Properties

Label 525.8.a.i.1.3
Level $525$
Weight $8$
Character 525.1
Self dual yes
Analytic conductor $164.002$
Analytic rank $1$
Dimension $4$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [525,8,Mod(1,525)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(525, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 8, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("525.1");
 
S:= CuspForms(chi, 8);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 525 = 3 \cdot 5^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 8 \)
Character orbit: \([\chi]\) \(=\) 525.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(164.002138379\)
Analytic rank: \(1\)
Dimension: \(4\)
Coefficient field: \(\mathbb{Q}[x]/(x^{4} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 2x^{3} - 277x^{2} + 80x + 15348 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{2}\cdot 5^{2} \)
Twist minimal: no (minimal twist has level 105)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.3
Root \(-12.8099\) of defining polynomial
Character \(\chi\) \(=\) 525.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+3.41438 q^{2} +27.0000 q^{3} -116.342 q^{4} +92.1883 q^{6} -343.000 q^{7} -834.277 q^{8} +729.000 q^{9} -3379.63 q^{11} -3141.23 q^{12} +14159.0 q^{13} -1171.13 q^{14} +12043.2 q^{16} +19538.0 q^{17} +2489.08 q^{18} -38098.7 q^{19} -9261.00 q^{21} -11539.4 q^{22} -103511. q^{23} -22525.5 q^{24} +48344.1 q^{26} +19683.0 q^{27} +39905.3 q^{28} +59794.5 q^{29} +68349.9 q^{31} +147908. q^{32} -91250.1 q^{33} +66710.3 q^{34} -84813.3 q^{36} -266512. q^{37} -130084. q^{38} +382292. q^{39} +655437. q^{41} -31620.6 q^{42} +775223. q^{43} +393193. q^{44} -353426. q^{46} +119729. q^{47} +325167. q^{48} +117649. q^{49} +527527. q^{51} -1.64728e6 q^{52} -224102. q^{53} +67205.3 q^{54} +286157. q^{56} -1.02867e6 q^{57} +204161. q^{58} -409602. q^{59} +1.42274e6 q^{61} +233373. q^{62} -250047. q^{63} -1.03652e6 q^{64} -311563. q^{66} -4.22037e6 q^{67} -2.27309e6 q^{68} -2.79479e6 q^{69} +2.17619e6 q^{71} -608188. q^{72} -4.43912e6 q^{73} -909973. q^{74} +4.43248e6 q^{76} +1.15921e6 q^{77} +1.30529e6 q^{78} +1.63306e6 q^{79} +531441. q^{81} +2.23791e6 q^{82} +3.49903e6 q^{83} +1.07744e6 q^{84} +2.64691e6 q^{86} +1.61445e6 q^{87} +2.81955e6 q^{88} +2.03583e6 q^{89} -4.85652e6 q^{91} +1.20427e7 q^{92} +1.84545e6 q^{93} +408799. q^{94} +3.99351e6 q^{96} -1.27049e7 q^{97} +401698. q^{98} -2.46375e6 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 11 q^{2} + 108 q^{3} + 141 q^{4} - 297 q^{6} - 1372 q^{7} - 2133 q^{8} + 2916 q^{9} - 2708 q^{11} + 3807 q^{12} + 2212 q^{13} + 3773 q^{14} - 9599 q^{16} + 17016 q^{17} - 8019 q^{18} + 32668 q^{19}+ \cdots - 1974132 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 3.41438 0.301791 0.150896 0.988550i \(-0.451784\pi\)
0.150896 + 0.988550i \(0.451784\pi\)
\(3\) 27.0000 0.577350
\(4\) −116.342 −0.908922
\(5\) 0 0
\(6\) 92.1883 0.174239
\(7\) −343.000 −0.377964
\(8\) −834.277 −0.576096
\(9\) 729.000 0.333333
\(10\) 0 0
\(11\) −3379.63 −0.765588 −0.382794 0.923834i \(-0.625038\pi\)
−0.382794 + 0.923834i \(0.625038\pi\)
\(12\) −3141.23 −0.524766
\(13\) 14159.0 1.78743 0.893716 0.448633i \(-0.148089\pi\)
0.893716 + 0.448633i \(0.148089\pi\)
\(14\) −1171.13 −0.114066
\(15\) 0 0
\(16\) 12043.2 0.735061
\(17\) 19538.0 0.964516 0.482258 0.876029i \(-0.339817\pi\)
0.482258 + 0.876029i \(0.339817\pi\)
\(18\) 2489.08 0.100597
\(19\) −38098.7 −1.27430 −0.637152 0.770738i \(-0.719888\pi\)
−0.637152 + 0.770738i \(0.719888\pi\)
\(20\) 0 0
\(21\) −9261.00 −0.218218
\(22\) −11539.4 −0.231048
\(23\) −103511. −1.77394 −0.886969 0.461828i \(-0.847194\pi\)
−0.886969 + 0.461828i \(0.847194\pi\)
\(24\) −22525.5 −0.332609
\(25\) 0 0
\(26\) 48344.1 0.539432
\(27\) 19683.0 0.192450
\(28\) 39905.3 0.343540
\(29\) 59794.5 0.455269 0.227635 0.973747i \(-0.426901\pi\)
0.227635 + 0.973747i \(0.426901\pi\)
\(30\) 0 0
\(31\) 68349.9 0.412071 0.206035 0.978545i \(-0.433944\pi\)
0.206035 + 0.978545i \(0.433944\pi\)
\(32\) 147908. 0.797931
\(33\) −91250.1 −0.442013
\(34\) 66710.3 0.291083
\(35\) 0 0
\(36\) −84813.3 −0.302974
\(37\) −266512. −0.864989 −0.432494 0.901637i \(-0.642366\pi\)
−0.432494 + 0.901637i \(0.642366\pi\)
\(38\) −130084. −0.384574
\(39\) 382292. 1.03197
\(40\) 0 0
\(41\) 655437. 1.48521 0.742604 0.669730i \(-0.233590\pi\)
0.742604 + 0.669730i \(0.233590\pi\)
\(42\) −31620.6 −0.0658563
\(43\) 775223. 1.48692 0.743459 0.668782i \(-0.233184\pi\)
0.743459 + 0.668782i \(0.233184\pi\)
\(44\) 393193. 0.695860
\(45\) 0 0
\(46\) −353426. −0.535360
\(47\) 119729. 0.168211 0.0841057 0.996457i \(-0.473197\pi\)
0.0841057 + 0.996457i \(0.473197\pi\)
\(48\) 325167. 0.424388
\(49\) 117649. 0.142857
\(50\) 0 0
\(51\) 527527. 0.556864
\(52\) −1.64728e6 −1.62464
\(53\) −224102. −0.206767 −0.103383 0.994642i \(-0.532967\pi\)
−0.103383 + 0.994642i \(0.532967\pi\)
\(54\) 67205.3 0.0580798
\(55\) 0 0
\(56\) 286157. 0.217744
\(57\) −1.02867e6 −0.735720
\(58\) 204161. 0.137396
\(59\) −409602. −0.259645 −0.129823 0.991537i \(-0.541441\pi\)
