332\) 0 0
\(333\) −2.00000 −0.109599
\(334\) 0 0
\(335\) −48.0000 −2.62252
\(336\) 0 0
\(337\) −22.0000 −1.19842 −0.599208 0.800593i \(-0.704518\pi\)
−0.599208 + 0.800593i \(0.704518\pi\)
\(338\) 0 0
\(339\) 6.00000 0.325875
\(340\) 0 0
\(341\) −8.00000 −0.433224
\(342\) 0 0
\(343\) −20.0000 −1.07990
\(344\) 0 0
\(345\) 24.0000 1.29212
\(346\) 0 0
\(347\) 12.0000 0.644194 0.322097 0.946707i \(-0.395612\pi\)
0.322097 + 0.946707i \(0.395612\pi\)
\(348\) 0 0
\(349\) −20.0000 −1.07058 −0.535288 0.844670i \(-0.679797\pi\)
−0.535288 + 0.844670i \(0.679797\pi\)
\(350\) 0 0
\(351\) −4.00000 −0.213504
\(352\) 0 0
\(353\) −6.00000 −0.319348 −0.159674 0.987170i \(-0.551044\pi\)
−0.159674 + 0.987170i \(0.551044\pi\)
\(354\) 0 0
\(355\) 8.00000 0.424596
\(356\) 0 0
\(357\) 4.00000 0.211702
\(358\) 0 0
\(359\) 20.0000 1.05556 0.527780 0.849381i \(-0.323025\pi\)
0.527780 + 0.849381i \(0.323025\pi\)
\(360\) 0 0
\(361\) −19.0000 −1.00000
\(362\) 0 0
\(363\) −1.00000 −0.0524864
\(364\) 0 0
\(365\) 24.0000 1.25622
\(366\) 0 0
\(367\) −8.00000 −0.417597 −0.208798 0.977959i \(-0.566955\pi\)
−0.208798 + 0.977959i \(0.566955\pi\)
\(368\) 0 0
\(369\) 2.00000 0.104116
\(370\) 0 0
\(371\) 8.00000 0.415339
\(372\) 0 0
\(373\) 4.00000 0.207112 0.103556 0.994624i \(-0.466978\pi\)
0.103556 + 0.994624i \(0.466978\pi\)
\(374\) 0 0
\(375\) 24.0000 1.23935
\(376\) 0 0
\(377\) 40.0000 2.06010
\(378\) 0 0
\(379\) 20.0000 1.02733 0.513665 0.857991i \(-0.328287\pi\)
0.513665 + 0.857991i \(0.328287\pi\)
\(380\) 0 0
\(381\) −22.0000 −1.12709
\(382\) 0 0
\(383\) 6.00000 0.306586 0.153293 0.988181i \(-0.451012\pi\)
0.153293 + 0.988181i \(0.451012\pi\)
\(384\) 0 0
\(385\) 8.00000 0.407718
\(386\) 0 0
\(387\) −4.00000 −0.203331
\(388\) 0 0
\(389\) −20.0000 −1.01404 −0.507020 0.861934i \(-0.669253\pi\)
−0.507020 + 0.861934i \(0.669253\pi\)
\(390\) 0 0
\(391\) −12.0000 −0.606866
\(392\) 0 0
\(393\) 12.0000 0.605320
\(394\) 0 0
\(395\) 40.0000 2.01262
\(396\) 0 0
\(397\) 18.0000 0.903394 0.451697 0.892171i \(-0.350819\pi\)
0.451697 + 0.892171i \(0.350819\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −18.0000 −0.898877 −0.449439 0.893311i \(-0.648376\pi\)
−0.449439 + 0.893311i \(0.648376\pi\)
\(402\) 0 0
\(403\) 32.0000 1.59403
\(404\) 0 0
\(405\) −4.00000 −0.198762
\(406\) 0 0
\(407\) 2.00000 0.0991363
\(408\) 0 0
\(409\) −10.0000 −0.494468 −0.247234 0.968956i \(-0.579522\pi\)
−0.247234 + 0.968956i \(0.579522\pi\)
\(410\) 0 0
\(411\) 2.00000 0.0986527
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) 16.0000 0.785409
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(420\) 0 0
\(421\) −18.0000 −0.877266 −0.438633 0.898666i \(-0.644537\pi\)
−0.438633 + 0.898666i \(0.644537\pi\)
\(422\) 0 0
\(423\) 2.00000 0.0972433
