Properties

Label 5265.2.a.m
Level $5265$
Weight $2$
Character orbit 5265.a
Self dual yes
Analytic conductor $42.041$
Analytic rank $1$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 5265 = 3^{4} \cdot 5 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 5265.a (trivial)

Newform invariants

Self dual: yes
Analytic conductor: \(42.0412366642\)
Analytic rank: \(1\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 585)
Fricke sign: \(1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

\(f(q)\) \(=\) \( q + q^{2} - q^{4} + q^{5} + 2 q^{7} - 3 q^{8}+O(q^{10}) \) Copy content Toggle raw display \( q + q^{2} - q^{4} + q^{5} + 2 q^{7} - 3 q^{8} + q^{10} + q^{11} - q^{13} + 2 q^{14} - q^{16} - 2 q^{17} - 3 q^{19} - q^{20} + q^{22} + q^{25} - q^{26} - 2 q^{28} - 5 q^{29} - q^{31} + 5 q^{32} - 2 q^{34} + 2 q^{35} - 5 q^{37} - 3 q^{38} - 3 q^{40} - 8 q^{43} - q^{44} + 2 q^{47} - 3 q^{49} + q^{50} + q^{52} - 14 q^{53} + q^{55} - 6 q^{56} - 5 q^{58} + 9 q^{59} - q^{61} - q^{62} + 7 q^{64} - q^{65} + 14 q^{67} + 2 q^{68} + 2 q^{70} + 6 q^{73} - 5 q^{74} + 3 q^{76} + 2 q^{77} - 12 q^{79} - q^{80} + 10 q^{83} - 2 q^{85} - 8 q^{86} - 3 q^{88} - 2 q^{89} - 2 q^{91} + 2 q^{94} - 3 q^{95} + q^{97} - 3 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
0
1.00000 0 −1.00000 1.00000 0 2.00000 −3.00000 0 1.00000
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(3\) \(-1\)
\(5\) \(-1\)
\(13\) \(1\)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 5265.2.a.m 1
3.b odd 2 1 5265.2.a.e 1
9.c even 3 2 1755.2.i.b 2
9.d odd 6 2 585.2.i.b 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
585.2.i.b 2 9.d odd 6 2
1755.2.i.b 2 9.c even 3 2
5265.2.a.e 1 3.b odd 2 1
5265.2.a.m 1 1.a even 1 1 trivial

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(5265))\):

\( T_{2} - 1 \) Copy content Toggle raw display
\( T_{7} - 2 \) Copy content Toggle raw display
\( T_{11} - 1 \) Copy content Toggle raw display
\( T_{17} + 2 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T - 1 \) Copy content Toggle raw display
$3$ \( T \) Copy content Toggle raw display
$5$ \( T - 1 \) Copy content Toggle raw display
$7$ \( T - 2 \) Copy content Toggle raw display
$11$ \( T - 1 \) Copy content Toggle raw display
$13$ \( T + 1 \) Copy content Toggle raw display
$17$ \( T + 2 \) Copy content Toggle raw display
$19$ \( T + 3 \) Copy content Toggle raw display
$23$ \( T \) Copy content Toggle raw display
$29$ \( T + 5 \) Copy content Toggle raw display
$31$ \( T + 1 \) Copy content Toggle raw display
$37$ \( T + 5 \) Copy content Toggle raw display
$41$ \( T \) Copy content Toggle raw display
$43$ \( T + 8 \) Copy content Toggle raw display
$47$ \( T - 2 \) Copy content Toggle raw display
$53$ \( T + 14 \) Copy content Toggle raw display
$59$ \( T - 9 \) Copy content Toggle raw display
$61$ \( T + 1 \) Copy content Toggle raw display
$67$ \( T - 14 \) Copy content Toggle raw display
$71$ \( T \) Copy content Toggle raw display
$73$ \( T - 6 \) Copy content Toggle raw display
$79$ \( T + 12 \) Copy content Toggle raw display
$83$ \( T - 10 \) Copy content Toggle raw display
$89$ \( T + 2 \) Copy content Toggle raw display
$97$ \( T - 1 \) Copy content Toggle raw display
show more
show less