−0.129823 + 0.991537i \(0.541441\pi\)
\(60\) 0 0
\(61\) 1.42274e6 0.802548 0.401274 0.915958i \(-0.368568\pi\)
0.401274 + 0.915958i \(0.368568\pi\)
\(62\) 233373. 0.124359
\(63\) −250047. −0.125988
\(64\) −1.03652e6 −0.494252
\(65\) 0 0
\(66\) −311563. −0.133396
\(67\) −4.22037e6 −1.71431 −0.857153 0.515061i \(-0.827769\pi\)
−0.857153 + 0.515061i \(0.827769\pi\)
\(68\) −2.27309e6 −0.876670
\(69\) −2.79479e6 −1.02418
\(70\) 0 0
\(71\) 2.17619e6 0.721595 0.360798 0.932644i \(-0.382505\pi\)
0.360798 + 0.932644i \(0.382505\pi\)
\(72\) −608188. −0.192032
\(73\) −4.43912e6 −1.33557 −0.667785 0.744354i \(-0.732758\pi\)
−0.667785 + 0.744354i \(0.732758\pi\)
\(74\) −909973. −0.261046
\(75\) 0 0
\(76\) 4.43248e6 1.15824
\(77\) 1.15921e6 0.289365
\(78\) 1.30529e6 0.311441
\(79\) 1.63306e6 0.372656 0.186328 0.982488i \(-0.440341\pi\)
0.186328 + 0.982488i \(0.440341\pi\)
\(80\) 0 0
\(81\) 531441. 0.111111
\(82\) 2.23791e6 0.448223
\(83\) 3.49903e6 0.671698 0.335849 0.941916i \(-0.390977\pi\)
0.335849 + 0.941916i \(0.390977\pi\)
\(84\) 1.07744e6 0.198343
\(85\) 0 0
\(86\) 2.64691e6 0.448739
\(87\) 1.61445e6 0.262850
\(88\) 2.81955e6 0.441053
\(89\) 2.03583e6 0.306110 0.153055 0.988218i \(-0.451089\pi\)
0.153055 + 0.988218i \(0.451089\pi\)
\(90\) 0 0
\(91\) −4.85652e6 −0.675586
\(92\) 1.20427e7 1.61237
\(93\) 1.84545e6 0.237909
\(94\) 408799. 0.0507648
\(95\) 0 0
\(96\) 3.99351e6 0.460686
\(97\) −1.27049e7 −1.41342 −0.706709 0.707505i \(-0.749821\pi\)
−0.706709 + 0.707505i \(0.749821\pi\)
\(98\) 401698. 0.0431131
\(99\) −2.46375e6 −0.255196
\(100\) 0 0
\(101\) −1.86609e7 −1.80222 −0.901110 0.433590i \(-0.857247\pi\)
−0.901110 + 0.433590i \(0.857247\pi\)
\(102\) 1.80118e6 0.168057
\(103\) −5.30772e6 −0.478606 −0.239303 0.970945i \(-0.576919\pi\)
−0.239303 + 0.970945i \(0.576919\pi\)
\(104\) −1.18125e7 −1.02973
\(105\) 0 0
\(106\) −765171. −0.0624005
\(107\) −1.74818e7 −1.37957 −0.689784 0.724015i \(-0.742295\pi\)
−0.689784 + 0.724015i \(0.742295\pi\)
\(108\) −2.28996e6 −0.174922
\(109\) 467681. 0.0345905 0.0172952 0.999850i \(-0.494494\pi\)
0.0172952 + 0.999850i \(0.494494\pi\)
\(110\) 0 0
\(111\) −7.19582e6 −0.499401
\(112\) −4.13083e6 −0.277827
\(113\) 1.45523e7 0.948763 0.474382 0.880319i \(-0.342672\pi\)
0.474382 + 0.880319i \(0.342672\pi\)
\(114\) −3.51226e6 −0.222034
\(115\) 0 0
\(116\) −6.95661e6 −0.413804
\(117\) 1.03219e7 0.595811
\(118\) −1.39854e6 −0.0783587
\(119\) −6.70154e6 −0.364553
\(120\) 0 0
\(121\) −8.06524e6 −0.413874
\(122\) 4.85777e6 0.242202
\(123\) 1.76968e7 0.857486
\(124\) −7.95196e6 −0.374540
\(125\) 0 0
\(126\) −853756. −0.0380222
\(127\) −2.04101e6 −0.0884161 −0.0442081 0.999022i \(-0.514076\pi\)
−0.0442081 + 0.999022i \(0.514076\pi\)
\(128\) −2.24713e7 −0.947093
\(129\) 2.09310e7 0.858472
\(130\) 0 0
\(131\) −9.14330e6 −0.355348 −0.177674 0.984089i \(-0.556857\pi\)
−0.177674 + 0.984089i \(0.556857\pi\)
\(132\) 1.06162e7 0.401755
\(133\) 1.30679e7 0.481642
\(134\) −1.44099e7 −0.517363
\(135\) 0 0
\(136\) −1.63001e7 −0.555654
\(137\) −3.62725e7 −1.20519 −0.602596 0.798047i \(-0.705867\pi\)
−0.602596 + 0.798047i \(0.705867\pi\)
\(138\) −9.54249e6 −0.309090
\(139\) −2.28823e7 −0.722682 −0.361341 0.932434i \(-0.617681\pi\)
−0.361341 + 0.932434i \(0.617681\pi\)
\(140\) 0 0
\(141\) 3.23267e6 0.0971169
\(142\) 7.43036e6 0.217771
\(143\) −4.78521e7 −1.36844
\(144\) 8.77952e6 0.245020
\(145\) 0 0
\(146\) −1.51568e7 −0.403064
\(147\) 3.17652e6 0.0824786
\(148\) 3.10065e7 0.786207
\(149\) −7.18870e7 −1.78032 −0.890161 0.455646i \(-0.849408\pi\)
−0.890161 + 0.455646i \(0.849408\pi\)
\(150\) 0 0
\(151\) 6.39974e7 1.51267 0.756333 0.654187i \(-0.226989\pi\)
0.756333 + 0.654187i \(0.226989\pi\)
\(152\) 3.17849e7 0.734122
\(153\) 1.42432e7 0.321505
\(154\) 3.95800e6 0.0873280
\(155\) 0 0
\(156\) −4.44766e7 −0.937984
\(157\) −6.00497e6 −0.123840 −0.0619202 0.998081i \(-0.519722\pi\)
−0.0619202 + 0.998081i \(0.519722\pi\)
\(158\) 5.57589e6 0.112464
\(159\) −6.05077e6 −0.119377
\(160\) 0 0
\(161\) 3.55042e7 0.670486
\(162\) 1.81454e6 0.0335324
\(163\) −9.83028e7 −1.77791 −0.888954 0.457997i \(-0.848567\pi\)
−0.888954 + 0.457997i \(0.848567\pi\)
\(164\) −7.62549e7 −1.34994
\(165\) 0 0
\(166\) 1.19470e7 0.202713
\(167\) −5.80791e7 −0.964966 −0.482483 0.875905i \(-0.660265\pi\)
−0.482483 + 0.875905i \(0.660265\pi\)
\(168\) 7.72624e6 0.125715
\(169\) 1.37728e8 2.19491
\(170\) 0 0
\(171\) −2.77740e7 −0.424768
\(172\) −9.01909e7 −1.35149
\(173\) 2.31746e7 0.340291 0.170146 0.985419i \(-0.445576\pi\)
0.170146 + 0.985419i \(0.445576\pi\)
\(174\) 5.51235e6 0.0793258
\(175\) 0 0
\(176\) −4.07017e7 −0.562754
\(177\) −1.10593e7 −0.149906
\(178\) 6.95111e6 0.0923814
\(179\) 3.77902e7 0.492486 0.246243 0.969208i \(-0.420804\pi\)
0.246243 + 0.969208i \(0.420804\pi\)
\(180\) 0 0
\(181\) −9.09325e6 −0.113984 −0.0569920 0.998375i \(-0.518151\pi\)
−0.0569920 + 0.998375i \(0.518151\pi\)
\(182\) −1.65820e7 −0.203886
\(183\) 3.84140e7 0.463351
\(184\) 8.63567e7 1.02196
\(185\) 0 0
\(186\) 6.30106e6 0.0717990