\(424\) 0 0
\(425\) −22.0000 −1.06716
\(426\) 0 0
\(427\) −16.0000 −0.774294
\(428\) 0 0
\(429\) 4.00000 0.193122
\(430\) 0 0
\(431\) −32.0000 −1.54139 −0.770693 0.637207i \(-0.780090\pi\)
−0.770693 + 0.637207i \(0.780090\pi\)
\(432\) 0 0
\(433\) −6.00000 −0.288342 −0.144171 0.989553i \(-0.546051\pi\)
−0.144171 + 0.989553i \(0.546051\pi\)
\(434\) 0 0
\(435\) 40.0000 1.91785
\(436\) 0 0
\(437\) 0 0
\(438\) 0 0
\(439\) −10.0000 −0.477274 −0.238637 0.971109i \(-0.576701\pi\)
−0.238637 + 0.971109i \(0.576701\pi\)
\(440\) 0 0
\(441\) −3.00000 −0.142857
\(442\) 0 0
\(443\) −24.0000 −1.14027 −0.570137 0.821549i \(-0.693110\pi\)
−0.570137 + 0.821549i \(0.693110\pi\)
\(444\) 0 0
\(445\) −40.0000 −1.89618
\(446\) 0 0
\(447\) 10.0000 0.472984
\(448\) 0 0
\(449\) 30.0000 1.41579 0.707894 0.706319i \(-0.249646\pi\)
0.707894 + 0.706319i \(0.249646\pi\)
\(450\) 0 0
\(451\) −2.00000 −0.0941763
\(452\) 0 0
\(453\) 2.00000 0.0939682
\(454\) 0 0
\(455\) −32.0000 −1.50018
\(456\) 0 0
\(457\) −2.00000 −0.0935561 −0.0467780 0.998905i \(-0.514895\pi\)
−0.0467780 + 0.998905i \(0.514895\pi\)
\(458\) 0 0
\(459\) 2.00000 0.0933520
\(460\) 0 0
\(461\) −18.0000 −0.838344 −0.419172 0.907907i \(-0.637680\pi\)
−0.419172 + 0.907907i \(0.637680\pi\)
\(462\) 0 0
\(463\) −4.00000 −0.185896 −0.0929479 0.995671i \(-0.529629\pi\)
−0.0929479 + 0.995671i \(0.529629\pi\)
\(464\) 0 0
\(465\) 32.0000 1.48396
\(466\) 0 0
\(467\) −28.0000 −1.29569 −0.647843 0.761774i \(-0.724329\pi\)
−0.647843 + 0.761774i \(0.724329\pi\)
\(468\) 0 0
\(469\) 24.0000 1.10822
\(470\) 0 0
\(471\) −18.0000 −0.829396
\(472\) 0 0
\(473\) 4.00000 0.183920
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) 4.00000 0.183147
\(478\) 0 0
\(479\) −40.0000 −1.82765 −0.913823 0.406112i \(-0.866884\pi\)
−0.913823 + 0.406112i \(0.866884\pi\)
\(480\) 0 0
\(481\) −8.00000 −0.364769
\(482\) 0 0
\(483\) −12.0000 −0.546019
\(484\) 0 0
\(485\) 8.00000 0.363261
\(486\) 0 0
\(487\) −28.0000 −1.26880 −0.634401 0.773004i \(-0.718753\pi\)
−0.634401 + 0.773004i \(0.718753\pi\)
\(488\) 0 0
\(489\) 4.00000 0.180886
\(490\) 0 0
\(491\) −12.0000 −0.541552 −0.270776 0.962642i \(-0.587280\pi\)
−0.270776 + 0.962642i \(0.587280\pi\)
\(492\) 0 0
\(493\) −20.0000 −0.900755
\(494\) 0 0
\(495\) 4.00000 0.179787
\(496\) 0 0
\(497\) −4.00000 −0.179425
\(498\) 0 0
\(499\) 20.0000 0.895323 0.447661 0.894203i \(-0.352257\pi\)
0.447661 + 0.894203i \(0.352257\pi\)
\(500\) 0 0
\(501\) −12.0000 −0.536120
\(502\) 0 0
\(503\) −4.00000 −0.178351 −0.0891756 0.996016i \(-0.528423\pi\)
−0.0891756 + 0.996016i \(0.528423\pi\)
\(504\) 0 0
\(505\) −8.00000 −0.355995
\(506\) 0 0
\(507\) −3.00000 −0.133235
\(508\) 0 0
\(509\) −20.0000 −0.886484 −0.443242 0.896402i \(-0.646172\pi\)
