Properties

Label 525.6.d.d.274.1
Level $525$
Weight $6$
Character 525.274
Analytic conductor $84.202$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [525,6,Mod(274,525)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(525, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1, 0]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("525.274");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 525 = 3 \cdot 5^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 525.d (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(84.2015054018\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(i)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 21)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 274.1
Root \(-1.00000i\) of defining polynomial
Character \(\chi\) \(=\) 525.274
Dual form 525.6.d.d.274.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.00000i q^{2} -9.00000i q^{3} +31.0000 q^{4} -9.00000 q^{6} +49.0000i q^{7} -63.0000i q^{8} -81.0000 q^{9} +O(q^{10})\) \(q-1.00000i q^{2} -9.00000i q^{3} +31.0000 q^{4} -9.00000 q^{6} +49.0000i q^{7} -63.0000i q^{8} -81.0000 q^{9} -340.000 q^{11} -279.000i q^{12} +454.000i q^{13} +49.0000 q^{14} +929.000 q^{16} +798.000i q^{17} +81.0000i q^{18} -892.000 q^{19} +441.000 q^{21} +340.000i q^{22} -3192.00i q^{23} -567.000 q^{24} +454.000 q^{26} +729.000i q^{27} +1519.00i q^{28} +8242.00 q^{29} -2496.00 q^{31} -2945.00i q^{32} +3060.00i q^{33} +798.000 q^{34} -2511.00 q^{36} -9798.00i q^{37} +892.000i q^{38} +4086.00 q^{39} +19834.0 q^{41} -441.000i q^{42} -17236.0i q^{43} -10540.0 q^{44} -3192.00 q^{46} -8928.00i q^{47} -8361.00i q^{48} -2401.00 q^{49} +7182.00 q^{51} +14074.0i q^{52} +150.000i q^{53} +729.000 q^{54} +3087.00 q^{56} +8028.00i q^{57} -8242.00i q^{58} +42396.0 q^{59} +14758.0 q^{61} +2496.00i q^{62} -3969.00i q^{63} +26783.0 q^{64} +3060.00 q^{66} +1676.00i q^{67} +24738.0i q^{68} -28728.0 q^{69} +14568.0 q^{71} +5103.00i q^{72} +78378.0i q^{73} -9798.00 q^{74} -27652.0 q^{76} -16660.0i q^{77} -4086.00i q^{78} +2272.00 q^{79} +6561.00 q^{81} -19834.0i q^{82} -37764.0i q^{83} +13671.0 q^{84} -17236.0 q^{86} -74178.0i q^{87} +21420.0i q^{88} +117286. q^{89} -22246.0 q^{91} -98952.0i q^{92} +22464.0i q^{93} -8928.00 q^{94} -26505.0 q^{96} -10002.0i q^{97} +2401.00i q^{98} +27540.0 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 62 q^{4} - 18 q^{6} - 162 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 2 q + 62 q^{4} - 18 q^{6} - 162 q^{9} - 680 q^{11} + 98 q^{14} + 1858 q^{16} - 1784 q^{19} + 882 q^{21} - 1134 q^{24} + 908 q^{26} + 16484 q^{29} - 4992 q^{31} + 1596 q^{34} - 5022 q^{36} + 8172 q^{39} + 39668 q^{41} - 21080 q^{44} - 6384 q^{46} - 4802 q^{49} + 14364 q^{51} + 1458 q^{54} + 6174 q^{56} + 84792 q^{59} + 29516 q^{61} + 53566 q^{64} + 6120 q^{66} - 57456 q^{69} + 29136 q^{71} - 19596 q^{74} - 55304 q^{76} + 4544 q^{79} + 13122 q^{81} + 27342 q^{84} - 34472 q^{86} + 234572 q^{89} - 44492 q^{91} - 17856 q^{94} - 53010 q^{96} + 55080 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/525\mathbb{Z}\right)^\times\).