\(187\) −6.60314e7 −0.738422
\(188\) −1.39295e7 −0.152891
\(189\) −6.75127e6 −0.0727393
\(190\) 0 0
\(191\) −5.34900e7 −0.555464 −0.277732 0.960659i \(-0.589583\pi\)
−0.277732 + 0.960659i \(0.589583\pi\)
\(192\) −2.79861e7 −0.285357
\(193\) 8.24940e7 0.825984 0.412992 0.910735i \(-0.364484\pi\)
0.412992 + 0.910735i \(0.364484\pi\)
\(194\) −4.33794e7 −0.426557
\(195\) 0 0
\(196\) −1.36875e7 −0.129846
\(197\) −7.55328e7 −0.703888 −0.351944 0.936021i \(-0.614479\pi\)
−0.351944 + 0.936021i \(0.614479\pi\)
\(198\) −8.41219e6 −0.0770160
\(199\) −1.05546e6 −0.00949412 −0.00474706 0.999989i \(-0.501511\pi\)
−0.00474706 + 0.999989i \(0.501511\pi\)
\(200\) 0 0
\(201\) −1.13950e8 −0.989756
\(202\) −6.37154e7 −0.543895
\(203\) −2.05095e7 −0.172076
\(204\) −6.13735e7 −0.506146
\(205\) 0 0
\(206\) −1.81226e7 −0.144439
\(207\) −7.54594e7 −0.591313
\(208\) 1.70520e8 1.31387
\(209\) 1.28760e8 0.975593
\(210\) 0 0
\(211\) 1.14474e7 0.0838916 0.0419458 0.999120i \(-0.486644\pi\)
0.0419458 + 0.999120i \(0.486644\pi\)
\(212\) 2.60725e7 0.187935
\(213\) 5.87573e7 0.416613
\(214\) −5.96896e7 −0.416342
\(215\) 0 0
\(216\) −1.64211e7 −0.110870
\(217\) −2.34440e7 −0.155748
\(218\) 1.59684e6 0.0104391
\(219\) −1.19856e8 −0.771092
\(220\) 0 0
\(221\) 2.76638e8 1.72401
\(222\) −2.45693e7 −0.150715
\(223\) −2.81598e8 −1.70044 −0.850222 0.526425i \(-0.823532\pi\)
−0.850222 + 0.526425i \(0.823532\pi\)
\(224\) −5.07323e7 −0.301590
\(225\) 0 0
\(226\) 4.96872e7 0.286329
\(227\) 4.00301e7 0.227141 0.113571 0.993530i \(-0.463771\pi\)
0.113571 + 0.993530i \(0.463771\pi\)
\(228\) 1.19677e8 0.668712
\(229\) −1.24592e8 −0.685591 −0.342796 0.939410i \(-0.611374\pi\)
−0.342796 + 0.939410i \(0.611374\pi\)
\(230\) 0 0
\(231\) 3.12988e7 0.167065
\(232\) −4.98852e7 −0.262279
\(233\) 3.21485e8 1.66500 0.832500 0.554025i \(-0.186909\pi\)
0.832500 + 0.554025i \(0.186909\pi\)
\(234\) 3.52428e7 0.179811
\(235\) 0 0
\(236\) 4.76540e7 0.235997
\(237\) 4.40927e7 0.215153
\(238\) −2.28816e7 −0.110019
\(239\) −2.95076e8 −1.39811 −0.699054 0.715068i \(-0.746395\pi\)
−0.699054 + 0.715068i \(0.746395\pi\)
\(240\) 0 0
\(241\) 1.00887e8 0.464273 0.232137 0.972683i \(-0.425428\pi\)
0.232137 + 0.972683i \(0.425428\pi\)
\(242\) −2.75378e7 −0.124904
\(243\) 1.43489e7 0.0641500
\(244\) −1.65524e8 −0.729453
\(245\) 0 0
\(246\) 6.04236e7 0.258782
\(247\) −5.39439e8 −2.27773
\(248\) −5.70227e7 −0.237393
\(249\) 9.44737e7 0.387805
\(250\) 0 0
\(251\) −9.30364e7 −0.371360 −0.185680 0.982610i \(-0.559449\pi\)
−0.185680 + 0.982610i \(0.559449\pi\)
\(252\) 2.90910e7 0.114513
\(253\) 3.49829e8 1.35811
\(254\) −6.96877e6 −0.0266832
\(255\) 0 0
\(256\) 5.59493e7 0.208428
\(257\) −3.64584e8 −1.33978 −0.669888 0.742462i \(-0.733658\pi\)
−0.669888 + 0.742462i \(0.733658\pi\)
\(258\) 7.14664e7 0.259080
\(259\) 9.14136e7 0.326935
\(260\) 0 0
\(261\) 4.35902e7 0.151756
\(262\) −3.12187e7 −0.107241
\(263\) −1.11633e8 −0.378396 −0.189198 0.981939i \(-0.560589\pi\)
−0.189198 + 0.981939i \(0.560589\pi\)
\(264\) 7.61279e7 0.254642
\(265\) 0 0
\(266\) 4.46187e7 0.145355
\(267\) 5.49675e7 0.176733
\(268\) 4.91006e8 1.55817
\(269\) −1.53396e8 −0.480487 −0.240244 0.970713i \(-0.577227\pi\)
−0.240244 + 0.970713i \(0.577227\pi\)
\(270\) 0 0
\(271\) −4.17128e8 −1.27314 −0.636571 0.771218i \(-0.719648\pi\)
−0.636571 + 0.771218i \(0.719648\pi\)
\(272\) 2.35301e8 0.708978
\(273\) −1.31126e8 −0.390050
\(274\) −1.23848e8 −0.363717
\(275\) 0 0
\(276\) 3.25152e8 0.930903
\(277\) 4.05683e8 1.14685 0.573426 0.819257i \(-0.305614\pi\)
0.573426 + 0.819257i \(0.305614\pi\)
\(278\) −7.81288e7 −0.218099
\(279\) 4.98271e7 0.137357
\(280\) 0 0
\(281\) −1.50774e8 −0.405371 −0.202686 0.979244i \(-0.564967\pi\)
−0.202686 + 0.979244i \(0.564967\pi\)
\(282\) 1.10376e7 0.0293091
\(283\) 3.69597e7 0.0969338 0.0484669 0.998825i \(-0.484566\pi\)
0.0484669 + 0.998825i \(0.484566\pi\)
\(284\) −2.53183e8 −0.655874
\(285\) 0 0
\(286\) −1.63385e8 −0.412983
\(287\) −2.24815e8 −0.561356
\(288\) 1.07825e8 0.265977
\(289\) −2.86042e7 −0.0697088
\(290\) 0 0
\(291\) −3.43032e8 −0.816037
\(292\) 5.16456e8 1.21393
\(293\) 6.00426e8 1.39451 0.697257 0.716822i \(-0.254404\pi\)
0.697257 + 0.716822i \(0.254404\pi\)
\(294\) 1.08459e7 0.0248913
\(295\) 0 0
\(296\) 2.22345e8 0.498317
\(297\) −6.65214e7 −0.147338
\(298\) −2.45450e8 −0.537286
\(299\) −1.46561e9 −3.17079
\(300\) 0 0
\(301\) −2.65901e8 −0.562002
\(302\) 2.18511e8 0.456510
\(303\) −5.03844e8 −1.04051
\(304\) −4.58832e8 −0.936691
\(305\) 0 0
\(306\) 4.86318e7 0.0970276
\(307\) −9.08890e8 −1.79278 −0.896390 0.443267i \(-0.853819\pi\)
−0.896390 + 0.443267i \(0.853819\pi\)
\(308\) −1.34865e8 −0.263010
\(309\) −1.43309e8 −0.276323
\(310\) 0 0
\(311\) 6.45862e8 1.21753 0.608763 0.793352i \(-0.291666\pi\)
0.608763 + 0.793352i \(0.291666\pi\)
\(312\) −3.18937e8 −0.594517
\(313\) 8.96603e8 1.65270 0.826352 0.563154i \(-0.190412\pi\)
0.826352 + 0.563154i \(0.190412\pi\)
\(314\) −2.05033e7 −0.0373740
\(315\) 0 0
\(316\) −1.89994e8 −0.338715
\(317\) −8.47295e8 −1.49392 −0.746959 0.664870i \(-0.768487\pi\)