−0.443242 + 0.896402i \(0.646172\pi\)
\(510\) 0 0
\(511\) −12.0000 −0.530849
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 16.0000 0.705044
\(516\) 0 0
\(517\) −2.00000 −0.0879599
\(518\) 0 0
\(519\) 6.00000 0.263371
\(520\) 0 0
\(521\) −18.0000 −0.788594 −0.394297 0.918983i \(-0.629012\pi\)
−0.394297 + 0.918983i \(0.629012\pi\)
\(522\) 0 0
\(523\) −44.0000 −1.92399 −0.961993 0.273075i \(-0.911959\pi\)
−0.961993 + 0.273075i \(0.911959\pi\)
\(524\) 0 0
\(525\) −22.0000 −0.960159
\(526\) 0 0
\(527\) −16.0000 −0.696971
\(528\) 0 0
\(529\) 13.0000 0.565217
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 8.00000 0.346518
\(534\) 0 0
\(535\) −48.0000 −2.07522
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 3.00000 0.129219
\(540\) 0 0
\(541\) 12.0000 0.515920 0.257960 0.966156i \(-0.416950\pi\)
0.257960 + 0.966156i \(0.416950\pi\)
\(542\) 0 0
\(543\) −2.00000 −0.0858282
\(544\) 0 0
\(545\) −80.0000 −3.42682
\(546\) 0 0
\(547\) 32.0000 1.36822 0.684111 0.729378i \(-0.260191\pi\)
0.684111 + 0.729378i \(0.260191\pi\)
\(548\) 0 0
\(549\) −8.00000 −0.341432
\(550\) 0 0
\(551\) 0 0
\(552\) 0 0
\(553\) −20.0000 −0.850487
\(554\) 0 0
\(555\) −8.00000 −0.339581
\(556\) 0 0
\(557\) 38.0000 1.61011 0.805056 0.593199i \(-0.202135\pi\)
0.805056 + 0.593199i \(0.202135\pi\)
\(558\) 0 0
\(559\) −16.0000 −0.676728
\(560\) 0 0
\(561\) −2.00000 −0.0844401
\(562\) 0 0
\(563\) 36.0000 1.51722 0.758610 0.651546i \(-0.225879\pi\)
0.758610 + 0.651546i \(0.225879\pi\)
\(564\) 0 0
\(565\) 24.0000 1.00969
\(566\) 0 0
\(567\) 2.00000 0.0839921
\(568\) 0 0
\(569\) −10.0000 −0.419222 −0.209611 0.977785i \(-0.567220\pi\)
−0.209611 + 0.977785i \(0.567220\pi\)
\(570\) 0 0
\(571\) −32.0000 −1.33916 −0.669579 0.742741i \(-0.733526\pi\)
−0.669579 + 0.742741i \(0.733526\pi\)
\(572\) 0 0
\(573\) 22.0000 0.919063
\(574\) 0 0
\(575\) 66.0000 2.75239
\(576\) 0 0
\(577\) −2.00000 −0.0832611 −0.0416305 0.999133i \(-0.513255\pi\)
−0.0416305 + 0.999133i \(0.513255\pi\)
\(578\) 0 0
\(579\) −14.0000 −0.581820
\(580\) 0 0
\(581\) −8.00000 −0.331896
\(582\) 0 0
\(583\) −4.00000 −0.165663
\(584\) 0 0
\(585\) −16.0000 −0.661519
\(586\) 0 0
\(587\) −8.00000 −0.330195 −0.165098 0.986277i \(-0.552794\pi\)
−0.165098 + 0.986277i \(0.552794\pi\)
\(588\) 0 0
\(589\) 0 0
\(590\) 0 0
\(591\) −18.0000 −0.740421
\(592\) 0 0
\(593\) 14.0000 0.574911 0.287456 0.957794i \(-0.407191\pi\)
0.287456 + 0.957794i \(0.407191\pi\)
\(594\) 0 0
\(595\) 16.0000 0.655936
\(596\) 0 0
\(597\) 20.0000 0.818546
\(598\) 0 0
\(599\) 30.0000 1.22577 0.612883 0.790173i \(-0.290010\pi\)
0.612883 + 0.790173i \(0.290010\pi\)
\(600\) 0 0
\(601\) 42.0000 1.71322 0.856608 0.515968i \(-0.172568\pi\)
0.856608 + 0.515968i \(0.172568\pi\)
\(602\) 0 0