\(n\) \(127\) \(176\) \(451\)
\(\chi(n)\) \(-1\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) − 1.00000i − 0.176777i −0.996086 0.0883883i \(-0.971828\pi\)
0.996086 0.0883883i \(-0.0281716\pi\)
\(3\) − 9.00000i − 0.577350i
\(4\) 31.0000 0.968750
\(5\) 0 0
\(6\) −9.00000 −0.102062
\(7\) 49.0000i 0.377964i
\(8\) − 63.0000i − 0.348029i
\(9\) −81.0000 −0.333333
\(10\) 0 0
\(11\) −340.000 −0.847222 −0.423611 0.905844i \(-0.639238\pi\)
−0.423611 + 0.905844i \(0.639238\pi\)
\(12\) − 279.000i − 0.559308i
\(13\) 454.000i 0.745071i 0.928018 + 0.372535i \(0.121511\pi\)
−0.928018 + 0.372535i \(0.878489\pi\)
\(14\) 49.0000 0.0668153
\(15\) 0 0
\(16\) 929.000 0.907227
\(17\) 798.000i 0.669700i 0.942271 + 0.334850i \(0.108686\pi\)
−0.942271 + 0.334850i \(0.891314\pi\)
\(18\) 81.0000i 0.0589256i
\(19\) −892.000 −0.566867 −0.283433 0.958992i \(-0.591473\pi\)
−0.283433 + 0.958992i \(0.591473\pi\)
\(20\) 0 0
\(21\) 441.000 0.218218
\(22\) 340.000i 0.149769i
\(23\) − 3192.00i − 1.25818i −0.777332 0.629091i \(-0.783427\pi\)
0.777332 0.629091i \(-0.216573\pi\)
\(24\) −567.000 −0.200935
\(25\) 0 0
\(26\) 454.000 0.131711
\(27\) 729.000i 0.192450i
\(28\) 1519.00i 0.366153i
\(29\) 8242.00 1.81986 0.909929 0.414764i \(-0.136136\pi\)
0.909929 + 0.414764i \(0.136136\pi\)
\(30\) 0 0
\(31\) −2496.00 −0.466488 −0.233244 0.972418i \(-0.574934\pi\)
−0.233244 + 0.972418i \(0.574934\pi\)
\(32\) − 2945.00i − 0.508406i
\(33\) 3060.00i 0.489144i
\(34\) 798.000 0.118387
\(35\) 0 0
\(36\) −2511.00 −0.322917
\(37\) − 9798.00i − 1.17661i −0.808639 0.588306i \(-0.799795\pi\)
0.808639 0.588306i \(-0.200205\pi\)
\(38\) 892.000i 0.100209i
\(39\) 4086.00 0.430167
\(40\) 0 0
\(41\) 19834.0 1.84268 0.921342 0.388754i \(-0.127094\pi\)
0.921342 + 0.388754i \(0.127094\pi\)
\(42\) − 441.000i − 0.0385758i
\(43\) − 17236.0i − 1.42156i −0.703414 0.710780i \(-0.748342\pi\)
0.703414 0.710780i \(-0.251658\pi\)
\(44\) −10540.0 −0.820746
\(45\) 0 0
\(46\) −3192.00 −0.222417
\(47\) − 8928.00i − 0.589535i −0.955569 0.294767i \(-0.904758\pi\)
0.955569 0.294767i \(-0.0952422\pi\)
\(48\) − 8361.00i − 0.523788i
\(49\) −2401.00 −0.142857
\(50\) 0 0
\(51\) 7182.00 0.386652
\(52\) 14074.0i 0.721787i
\(53\) 150.000i 0.00733502i 0.999993 + 0.00366751i \(0.00116741\pi\)
−0.999993 + 0.00366751i \(0.998833\pi\)
\(54\) 729.000 0.0340207
\(55\) 0 0
\(56\) 3087.00 0.131543
\(57\) 8028.00i 0.327281i
\(58\) − 8242.00i − 0.321709i
\(59\) 42396.0 1.58560 0.792802 0.609479i \(-0.208621\pi\)
0.792802 + 0.609479i \(0.208621\pi\)
\(60\) 0 0
\(61\) 14758.0 0.507812 0.253906 0.967229i \(-0.418285\pi\)
0.253906 + 0.967229i \(0.418285\pi\)
\(62\) 2496.00i 0.0824642i
\(63\) − 3969.00i − 0.125988i
\(64\) 26783.0 0.817352
\(65\) 0 0
\(66\) 3060.00 0.0864692