−0.746959 + 0.664870i \(0.768487\pi\)
\(318\) −2.06596e7 −0.0360269
\(319\) −2.02084e8 −0.348549
\(320\) 0 0
\(321\) −4.72009e8 −0.796494
\(322\) 1.21225e8 0.202347
\(323\) −7.44374e8 −1.22909
\(324\) −6.18289e7 −0.100991
\(325\) 0 0
\(326\) −3.35643e8 −0.536557
\(327\) 1.26274e7 0.0199708
\(328\) −5.46816e8 −0.855623
\(329\) −4.10669e7 −0.0635779
\(330\) 0 0
\(331\) 7.42401e8 1.12523 0.562614 0.826720i \(-0.309796\pi\)
0.562614 + 0.826720i \(0.309796\pi\)
\(332\) −4.07084e8 −0.610521
\(333\) −1.94287e8 −0.288330
\(334\) −1.98304e8 −0.291219
\(335\) 0 0
\(336\) −1.11532e8 −0.160403
\(337\) 7.24512e8 1.03120 0.515598 0.856831i \(-0.327570\pi\)
0.515598 + 0.856831i \(0.327570\pi\)
\(338\) 4.70254e8 0.662406
\(339\) 3.92913e8 0.547769
\(340\) 0 0
\(341\) −2.30998e8 −0.315477
\(342\) −9.48310e7 −0.128191
\(343\) −4.03536e7 −0.0539949
\(344\) −6.46750e8 −0.856608
\(345\) 0 0
\(346\) 7.91269e7 0.102697
\(347\) −5.09846e8 −0.655068 −0.327534 0.944839i \(-0.606218\pi\)
−0.327534 + 0.944839i \(0.606218\pi\)
\(348\) −1.87829e8 −0.238910
\(349\) −8.76052e8 −1.10317 −0.551583 0.834120i \(-0.685976\pi\)
−0.551583 + 0.834120i \(0.685976\pi\)
\(350\) 0 0
\(351\) 2.78691e8 0.343991
\(352\) −4.99874e8 −0.610887
\(353\) −1.26670e9 −1.53272 −0.766358 0.642413i \(-0.777933\pi\)
−0.766358 + 0.642413i \(0.777933\pi\)
\(354\) −3.77605e7 −0.0452404
\(355\) 0 0
\(356\) −2.36853e8 −0.278230
\(357\) −1.80942e8 −0.210475
\(358\) 1.29030e8 0.148628
\(359\) 1.66558e9 1.89992 0.949961 0.312369i \(-0.101122\pi\)
0.949961 + 0.312369i \(0.101122\pi\)
\(360\) 0 0
\(361\) 5.57643e8 0.623851
\(362\) −3.10478e7 −0.0343994
\(363\) −2.17761e8 −0.238950
\(364\) 5.65018e8 0.614055
\(365\) 0 0
\(366\) 1.31160e8 0.139835
\(367\) −1.67575e9 −1.76961 −0.884807 0.465957i \(-0.845710\pi\)
−0.884807 + 0.465957i \(0.845710\pi\)
\(368\) −1.24661e9 −1.30395
\(369\) 4.77814e8 0.495070
\(370\) 0 0
\(371\) 7.68672e7 0.0781506
\(372\) −2.14703e8 −0.216241
\(373\) −1.47694e9 −1.47360 −0.736802 0.676109i \(-0.763665\pi\)
−0.736802 + 0.676109i \(0.763665\pi\)
\(374\) −2.25456e8 −0.222850
\(375\) 0 0
\(376\) −9.98868e7 −0.0969060
\(377\) 8.46628e8 0.813763
\(378\) −2.30514e7 −0.0219521
\(379\) −1.64279e9 −1.55005 −0.775024 0.631932i \(-0.782262\pi\)
−0.775024 + 0.631932i \(0.782262\pi\)
\(380\) 0 0
\(381\) −5.51072e7 −0.0510471
\(382\) −1.82635e8 −0.167634
\(383\) 1.89784e9 1.72609 0.863044 0.505129i \(-0.168555\pi\)
0.863044 + 0.505129i \(0.168555\pi\)
\(384\) −6.06724e8 −0.546804
\(385\) 0 0
\(386\) 2.81666e8 0.249275
\(387\) 5.65137e8 0.495639
\(388\) 1.47811e9 1.28469
\(389\) 1.05432e9 0.908131 0.454065 0.890968i \(-0.349973\pi\)
0.454065 + 0.890968i \(0.349973\pi\)
\(390\) 0 0
\(391\) −2.02240e9 −1.71099
\(392\) −9.81518e7 −0.0822995
\(393\) −2.46869e8 −0.205160
\(394\) −2.57898e8 −0.212428
\(395\) 0 0
\(396\) 2.86638e8 0.231953
\(397\) −2.96848e8 −0.238104 −0.119052 0.992888i \(-0.537986\pi\)
−0.119052 + 0.992888i \(0.537986\pi\)
\(398\) −3.60373e6 −0.00286525
\(399\) 3.52832e8 0.278076
\(400\) 0 0
\(401\) −7.79941e8 −0.604028 −0.302014 0.953304i \(-0.597659\pi\)
−0.302014 + 0.953304i \(0.597659\pi\)
\(402\) −3.89069e8 −0.298700
\(403\) 9.67763e8 0.736549
\(404\) 2.17105e9 1.63808
\(405\) 0 0
\(406\) −7.00273e7 −0.0519310
\(407\) 9.00713e8 0.662225
\(408\) −4.40103e8 −0.320807
\(409\) 8.75152e8 0.632488 0.316244 0.948678i \(-0.397578\pi\)
0.316244 + 0.948678i \(0.397578\pi\)
\(410\) 0 0
\(411\) −9.79359e8 −0.695818
\(412\) 6.17511e8 0.435015
\(413\) 1.40494e8 0.0981367
\(414\) −2.57647e8 −0.178453
\(415\) 0 0
\(416\) 2.09422e9 1.42625
\(417\) −6.17821e8 −0.417241
\(418\) 4.39635e8 0.294426
\(419\) 1.07058e9 0.711000 0.355500 0.934676i \(-0.384311\pi\)
0.355500 + 0.934676i \(0.384311\pi\)
\(420\) 0 0
\(421\) 2.54184e9 1.66020 0.830100 0.557614i \(-0.188283\pi\)
0.830100 + 0.557614i \(0.188283\pi\)
\(422\) 3.90858e7 0.0253178
\(423\) 8.72822e7 0.0560705
\(424\) 1.86963e8 0.119118
\(425\) 0 0
\(426\) 2.00620e8 0.125730
\(427\) −4.87999e8 −0.303335
\(428\) 2.03387e9 1.25392
\(429\) −1.29201e9 −0.790068
\(430\) 0 0
\(431\) 8.91747e8 0.536502 0.268251 0.963349i \(-0.413554\pi\)
0.268251 + 0.963349i \(0.413554\pi\)
\(432\) 2.37047e8 0.141463
\(433\) 1.03966e9 0.615440 0.307720 0.951477i \(-0.400434\pi\)
0.307720 + 0.951477i \(0.400434\pi\)
\(434\) −8.00468e7 −0.0470035
\(435\) 0 0
\(436\) −5.44109e7 −0.0314400
\(437\) 3.94363e9 2.26054
\(438\) −4.09235e8 −0.232709
\(439\) −1.55931e9 −0.879641 −0.439821 0.898086i \(-0.644958\pi\)
−0.439821 + 0.898086i \(0.644958\pi\)
\(440\) 0 0
\(441\) 8.57661e7 0.0476190
\(442\) 9.44548e8 0.520291
\(443\) 2.79970e8 0.153002 0.0765012 0.997069i \(-0.475625\pi\)
0.0765012 + 0.997069i \(0.475625\pi\)
\(444\) 8.37176e8 0.453917
\(445\) 0 0
\(446\) −9.61482e8 −0.513179
\(447\) −1.94095e9 −1.02787
\(448\) 3.55527e8 0.186810
\(449\) 6.18452e8 0.322436 0.161218 0.986919i \(-0.448458\pi\)
0.161218 + 0.986919i \(0.448458\pi\)
\(450\) 0 0
\(451\) −2.21514e9 −1.13706
\(452\) −1.69305e9 −0.862352