\(603\) 12.0000 0.488678
\(604\) 0 0
\(605\) −4.00000 −0.162623
\(606\) 0 0
\(607\) 22.0000 0.892952 0.446476 0.894795i \(-0.352679\pi\)
0.446476 + 0.894795i \(0.352679\pi\)
\(608\) 0 0
\(609\) −20.0000 −0.810441
\(610\) 0 0
\(611\) 8.00000 0.323645
\(612\) 0 0
\(613\) −16.0000 −0.646234 −0.323117 0.946359i \(-0.604731\pi\)
−0.323117 + 0.946359i \(0.604731\pi\)
\(614\) 0 0
\(615\) 8.00000 0.322591
\(616\) 0 0
\(617\) −22.0000 −0.885687 −0.442843 0.896599i \(-0.646030\pi\)
−0.442843 + 0.896599i \(0.646030\pi\)
\(618\) 0 0
\(619\) 20.0000 0.803868 0.401934 0.915669i \(-0.368338\pi\)
0.401934 + 0.915669i \(0.368338\pi\)
\(620\) 0 0
\(621\) −6.00000 −0.240772
\(622\) 0 0
\(623\) 20.0000 0.801283
\(624\) 0 0
\(625\) 41.0000 1.64000
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 4.00000 0.159490
\(630\) 0 0
\(631\) 48.0000 1.91085 0.955425 0.295234i \(-0.0953977\pi\)
0.955425 + 0.295234i \(0.0953977\pi\)
\(632\) 0 0
\(633\) 12.0000 0.476957
\(634\) 0 0
\(635\) −88.0000 −3.49217
\(636\) 0 0
\(637\) −12.0000 −0.475457
\(638\) 0 0
\(639\) −2.00000 −0.0791188
\(640\) 0 0
\(641\) −18.0000 −0.710957 −0.355479 0.934684i \(-0.615682\pi\)
−0.355479 + 0.934684i \(0.615682\pi\)
\(642\) 0 0
\(643\) −44.0000 −1.73519 −0.867595 0.497271i \(-0.834335\pi\)
−0.867595 + 0.497271i \(0.834335\pi\)
\(644\) 0 0
\(645\) −16.0000 −0.629999
\(646\) 0 0
\(647\) 22.0000 0.864909 0.432455 0.901656i \(-0.357648\pi\)
0.432455 + 0.901656i \(0.357648\pi\)
\(648\) 0 0
\(649\) 0 0
\(650\) 0 0
\(651\) −16.0000 −0.627089
\(652\) 0 0
\(653\) 24.0000 0.939193 0.469596 0.882881i \(-0.344399\pi\)
0.469596 + 0.882881i \(0.344399\pi\)
\(654\) 0 0
\(655\) 48.0000 1.87552
\(656\) 0 0
\(657\) −6.00000 −0.234082
\(658\) 0 0
\(659\) 20.0000 0.779089 0.389545 0.921008i \(-0.372632\pi\)
0.389545 + 0.921008i \(0.372632\pi\)
\(660\) 0 0
\(661\) 42.0000 1.63361 0.816805 0.576913i \(-0.195743\pi\)
0.816805 + 0.576913i \(0.195743\pi\)
\(662\) 0 0
\(663\) 8.00000 0.310694
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 60.0000 2.32321
\(668\) 0 0
\(669\) −16.0000 −0.618596
\(670\) 0 0
\(671\) 8.00000 0.308837
\(672\) 0 0
\(673\) 14.0000 0.539660 0.269830 0.962908i \(-0.413032\pi\)
0.269830 + 0.962908i \(0.413032\pi\)
\(674\) 0 0
\(675\) −11.0000 −0.423390
\(676\) 0 0
\(677\) −22.0000 −0.845529 −0.422764 0.906240i \(-0.638940\pi\)
−0.422764 + 0.906240i \(0.638940\pi\)
\(678\) 0 0
\(679\) −4.00000 −0.153506
\(680\) 0 0
\(681\) −12.0000 −0.459841
\(682\) 0 0
\(683\) 16.0000 0.612223 0.306111 0.951996i \(-0.400972\pi\)
0.306111 + 0.951996i \(0.400972\pi\)
\(684\) 0 0
\(685\) 8.00000 0.305664
\(686\) 0 0
\(687\) −10.0000 −0.381524
\(688\) 0 0
\(689\) 16.0000 0.609551
\(690\) 0 0
\(691\) −52.0000 −1.97817 −0.989087 0.147335i \(-0.952930\pi\)
−0.989087 + 0.147335i \(0.952930\pi\)
\(692\) 0 0
\(693\) −2.00000 −0.0759737
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) −4.00000 −0.151511
\(698\) 0 0
\(699\) 6.00000 0.226941
\(700\) 0 0
\(701\) −18.0000 −0.679851 −0.339925 0.940452i \(-0.610402\pi\)
−0.339925 + 0.940452i \(0.610402\pi\)
\(702\) 0 0
\(703\) 0 0
\(704\) 0 0
\(705\) 8.00000 0.301297
\(706\) 0 0
\(707\) 4.00000 0.150435
\(708\) 0 0
\(709\) 10.0000 0.375558 0.187779 0.982211i \(-0.439871\pi\)
0.187779 + 0.982211i \(0.439871\pi\)
\(710\) 0 0
\(711\) −10.0000 −0.375029
\(712\) 0 0
\(713\) 48.0000 1.79761
\(714\) 0 0
\(715\) 16.0000 0.598366
\(716\) 0 0
\(717\) −20.0000 −0.746914
\(718\) 0 0
\(719\) −10.0000 −0.372937 −0.186469 0.982461i \(-0.559704\pi\)
−0.186469 + 0.982461i \(0.559704\pi\)
\(720\) 0 0
\(721\) −8.00000 −0.297936
\(722\) 0 0
\(723\) 18.0000 0.669427
\(724\) 0 0
\(725\) 110.000 4.08530
\(726\) 0 0
\(727\) −28.0000 −1.03846 −0.519231 0.854634i \(-0.673782\pi\)
−0.519231 + 0.854634i \(0.673782\pi\)
\(728\) 0 0
\(729\) 1.00000 0.0370370
\(730\) 0 0
\(731\) 8.00000 0.295891
\(732\) 0 0
\(733\) 4.00000 0.147743 0.0738717 0.997268i \(-0.476464\pi\)
0.0738717 + 0.997268i \(0.476464\pi\)
\(734\) 0 0
\(735\) −12.0000 −0.442627
\(736\) 0 0
\(737\) −12.0000 −0.442026
\(738\) 0 0
\(739\) −20.0000 −0.735712 −0.367856 0.929883i \(-0.619908\pi\)
−0.367856 + 0.929883i \(0.619908\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) −44.0000 −1.61420 −0.807102 0.590412i \(-0.798965\pi\)
−0.807102 + 0.590412i \(0.798965\pi\)
\(744\) 0 0
\(745\) 40.0000 1.46549
\(746\) 0 0
\(747\) −4.00000 −0.146352
\(748\) 0 0
\(749\) 24.0000 0.876941
\(750\) 0 0
\(751\) 8.00000 0.291924 0.145962 0.989290i \(-0.453372\pi\)
0.145962 + 0.989290i \(0.453372\pi\)
\(752\) 0 0
\(753\) −8.00000 −0.291536
\(754\) 0 0
\(755\) 8.00000 0.291150
\(756\) 0 0
\(757\) −42.0000 −1.52652 −0.763258 0.646094i \(-0.776401\pi\)
−0.763258 + 0.646094i \(0.776401\pi\)
\(758\) 0 0
\(759\) 6.00000 0.217786
\(760\) 0 0
\(761\) 22.0000 0.797499 0.398750 0.917060i \(-0.369444\pi\)
0.398750 + 0.917060i \(0.369444\pi\)
\(762\) 0 0
\(763\) 40.0000 1.44810
\(764\) 0 0
\(765\) 8.00000 0.289241
\(766\) 0 0
\(767\) 0 0
\(768\) 0 0
\(769\) −50.0000 −1.80305 −0.901523 0.432731i \(-0.857550\pi\)
−0.901523 + 0.432731i \(0.857550\pi\)
\(770\) 0 0
\(771\) −18.0000 −0.648254
\(772\) 0 0
\(773\) 4.00000 0.143870 0.0719350 0.997409i \(-0.477083\pi\)
0.0719350 + 0.997409i \(0.477083\pi\)
\(774\) 0 0
\(775\) 88.0000 3.16105
\(776\) 0 0
\(777\) 4.00000 0.143499
\(778\) 0 0
\(779\) 0 0
\(780\) 0 0
\(781\) 2.00000 0.0715656
\(782\) 0 0
\(783\) −10.0000 −0.357371
\(784\) 0 0
\(785\) −72.0000 −2.56979
\(786\) 0 0
\(787\) 52.0000 1.85360 0.926800 0.375555i \(-0.122548\pi\)