\(453\) 1.72793e9 0.873338
\(454\) 1.36678e8 0.0685494
\(455\) 0 0
\(456\) 8.58192e8 0.423846
\(457\) −9.07329e8 −0.444691 −0.222345 0.974968i \(-0.571371\pi\)
−0.222345 + 0.974968i \(0.571371\pi\)
\(458\) −4.25404e8 −0.206906
\(459\) 3.84567e8 0.185621
\(460\) 0 0
\(461\) −2.41729e9 −1.14915 −0.574573 0.818453i \(-0.694832\pi\)
−0.574573 + 0.818453i \(0.694832\pi\)
\(462\) 1.06866e8 0.0504188
\(463\) 3.14336e8 0.147184 0.0735921 0.997288i \(-0.476554\pi\)
0.0735921 + 0.997288i \(0.476554\pi\)
\(464\) 7.20120e8 0.334651
\(465\) 0 0
\(466\) 1.09767e9 0.502483
\(467\) −4.74332e7 −0.0215513 −0.0107757 0.999942i \(-0.503430\pi\)
−0.0107757 + 0.999942i \(0.503430\pi\)
\(468\) −1.20087e9 −0.541545
\(469\) 1.44759e9 0.647947
\(470\) 0 0
\(471\) −1.62134e8 −0.0714993
\(472\) 3.41722e8 0.149581
\(473\) −2.61997e9 −1.13837
\(474\) 1.50549e8 0.0649313
\(475\) 0 0
\(476\) 7.79671e8 0.331350
\(477\) −1.63371e8 −0.0689223
\(478\) −1.00750e9 −0.421937
\(479\) −2.08794e9 −0.868048 −0.434024 0.900901i \(-0.642907\pi\)
−0.434024 + 0.900901i \(0.642907\pi\)
\(480\) 0 0
\(481\) −3.77353e9 −1.54611
\(482\) 3.44465e8 0.140114
\(483\) 9.58614e8 0.387105
\(484\) 9.38326e8 0.376179
\(485\) 0 0
\(486\) 4.89926e7 0.0193599
\(487\) 2.19273e9 0.860267 0.430134 0.902765i \(-0.358466\pi\)
0.430134 + 0.902765i \(0.358466\pi\)
\(488\) −1.18696e9 −0.462345
\(489\) −2.65417e9 −1.02648
\(490\) 0 0
\(491\) 2.19027e9 0.835050 0.417525 0.908666i \(-0.362898\pi\)
0.417525 + 0.908666i \(0.362898\pi\)
\(492\) −2.05888e9 −0.779387
\(493\) 1.16827e9 0.439115
\(494\) −1.84185e9 −0.687400
\(495\) 0 0
\(496\) 8.23154e8 0.302897
\(497\) −7.46435e8 −0.272737
\(498\) 3.22569e8 0.117036
\(499\) 6.56737e8 0.236614 0.118307 0.992977i \(-0.462253\pi\)
0.118307 + 0.992977i \(0.462253\pi\)
\(500\) 0 0
\(501\) −1.56813e9 −0.557123
\(502\) −3.17662e8 −0.112073
\(503\) 2.58040e9 0.904065 0.452033 0.892001i \(-0.350699\pi\)
0.452033 + 0.892001i \(0.350699\pi\)
\(504\) 2.08608e8 0.0725813
\(505\) 0 0
\(506\) 1.19445e9 0.409865
\(507\) 3.71864e9 1.26723
\(508\) 2.37455e8 0.0803633
\(509\) −2.07943e9 −0.698928 −0.349464 0.936950i \(-0.613636\pi\)
−0.349464 + 0.936950i \(0.613636\pi\)
\(510\) 0 0
\(511\) 1.52262e9 0.504798
\(512\) 3.06735e9 1.00999
\(513\) −7.49898e8 −0.245240
\(514\) −1.24483e9 −0.404333
\(515\) 0 0
\(516\) −2.43516e9 −0.780284
\(517\) −4.04639e8 −0.128781
\(518\) 3.12121e8 0.0986662
\(519\) 6.25714e8 0.196467
\(520\) 0 0
\(521\) −2.82646e9 −0.875609 −0.437804 0.899070i \(-0.644244\pi\)
−0.437804 + 0.899070i \(0.644244\pi\)
\(522\) 1.48834e8 0.0457988
\(523\) −4.81610e9 −1.47211 −0.736055 0.676922i \(-0.763313\pi\)
−0.736055 + 0.676922i \(0.763313\pi\)
\(524\) 1.06375e9 0.322983
\(525\) 0 0
\(526\) −3.81157e8 −0.114197
\(527\) 1.33542e9 0.397449
\(528\) −1.09895e9 −0.324906
\(529\) 7.30968e9 2.14686
\(530\) 0 0
\(531\) −2.98600e8 −0.0865484
\(532\) −1.52034e9 −0.437775
\(533\) 9.28030e9 2.65471
\(534\) 1.87680e8 0.0533364
\(535\) 0 0
\(536\) 3.52096e9 0.987606
\(537\) 1.02034e9 0.284337
\(538\) −5.23754e8 −0.145007
\(539\) −3.97611e8 −0.109370
\(540\) 0 0
\(541\) 1.56108e9 0.423871 0.211936 0.977284i \(-0.432023\pi\)
0.211936 + 0.977284i \(0.432023\pi\)
\(542\) −1.42423e9 −0.384223
\(543\) −2.45518e8 −0.0658087
\(544\) 2.88982e9 0.769618
\(545\) 0 0
\(546\) −4.47714e8 −0.117714
\(547\) 3.82511e8 0.0999282 0.0499641 0.998751i \(-0.484089\pi\)
0.0499641 + 0.998751i \(0.484089\pi\)
\(548\) 4.22002e9 1.09543
\(549\) 1.03718e9 0.267516
\(550\) 0 0
\(551\) −2.27810e9 −0.580152
\(552\) 2.33163e9 0.590029
\(553\) −5.60140e8 −0.140851
\(554\) 1.38516e9 0.346110
\(555\) 0 0
\(556\) 2.66217e9 0.656861
\(557\) 7.35207e9 1.80267 0.901335 0.433122i \(-0.142588\pi\)
0.901335 + 0.433122i \(0.142588\pi\)
\(558\) 1.70129e8 0.0414532
\(559\) 1.09763e10 2.65776
\(560\) 0 0
\(561\) −1.78285e9 −0.426328
\(562\) −5.14798e8 −0.122338
\(563\) −7.91584e9 −1.86947 −0.934733 0.355352i \(-0.884361\pi\)
−0.934733 + 0.355352i \(0.884361\pi\)
\(564\) −3.76096e8 −0.0882717
\(565\) 0 0
\(566\) 1.26194e8 0.0292538
\(567\) −1.82284e8 −0.0419961
\(568\) −1.81555e9 −0.415708
\(569\) 4.49464e9 1.02283 0.511414 0.859335i \(-0.329122\pi\)
0.511414 + 0.859335i \(0.329122\pi\)
\(570\) 0 0
\(571\) −2.15052e9 −0.483412 −0.241706 0.970350i \(-0.577707\pi\)
−0.241706 + 0.970350i \(0.577707\pi\)
\(572\) 5.56721e9 1.24380
\(573\) −1.44423e9 −0.320697
\(574\) −7.67604e8 −0.169412
\(575\) 0 0
\(576\) −7.55624e8 −0.164751
\(577\) 1.73438e9 0.375862 0.187931 0.982182i \(-0.439822\pi\)
0.187931 + 0.982182i \(0.439822\pi\)
\(578\) −9.76656e7 −0.0210375
\(579\) 2.22734e9 0.476882
\(580\) 0 0
\(581\) −1.20017e9 −0.253878
\(582\) −1.17124e9 −0.246273
\(583\) 7.57385e8 0.158298
\(584\) 3.70345e9 0.769418
\(585\) 0 0
\(586\) 2.05008e9 0.420852
\(587\) 2.98775e9 0.609692 0.304846 0.952402i \(-0.401395\pi\)
0.304846 + 0.952402i \(0.401395\pi\)
\(588\) −3.69563e8 −0.0749666
\(589\) −2.60405e9 −0.525104
\(590\) 0 0
\(591\) −2.03939e9 −0.406390
\(592\) −3.20967e9 −0.635819
\(593\) −5.56485e9 −1.09588 −0.547938 0.836519i \(-0.684587\pi\)
−0.547938 + 0.836519i \(0.684587\pi\)
\(594\) −2.27129e8 −0.0444652
\(595\) 0 0
\(596\) 8.36348e9 1.61817
\(597\) −2.84973e7 −0.00548143
\(598\) −5.00414e9 −0.956919
\(599\) −5.39399e9 −1.02545 −0.512727 0.858552i \(-0.671365\pi\)
−0.512727 + 0.858552i \(0.671365\pi\)
\(600\) 0 0
\(601\) −5.88616e8 −0.110604 −0.0553021 0.998470i \(-0.517612\pi\)
−0.0553021 + 0.998470i \(0.517612\pi\)
\(602\) −9.07888e8 −0.169607
\(603\) −3.07665e9 −0.571436
\(604\) −7.44558e9 −1.37489
\(605\) 0 0
\(606\) −1.72032e9 −0.314018
\(607\) −5.38304e9 −0.976938 −0.488469 0.872581i \(-0.662444\pi\)
−0.488469 + 0.872581i \(0.662444\pi\)
\(608\) −5.63509e9 −1.01681
\(609\) −5.53757e8 −0.0993479
\(610\) 0 0
\(611\) 1.69523e9 0.300667
\(612\) −1.65708e9 −0.292223
\(613\) −8.87502e9 −1.55617 −0.778086 0.628158i \(-0.783809\pi\)
−0.778086 + 0.628158i \(0.783809\pi\)
\(614\) −3.10330e9 −0.541046
\(615\) 0 0
\(616\) −9.67106e8 −0.166702
\(617\) −5.94996e6 −0.00101980 −0.000509901 1.00000i \(-0.500162\pi\)
−0.000509901 1.00000i \(0.500162\pi\)
\(618\) −4.89310e8 −0.0833920
\(619\) 8.21425e9 1.39204 0.696019 0.718024i \(-0.254953\pi\)
0.696019 + 0.718024i \(0.254953\pi\)
\(620\) 0 0
\(621\) −2.03740e9 −0.341395
\(622\) 2.20522e9 0.367439
\(623\) −6.98291e8 −0.115699
\(624\) 4.60403e9 0.758564
\(625\) 0 0
\(626\) 3.06134e9 0.498772
\(627\) 3.47652e9 0.563259
\(628\) 6.98631e8 0.112561
\(629\) −5.20711e9 −0.834295
\(630\) 0 0
\(631\) 2.53051e9 0.400964 0.200482 0.979697i \(-0.435749\pi\)
0.200482 + 0.979697i \(0.435749\pi\)
\(632\) −1.36243e9 −0.214686
\(633\) 3.09080e8 0.0484348
\(634\) −2.89299e9 −0.450852
\(635\) 0 0
\(636\) 7.03958e8 0.108504
\(637\) 1.66579e9 0.255347
\(638\) −6.89990e8 −0.105189
\(639\) 1.58645e9 0.240532
\(640\) 0 0
\(641\) 6.96698e9 1.04482 0.522410 0.852694i \(-0.325033\pi\)
0.522410 + 0.852694i \(0.325033\pi\)
\(642\) −1.61162e9 −0.240375
\(643\) −1.21823e10 −1.80714 −0.903572 0.428437i \(-0.859064\pi\)
−0.903572 + 0.428437i \(0.859064\pi\)
\(644\) −4.13063e9 −0.609419
\(645\) 0 0
\(646\) −2.54158e9 −0.370928
\(647\) 9.95454e9 1.44496 0.722481 0.691391i \(-0.243002\pi\)
0.722481 + 0.691391i \(0.243002\pi\)
\(648\) −4.43369e8 −0.0640107
\(649\) 1.38431e9 0.198781
\(650\) 0 0
\(651\) −6.32988e8 −0.0899213
\(652\) 1.14367e10 1.61598
\(653\) −2.38576e9 −0.335297 −0.167649 0.985847i \(-0.553617\pi\)
−0.167649 + 0.985847i \(0.553617\pi\)
\(654\) 4.31147e7 0.00602702
\(655\) 0 0
\(656\) 7.89358e9 1.09172
\(657\) −3.23612e9 −0.445190
\(658\) −1.40218e8 −0.0191873
\(659\) 1.98573e8 0.0270284 0.0135142 0.999909i \(-0.495698\pi\)
0.0135142 + 0.999909i \(0.495698\pi\)
\(660\) 0 0
\(661\) 1.68735e9 0.227247 0.113624 0.993524i \(-0.463754\pi\)
0.113624 + 0.993524i \(0.463754\pi\)
\(662\) 2.53484e9 0.339584
\(663\) 7.46923e9 0.995356
\(664\) −2.91916e9 −0.386963
\(665\) 0 0
\(666\) −6.63370e8 −0.0870154
\(667\) −6.18938e9 −0.807620
\(668\) 6.75704e9 0.877079
\(669\) −7.60314e9 −0.981752
\(670\) 0 0
\(671\) −4.80834e9 −0.614421
\(672\) −1.36977e9 −0.174123
\(673\) 5.02352e9 0.635266 0.317633 0.948214i \(-0.397112\pi\)
0.317633 + 0.948214i \(0.397112\pi\)
\(674\) 2.47376e9 0.311206
\(675\) 0 0
\(676\) −1.60235e10 −1.99501
\(677\) 1.03907e10 1.28702 0.643510 0.765438i \(-0.277477\pi\)
0.643510 + 0.765438i \(0.277477\pi\)
\(678\) 1.34155e9 0.165312
\(679\) 4.35778e9 0.534222
\(680\) 0 0
\(681\) 1.08081e9 0.131140
\(682\) −7.88714e8 −0.0952082
\(683\) −3.61608e9 −0.434276 −0.217138 0.976141i \(-0.569672\pi\)
−0.217138 + 0.976141i \(0.569672\pi\)
\(684\) 3.23128e9 0.386081
\(685\) 0 0
\(686\) −1.37783e8 −0.0162952
\(687\) −3.36398e9 −0.395826
\(688\) 9.33619e9 1.09297
\(689\) −3.17306e9 −0.369582
\(690\) 0 0
\(691\) 1.65856e10 1.91231 0.956153 0.292869i \(-0.0946100\pi\)
0.956153 + 0.292869i \(0.0946100\pi\)
\(692\) −2.69618e9 −0.309298
\(693\) 8.45068e8 0.0964551
\(694\) −1.74081e9 −0.197694
\(695\) 0 0
\(696\) −1.34690e9 −0.151427
\(697\) 1.28059e10 1.43251
\(698\) −2.99117e9 −0.332926
\(699\) 8.68008e9 0.961289
\(700\) 0 0
\(701\) 1.42971e10 1.56760 0.783798 0.621015i \(-0.213280\pi\)
0.783798 + 0.621015i \(0.213280\pi\)
\(702\) 9.51556e8 0.103814
\(703\) 1.01538e10 1.10226
\(704\) 3.50306e9 0.378394
\(705\) 0 0
\(706\) −4.32499e9 −0.462561
\(707\) 6.40069e9 0.681175
\(708\) 1.28666e9 0.136253
\(709\) 4.66391e9 0.491460 0.245730 0.969338i \(-0.420972\pi\)
0.245730 + 0.969338i \(0.420972\pi\)
\(710\) 0 0
\(711\) 1.19050e9 0.124219
\(712\) −1.69845e9 −0.176349
\(713\) −7.07496e9 −0.730989
\(714\) −6.17804e8 −0.0635195
\(715\) 0 0
\(716\) −4.39659e9 −0.447631
\(717\) −7.96705e9 −0.807199
\(718\) 5.68694e9 0.573380
\(719\) 4.82173e9 0.483784 0.241892 0.970303i \(-0.422232\pi\)
0.241892 + 0.970303i \(0.422232\pi\)
\(720\) 0 0
\(721\) 1.82055e9 0.180896
\(722\) 1.90400e9 0.188273
\(723\) 2.72394e9 0.268048
\(724\) 1.05793e9 0.103603
\(725\) 0 0
\(726\) −7.43521e8 −0.0721132
\(727\) −2.17621e9 −0.210054 −0.105027 0.994469i \(-0.533493\pi\)
−0.105027 + 0.994469i \(0.533493\pi\)
\(728\) 4.05168e9 0.389203