0.926800 + 0.375555i \(0.122548\pi\)
\(788\) 0 0
\(789\) −16.0000 −0.569615
\(790\) 0 0
\(791\) −12.0000 −0.426671
\(792\) 0 0
\(793\) −32.0000 −1.13635
\(794\) 0 0
\(795\) 16.0000 0.567462
\(796\) 0 0
\(797\) 28.0000 0.991811 0.495905 0.868377i \(-0.334836\pi\)
0.495905 + 0.868377i \(0.334836\pi\)
\(798\) 0 0
\(799\) −4.00000 −0.141510
\(800\) 0 0
\(801\) 10.0000 0.353333
\(802\) 0 0
\(803\) 6.00000 0.211735
\(804\) 0 0
\(805\) −48.0000 −1.69178
\(806\) 0 0
\(807\) 20.0000 0.704033
\(808\) 0 0
\(809\) 10.0000 0.351581 0.175791 0.984428i \(-0.443752\pi\)
0.175791 + 0.984428i \(0.443752\pi\)
\(810\) 0 0
\(811\) −12.0000 −0.421377 −0.210688 0.977553i \(-0.567571\pi\)
−0.210688 + 0.977553i \(0.567571\pi\)
\(812\) 0 0
\(813\) 22.0000 0.771574
\(814\) 0 0
\(815\) 16.0000 0.560456
\(816\) 0 0
\(817\) 0 0
\(818\) 0 0
\(819\) 8.00000 0.279543
\(820\) 0 0
\(821\) −38.0000 −1.32621 −0.663105 0.748527i \(-0.730762\pi\)
−0.663105 + 0.748527i \(0.730762\pi\)
\(822\) 0 0
\(823\) −24.0000 −0.836587 −0.418294 0.908312i \(-0.637372\pi\)
−0.418294 + 0.908312i \(0.637372\pi\)
\(824\) 0 0
\(825\) 11.0000 0.382971
\(826\) 0 0
\(827\) 12.0000 0.417281 0.208640 0.977992i \(-0.433096\pi\)
0.208640 + 0.977992i \(0.433096\pi\)
\(828\) 0 0
\(829\) 30.0000 1.04194 0.520972 0.853574i \(-0.325570\pi\)
0.520972 + 0.853574i \(0.325570\pi\)
\(830\) 0 0
\(831\) −8.00000 −0.277517
\(832\) 0 0
\(833\) 6.00000 0.207888
\(834\) 0 0
\(835\) −48.0000 −1.66111
\(836\) 0 0
\(837\) −8.00000 −0.276520
\(838\) 0 0
\(839\) −30.0000 −1.03572 −0.517858 0.855467i \(-0.673270\pi\)
−0.517858 + 0.855467i \(0.673270\pi\)
\(840\) 0 0
\(841\) 71.0000 2.44828
\(842\) 0 0
\(843\) −22.0000 −0.757720
\(844\) 0 0
\(845\) −12.0000 −0.412813
\(846\) 0 0
\(847\) 2.00000 0.0687208
\(848\) 0 0
\(849\) 4.00000 0.137280
\(850\) 0 0
\(851\) −12.0000 −0.411355
\(852\) 0 0
\(853\) 24.0000 0.821744 0.410872 0.911693i \(-0.365224\pi\)
0.410872 + 0.911693i \(0.365224\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −22.0000 −0.751506 −0.375753 0.926720i \(-0.622616\pi\)
−0.375753 + 0.926720i \(0.622616\pi\)
\(858\) 0 0
\(859\) 20.0000 0.682391 0.341196 0.939992i \(-0.389168\pi\)
0.341196 + 0.939992i \(0.389168\pi\)
\(860\) 0 0
\(861\) −4.00000 −0.136320
\(862\) 0 0
\(863\) −54.0000 −1.83818 −0.919091 0.394046i \(-0.871075\pi\)
−0.919091 + 0.394046i \(0.871075\pi\)
\(864\) 0 0
\(865\) 24.0000 0.816024
\(866\) 0 0
\(867\) 13.0000 0.441503
\(868\) 0 0
\(869\) 10.0000 0.339227
\(870\) 0 0
\(871\) 48.0000 1.62642
\(872\) 0 0
\(873\) −2.00000 −0.0676897
\(874\) 0 0
\(875\) −48.0000 −1.62270
\(876\) 0 0
\(877\) 28.0000 0.945493 0.472746 0.881199i \(-0.343263\pi\)
0.472746 + 0.881199i \(0.343263\pi\)
\(878\) 0 0
\(879\) −14.0000 −0.472208
\(880\) 0 0
\(881\) −38.0000 −1.28025 −0.640126 0.768270i \(-0.721118\pi\)
−0.640126 + 0.768270i \(0.721118\pi\)
\(882\) 0 0
\(883\) −44.0000 −1.48072 −0.740359 0.672212i \(-0.765344\pi\)
−0.740359 + 0.672212i \(0.765344\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 12.0000 0.402921 0.201460 0.979497i \(-0.435431\pi\)
0.201460 + 0.979497i \(0.435431\pi\)
\(888\) 0 0
\(889\) 44.0000 1.47571
\(890\) 0 0
\(891\) −1.00000 −0.0335013
\(892\) 0 0
\(893\) 0 0
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) −24.0000 −0.801337
\(898\) 0 0
\(899\) 80.0000 2.66815
\(900\) 0 0
\(901\) −8.00000 −0.266519
\(902\) 0 0
\(903\) 8.00000 0.266223
\(904\) 0 0
\(905\) −8.00000 −0.265929
\(906\) 0 0
\(907\) 12.0000 0.398453 0.199227 0.979953i \(-0.436157\pi\)
0.199227 + 0.979953i \(0.436157\pi\)
\(908\) 0 0
\(909\) 2.00000 0.0663358
\(910\) 0 0
\(911\) −2.00000 −0.0662630 −0.0331315 0.999451i \(-0.510548\pi\)
−0.0331315 + 0.999451i \(0.510548\pi\)
\(912\) 0 0
\(913\) 4.00000 0.132381
\(914\) 0 0
\(915\) −32.0000 −1.05789
\(916\) 0 0
\(917\) −24.0000 −0.792550
\(918\) 0 0
\(919\) 10.0000 0.329870 0.164935 0.986304i \(-0.447259\pi\)
0.164935 + 0.986304i \(0.447259\pi\)
\(920\) 0 0
\(921\) 8.00000 0.263609
\(922\) 0 0
\(923\) −8.00000 −0.263323
\(924\) 0 0
\(925\) −22.0000 −0.723356
\(926\) 0 0
\(927\) −4.00000 −0.131377
\(928\) 0 0
\(929\) 30.0000 0.984268 0.492134 0.870519i \(-0.336217\pi\)
0.492134 + 0.870519i \(0.336217\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 0 0
\(933\) 2.00000 0.0654771
\(934\) 0 0
\(935\) −8.00000 −0.261628
\(936\) 0 0
\(937\) 58.0000 1.89478 0.947389 0.320085i \(-0.103712\pi\)
0.947389 + 0.320085i \(0.103712\pi\)
\(938\) 0 0
\(939\) 6.00000 0.195803
\(940\) 0 0
\(941\) 42.0000 1.36916 0.684580 0.728937i \(-0.259985\pi\)
0.684580 + 0.728937i \(0.259985\pi\)
\(942\) 0 0
\(943\) 12.0000 0.390774
\(944\) 0 0
\(945\) 8.00000 0.260240
\(946\) 0 0
\(947\) −28.0000 −0.909878 −0.454939 0.890523i \(-0.650339\pi\)
−0.454939 + 0.890523i \(0.650339\pi\)
\(948\) 0 0
\(949\) −24.0000 −0.779073
\(950\) 0 0
\(951\) 32.0000 1.03767
\(952\) 0 0
\(953\) −6.00000 −0.194359 −0.0971795 0.995267i \(-0.530982\pi\)
−0.0971795 + 0.995267i \(0.530982\pi\)
\(954\) 0 0
\(955\) 88.0000 2.84761
\(956\) 0 0
\(957\) 10.0000 0.323254
\(958\) 0 0
\(959\) −4.00000 −0.129167
\(960\) 0 0
\(961\) 33.0000 1.06452
\(962\) 0 0
\(963\) 12.0000 0.386695
\(964\) 0 0
\(965\) −56.0000 −1.80270
\(966\) 0 0
\(967\) 22.0000 0.707472 0.353736 0.935345i \(-0.384911\pi\)
0.353736 + 0.935345i \(0.384911\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) −32.0000 −1.02693 −0.513464 0.858111i \(-0.671638\pi\)
−0.513464 + 0.858111i \(0.671638\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 0 0