\(729\) 3.87420e8 0.0370370
\(730\) 0 0
\(731\) 1.51463e10 1.43416
\(732\) −4.46916e9 −0.421150
\(733\) −4.65228e9 −0.436317 −0.218158 0.975913i \(-0.570005\pi\)
−0.218158 + 0.975913i \(0.570005\pi\)
\(734\) −5.72166e9 −0.534055
\(735\) 0 0
\(736\) −1.53100e10 −1.41548
\(737\) 1.42633e10 1.31245
\(738\) 1.63144e9 0.149408
\(739\) 4.05338e8 0.0369456 0.0184728 0.999829i \(-0.494120\pi\)
0.0184728 + 0.999829i \(0.494120\pi\)
\(740\) 0 0
\(741\) −1.45648e10 −1.31505
\(742\) 2.62454e8 0.0235852
\(743\) −1.08140e10 −0.967223 −0.483611 0.875283i \(-0.660675\pi\)
−0.483611 + 0.875283i \(0.660675\pi\)
\(744\) −1.53961e9 −0.137059
\(745\) 0 0
\(746\) −5.04282e9 −0.444721
\(747\) 2.55079e9 0.223899
\(748\) 7.68222e9 0.671168
\(749\) 5.99626e9 0.521428
\(750\) 0 0
\(751\) −1.42070e10 −1.22394 −0.611972 0.790880i \(-0.709623\pi\)
−0.611972 + 0.790880i \(0.709623\pi\)
\(752\) 1.44192e9 0.123646
\(753\) −2.51198e9 −0.214405
\(754\) 2.89071e9 0.245587
\(755\) 0 0
\(756\) 7.85456e8 0.0661143
\(757\) −3.78427e9 −0.317064 −0.158532 0.987354i \(-0.550676\pi\)
−0.158532 + 0.987354i \(0.550676\pi\)
\(758\) −5.60911e9 −0.467791
\(759\) 9.44538e9 0.784103
\(760\) 0 0
\(761\) 1.01511e10 0.834966 0.417483 0.908685i \(-0.362912\pi\)
0.417483 + 0.908685i \(0.362912\pi\)
\(762\) −1.88157e8 −0.0154056
\(763\) −1.60414e8 −0.0130740
\(764\) 6.22314e9 0.504874
\(765\) 0 0
\(766\) 6.47993e9 0.520919
\(767\) −5.79954e9 −0.464098
\(768\) 1.51063e9 0.120336
\(769\) −1.31076e10 −1.03939 −0.519696 0.854351i \(-0.673955\pi\)
−0.519696 + 0.854351i \(0.673955\pi\)
\(770\) 0 0
\(771\) −9.84378e9 −0.773520
\(772\) −9.59751e9 −0.750755
\(773\) 1.40370e10 1.09307 0.546533 0.837438i \(-0.315947\pi\)
0.546533 + 0.837438i \(0.315947\pi\)
\(774\) 1.92959e9 0.149580
\(775\) 0 0
\(776\) 1.05994e10 0.814265
\(777\) 2.46817e9 0.188756
\(778\) 3.59985e9 0.274066
\(779\) −2.49713e10 −1.89261
\(780\) 0 0
\(781\) −7.35474e9 −0.552445
\(782\) −6.90524e9 −0.516363
\(783\) 1.17694e9 0.0876166
\(784\) 1.41687e9 0.105009
\(785\) 0 0
\(786\) −8.42905e8 −0.0619155
\(787\) 3.87288e9 0.283219 0.141610 0.989923i \(-0.454772\pi\)
0.141610 + 0.989923i \(0.454772\pi\)
\(788\) 8.78764e9 0.639780
\(789\) −3.01409e9 −0.218467
\(790\) 0 0
\(791\) −4.99145e9 −0.358599
\(792\) 2.05545e9 0.147018
\(793\) 2.01445e10 1.43450
\(794\) −1.01355e9 −0.0718578
\(795\) 0 0
\(796\) 1.22794e8 0.00862942
\(797\) 8.56688e9 0.599403 0.299701 0.954033i \(-0.403113\pi\)
0.299701 + 0.954033i \(0.403113\pi\)
\(798\) 1.20470e9 0.0839210
\(799\) 2.33926e9 0.162243
\(800\) 0 0
\(801\) 1.48412e9 0.102037
\(802\) −2.66302e9 −0.182290
\(803\) 1.50026e10 1.02250
\(804\) 1.32572e10 0.899611
\(805\) 0 0
\(806\) 3.30431e9 0.222284
\(807\) −4.14170e9 −0.277410
\(808\) 1.55684e10 1.03825
\(809\) −1.49503e10 −0.992731 −0.496365 0.868114i \(-0.665332\pi\)
−0.496365 + 0.868114i \(0.665332\pi\)
\(810\) 0 0
\(811\) −8.61940e9 −0.567419 −0.283710 0.958910i \(-0.591565\pi\)
−0.283710 + 0.958910i \(0.591565\pi\)
\(812\) 2.38612e9 0.156403
\(813\) −1.12625e10 −0.735049
\(814\) 3.07538e9 0.199854
\(815\) 0 0
\(816\) 6.35313e9 0.409329
\(817\) −2.95350e10 −1.89478
\(818\) 2.98810e9 0.190879
\(819\) −3.54041e9 −0.225195
\(820\) 0 0
\(821\) 2.53165e10 1.59663 0.798313 0.602243i \(-0.205726\pi\)
0.798313 + 0.602243i \(0.205726\pi\)
\(822\) −3.34390e9 −0.209992
\(823\) −1.51790e9 −0.0949171 −0.0474586 0.998873i \(-0.515112\pi\)
−0.0474586 + 0.998873i \(0.515112\pi\)
\(824\) 4.42811e9 0.275723
\(825\) 0 0
\(826\) 4.79699e8 0.0296168
\(827\) −1.68322e10 −1.03484 −0.517418 0.855733i \(-0.673107\pi\)
−0.517418 + 0.855733i \(0.673107\pi\)
\(828\) 8.77910e9 0.537457
\(829\) −1.54259e10 −0.940396 −0.470198 0.882561i \(-0.655818\pi\)
−0.470198 + 0.882561i \(0.655818\pi\)
\(830\) 0 0
\(831\) 1.09534e10 0.662135
\(832\) −1.46761e10 −0.883442
\(833\) 2.29863e9 0.137788
\(834\) −2.10948e9 −0.125920
\(835\) 0 0
\(836\) −1.49802e10 −0.886737
\(837\) 1.34533e9 0.0793031
\(838\) 3.65536e9 0.214574
\(839\) −1.06044e9 −0.0619894 −0.0309947 0.999520i \(-0.509868\pi\)
−0.0309947 + 0.999520i \(0.509868\pi\)
\(840\) 0 0
\(841\) −1.36745e10 −0.792730
\(842\) 8.67880e9 0.501034
\(843\) −4.07089e9 −0.234041
\(844\) −1.33181e9 −0.0762509
\(845\) 0 0
\(846\) 2.98015e8 0.0169216
\(847\) 2.76638e9 0.156430
\(848\) −2.69892e9 −0.151986
\(849\) 9.97911e8 0.0559648
\(850\) 0 0
\(851\) 2.75869e10 1.53444
\(852\) −6.83594e9 −0.378669
\(853\) −3.03756e10 −1.67573 −0.837864 0.545878i \(-0.816196\pi\)
−0.837864 + 0.545878i \(0.816196\pi\)
\(854\) −1.66622e9 −0.0915438
\(855\) 0 0
\(856\) 1.45847e10 0.794764
\(857\) 1.27509e10 0.692001 0.346001 0.938234i \(-0.387539\pi\)
0.346001 + 0.938234i \(0.387539\pi\)
\(858\) −4.41140e9 −0.238436
\(859\) 1.08205e10 0.582467 0.291233 0.956652i \(-0.405934\pi\)
0.291233 + 0.956652i \(0.405934\pi\)
\(860\) 0 0
\(861\) −6.07000e9 −0.324099
\(862\) 3.04476e9 0.161912
\(863\) −6.05794e9 −0.320839 −0.160419 0.987049i \(-0.551285\pi\)
−0.160419 + 0.987049i \(0.551285\pi\)
\(864\) 2.91127e9 0.153562
\(865\) 0 0
\(866\) 3.54981e9 0.185734