\(975\) −44.0000 −1.40913
\(976\) 0 0
\(977\) 38.0000 1.21573 0.607864 0.794041i \(-0.292027\pi\)
0.607864 + 0.794041i \(0.292027\pi\)
\(978\) 0 0
\(979\) −10.0000 −0.319601
\(980\) 0 0
\(981\) 20.0000 0.638551
\(982\) 0 0
\(983\) 46.0000 1.46717 0.733586 0.679597i \(-0.237845\pi\)
0.733586 + 0.679597i \(0.237845\pi\)
\(984\) 0 0
\(985\) −72.0000 −2.29411
\(986\) 0 0
\(987\) −4.00000 −0.127321
\(988\) 0 0
\(989\) −24.0000 −0.763156
\(990\) 0 0
\(991\) 8.00000 0.254128 0.127064 0.991894i \(-0.459445\pi\)
0.127064 + 0.991894i \(0.459445\pi\)
\(992\) 0 0
\(993\) −28.0000 −0.888553
\(994\) 0 0
\(995\) 80.0000 2.53617
\(996\) 0 0
\(997\) −52.0000 −1.64686 −0.823428 0.567420i \(-0.807941\pi\)
−0.823428 + 0.567420i \(0.807941\pi\)
\(998\) 0 0
\(999\) 2.00000 0.0632772
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 528.2.a.a.1.1 1
3.2 odd 2 1584.2.a.s.1.1 1
4.3 odd 2 66.2.a.c.1.1 1
8.3 odd 2 2112.2.a.n.1.1 1
8.5 even 2 2112.2.a.bd.1.1 1
11.10 odd 2 5808.2.a.b.1.1 1
12.11 even 2 198.2.a.c.1.1 1
20.3 even 4 1650.2.c.m.199.1 2
20.7 even 4 1650.2.c.m.199.2 2
20.19 odd 2 1650.2.a.c.1.1 1
24.5 odd 2 6336.2.a.d.1.1 1
24.11 even 2 6336.2.a.c.1.1 1
28.27 even 2 3234.2.a.s.1.1 1
36.7 odd 6 1782.2.e.l.595.1 2
36.11 even 6 1782.2.e.n.595.1 2
36.23 even 6 1782.2.e.n.1189.1 2
36.31 odd 6 1782.2.e.l.1189.1 2
44.3 odd 10 726.2.e.e.493.1 4
44.7 even 10 726.2.e.m.511.1 4
44.15 odd 10 726.2.e.e.511.1 4
44.19 even 10 726.2.e.m.493.1 4
44.27 odd 10 726.2.e.e.487.1 4
44.31 odd 10 726.2.e.e.565.1 4
44.35 even 10 726.2.e.m.565.1 4
44.39 even 10 726.2.e.m.487.1 4
44.43 even 2 726.2.a.d.1.1 1
60.23 odd 4 4950.2.c.d.199.2 2
60.47 odd 4 4950.2.c.d.199.1 2
60.59 even 2 4950.2.a.bo.1.1 1
84.83 odd 2 9702.2.a.a.1.1 1
132.131 odd 2 2178.2.a.m.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
66.2.a.c.1.1 1 4.3 odd 2
198.2.a.c.1.1 1 12.11 even 2
528.2.a.a.1.1 1 1.1 even 1 trivial
726.2.a.d.1.1 1 44.43 even 2
726.2.e.e.487.1 4 44.27 odd 10
726.2.e.e.493.1 4 44.3 odd 10
726.2.e.e.511.1 4 44.15 odd 10
726.2.e.e.565.1 4 44.31 odd 10
726.2.e.m.487.1 4 44.39 even 10
726.2.e.m.493.1 4 44.19 even 10
726.2.e.m.511.1 4 44.7 even 10
726.2.e.m.565.1 4 44.35 even 10
1584.2.a.s.1.1 1 3.2 odd 2
1650.2.a.c.1.1 1 20.19 odd 2
1650.2.c.m.199.1 2 20.3 even 4
1650.2.c.m.199.2 2 20.7 even 4
1782.2.e.l.595.1 2 36.7 odd 6
1782.2.e.l.1189.1 2 36.31 odd 6
1782.2.e.n.595.1 2 36.11 even 6
1782.2.e.n.1189.1 2 36.23 even 6
2112.2.a.n.1.1 1 8.3 odd 2
2112.2.a.bd.1.1 1 8.5 even 2
2178.2.a.m.1.1 1 132.131 odd 2
3234.2.a.s.1.1 1 28.27 even 2
4950.2.a.bo.1.1 1 60.59 even 2
4950.2.c.d.199.1 2 60.47 odd 4
4950.2.c.d.199.2 2 60.23 odd 4
5808.2.a.b.1.1 1 11.10 odd 2
6336.2.a.c.1.1 1 24.11 even 2
6336.2.a.d.1.1 1 24.5 odd 2
9702.2.a.a.1.1 1 84.83 odd 2