\(867\) −7.72313e8 −0.0402464
\(868\) 2.72752e9 0.141563
\(869\) −5.51915e9 −0.285301
\(870\) 0 0
\(871\) −5.97560e10 −3.06421
\(872\) −3.90175e8 −0.0199274
\(873\) −9.26188e9 −0.471139
\(874\) 1.34651e10 0.682211
\(875\) 0 0
\(876\) 1.39443e10 0.700863
\(877\) −5.64172e9 −0.282431 −0.141216 0.989979i \(-0.545101\pi\)
−0.141216 + 0.989979i \(0.545101\pi\)
\(878\) −5.32407e9 −0.265468
\(879\) 1.62115e10 0.805123
\(880\) 0 0
\(881\) −1.41128e9 −0.0695339 −0.0347669 0.999395i \(-0.511069\pi\)
−0.0347669 + 0.999395i \(0.511069\pi\)
\(882\) 2.92838e8 0.0143710
\(883\) −1.83461e10 −0.896773 −0.448386 0.893840i \(-0.648001\pi\)
−0.448386 + 0.893840i \(0.648001\pi\)
\(884\) −3.21846e10 −1.56699
\(885\) 0 0
\(886\) 9.55923e8 0.0461748
\(887\) −6.77821e9 −0.326124 −0.163062 0.986616i \(-0.552137\pi\)
−0.163062 + 0.986616i \(0.552137\pi\)
\(888\) 6.00330e9 0.287703
\(889\) 7.00065e8 0.0334182
\(890\) 0 0
\(891\) −1.79608e9 −0.0850654
\(892\) 3.27617e10 1.54557
\(893\) −4.56151e9 −0.214353
\(894\) −6.62714e9 −0.310202
\(895\) 0 0
\(896\) 7.70764e9 0.357967
\(897\) −3.95714e10 −1.83066
\(898\) 2.11163e9 0.0973085
\(899\) 4.08695e9 0.187603
\(900\) 0 0
\(901\) −4.37852e9 −0.199430
\(902\) −7.56332e9 −0.343155
\(903\) −7.17934e9 −0.324472
\(904\) −1.21407e10 −0.546579
\(905\) 0 0
\(906\) 5.89981e9 0.263566
\(907\) 3.32813e9 0.148107 0.0740535 0.997254i \(-0.476406\pi\)
0.0740535 + 0.997254i \(0.476406\pi\)
\(908\) −4.65718e9 −0.206454
\(909\) −1.36038e10 −0.600740
\(910\) 0 0
\(911\) 7.48533e9 0.328017 0.164009 0.986459i \(-0.447558\pi\)
0.164009 + 0.986459i \(0.447558\pi\)
\(912\) −1.23885e10 −0.540799
\(913\) −1.18254e10 −0.514244
\(914\) −3.09797e9 −0.134204
\(915\) 0 0
\(916\) 1.44953e10 0.623149
\(917\) 3.13615e9 0.134309
\(918\) 1.31306e9 0.0560189
\(919\) 3.84326e10 1.63341 0.816705 0.577056i \(-0.195799\pi\)
0.816705 + 0.577056i \(0.195799\pi\)
\(920\) 0 0
\(921\) −2.45400e10 −1.03506
\(922\) −8.25354e9 −0.346802
\(923\) 3.08127e10 1.28980
\(924\) −3.64136e9 −0.151849
\(925\) 0 0
\(926\) 1.07326e9 0.0444189
\(927\) −3.86933e9 −0.159535
\(928\) 8.84406e9 0.363274
\(929\) 2.74203e10 1.12206 0.561032 0.827794i \(-0.310404\pi\)
0.561032 + 0.827794i \(0.310404\pi\)
\(930\) 0 0
\(931\) −4.48228e9 −0.182043
\(932\) −3.74022e10 −1.51336
\(933\) 1.74383e10 0.702939
\(934\) −1.61955e8 −0.00650400
\(935\) 0 0
\(936\) −8.61130e9 −0.343244
\(937\) 2.33959e9 0.0929077 0.0464539 0.998920i \(-0.485208\pi\)
0.0464539 + 0.998920i \(0.485208\pi\)
\(938\) 4.94261e9 0.195545
\(939\) 2.42083e10 0.954189
\(940\) 0 0
\(941\) −4.04198e10 −1.58136 −0.790680 0.612230i \(-0.790273\pi\)
−0.790680 + 0.612230i \(0.790273\pi\)
\(942\) −5.53588e8 −0.0215779
\(943\) −6.78449e10 −2.63467
\(944\) −4.93294e9 −0.190855
\(945\) 0 0
\(946\) −8.94557e9 −0.343549
\(947\) −2.68103e10 −1.02583 −0.512917 0.858438i \(-0.671435\pi\)
−0.512917 + 0.858438i \(0.671435\pi\)
\(948\) −5.12983e9 −0.195557
\(949\) −6.28533e10 −2.38724
\(950\) 0 0
\(951\) −2.28770e10 −0.862514
\(952\) 5.59094e9 0.210018
\(953\) 6.72263e9 0.251602 0.125801 0.992056i \(-0.459850\pi\)
0.125801 + 0.992056i \(0.459850\pi\)
\(954\) −5.57810e8 −0.0208002
\(955\) 0 0
\(956\) 3.43297e10 1.27077
\(957\) −5.45626e9 −0.201235
\(958\) −7.12902e9 −0.261970
\(959\) 1.24415e10 0.455520
\(960\) 0 0
\(961\) −2.28409e10 −0.830198
\(962\) −1.28843e10 −0.466602
\(963\) −1.27442e10 −0.459856
\(964\) −1.17373e10 −0.421988
\(965\) 0 0
\(966\) 3.27307e9 0.116825
\(967\) −2.39023e10 −0.850055 −0.425027 0.905180i \(-0.639736\pi\)
−0.425027 + 0.905180i \(0.639736\pi\)
\(968\) 6.72864e9 0.238431
\(969\) −2.00981e10 −0.709614
\(970\) 0 0
\(971\) 1.65771e10 0.581088 0.290544 0.956862i \(-0.406164\pi\)
0.290544 + 0.956862i \(0.406164\pi\)
\(972\) −1.66938e9 −0.0583074
\(973\) 7.84862e9 0.273148
\(974\) 7.48681e9 0.259621
\(975\) 0 0
\(976\) 1.71344e10 0.589921
\(977\) 2.03177e10 0.697018 0.348509 0.937305i \(-0.386688\pi\)
0.348509 + 0.937305i \(0.386688\pi\)
\(978\) −9.06236e9 −0.309781
\(979\) −6.88038e9 −0.234354
\(980\) 0 0
\(981\) 3.40939e8 0.0115302
\(982\) 7.47841e9 0.252011
\(983\) −4.78793e10 −1.60772 −0.803861 0.594818i \(-0.797224\pi\)
−0.803861 + 0.594818i \(0.797224\pi\)
\(984\) −1.47640e10 −0.493994
\(985\) 0 0
\(986\) 3.98891e9 0.132521
\(987\) −1.10881e9 −0.0367067
\(988\) 6.27594e10 2.07028
\(989\) −8.02440e10 −2.63770
\(990\) 0 0
\(991\) −1.99787e10 −0.652092 −0.326046 0.945354i \(-0.605716\pi\)
−0.326046 + 0.945354i \(0.605716\pi\)
\(992\) 1.01095e10 0.328804
\(993\) 2.00448e10 0.649650
\(994\) −2.54861e9 −0.0823098
\(995\) 0 0
\(996\) −1.09913e10 −0.352484
\(997\) −4.49634e10 −1.43690 −0.718450 0.695579i \(-0.755148\pi\)
−0.718450 + 0.695579i \(0.755148\pi\)
\(998\) 2.24235e9 0.0714080
\(999\) −5.24575e9 −0.166467
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 525.8.a.i.1.3 4
5.4 even 2 105.8.a.h.1.2 4
15.14 odd 2 315.8.a.g.1.3 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
105.8.a.h.1.2 4 5.4 even 2
315.8.a.g.1.3 4 15.14 odd 2
525.8.a.i.1.3 4 1.1 even 1 trivial