\(67\) 1676.00i 0.0456128i 0.999740 + 0.0228064i \(0.00726014\pi\)
−0.999740 + 0.0228064i \(0.992740\pi\)
\(68\) 24738.0i 0.648772i
\(69\) −28728.0 −0.726411
\(70\) 0 0
\(71\) 14568.0 0.342968 0.171484 0.985187i \(-0.445144\pi\)
0.171484 + 0.985187i \(0.445144\pi\)
\(72\) 5103.00i 0.116010i
\(73\) 78378.0i 1.72142i 0.509095 + 0.860710i \(0.329980\pi\)
−0.509095 + 0.860710i \(0.670020\pi\)
\(74\) −9798.00 −0.207998
\(75\) 0 0
\(76\) −27652.0 −0.549152
\(77\) − 16660.0i − 0.320220i
\(78\) − 4086.00i − 0.0760435i
\(79\) 2272.00 0.0409582 0.0204791 0.999790i \(-0.493481\pi\)
0.0204791 + 0.999790i \(0.493481\pi\)
\(80\) 0 0
\(81\) 6561.00 0.111111
\(82\) − 19834.0i − 0.325743i
\(83\) − 37764.0i − 0.601704i −0.953671 0.300852i \(-0.902729\pi\)
0.953671 0.300852i \(-0.0972710\pi\)
\(84\) 13671.0 0.211399
\(85\) 0 0
\(86\) −17236.0 −0.251299
\(87\) − 74178.0i − 1.05070i
\(88\) 21420.0i 0.294858i
\(89\) 117286. 1.56954 0.784768 0.619790i \(-0.212782\pi\)
0.784768 + 0.619790i \(0.212782\pi\)
\(90\) 0 0
\(91\) −22246.0 −0.281610
\(92\) − 98952.0i − 1.21886i
\(93\) 22464.0i 0.269327i
\(94\) −8928.00 −0.104216
\(95\) 0 0
\(96\) −26505.0 −0.293528
\(97\) − 10002.0i − 0.107934i −0.998543 0.0539669i \(-0.982813\pi\)
0.998543 0.0539669i \(-0.0171865\pi\)
\(98\) 2401.00i 0.0252538i
\(99\) 27540.0 0.282407
\(100\) 0 0
\(101\) −108770. −1.06098 −0.530488 0.847692i \(-0.677991\pi\)
−0.530488 + 0.847692i \(0.677991\pi\)
\(102\) − 7182.00i − 0.0683510i
\(103\) − 199192.i − 1.85003i −0.379930 0.925015i \(-0.624052\pi\)
0.379930 0.925015i \(-0.375948\pi\)
\(104\) 28602.0 0.259306
\(105\) 0 0
\(106\) 150.000 0.00129666
\(107\) 79972.0i 0.675272i 0.941277 + 0.337636i \(0.109627\pi\)
−0.941277 + 0.337636i \(0.890373\pi\)
\(108\) 22599.0i 0.186436i
\(109\) 46098.0 0.371634 0.185817 0.982584i \(-0.440507\pi\)
0.185817 + 0.982584i \(0.440507\pi\)
\(110\) 0 0
\(111\) −88182.0 −0.679317
\(112\) 45521.0i 0.342899i
\(113\) 262706.i 1.93541i 0.252078 + 0.967707i \(0.418886\pi\)
−0.252078 + 0.967707i \(0.581114\pi\)
\(114\) 8028.00 0.0578556
\(115\) 0 0
\(116\) 255502. 1.76299
\(117\) − 36774.0i − 0.248357i
\(118\) − 42396.0i − 0.280298i
\(119\) −39102.0 −0.253123
\(120\) 0 0
\(121\) −45451.0 −0.282215
\(122\) − 14758.0i − 0.0897693i
\(123\) − 178506.i − 1.06387i
\(124\) −77376.0 −0.451910
\(125\) 0 0
\(126\) −3969.00 −0.0222718
\(127\) − 196608.i − 1.08166i −0.841131 0.540831i \(-0.818110\pi\)
0.841131 0.540831i \(-0.181890\pi\)
\(128\) − 121023.i − 0.652894i
\(129\) −155124. −0.820738
\(130\) 0 0
\(131\) −77140.0 −0.392737 −0.196368 0.980530i \(-0.562915\pi\)
−0.196368 + 0.980530i \(0.562915\pi\)
\(132\) 94860.0i 0.473858i
\(133\) − 43708.0i − 0.214255i
\(134\) 1676.00 0.00806329
\(135\) 0 0
\(136\) 50274.0 0.233075
\(137\) − 208170.i − 0.947582i −0.880637 0.473791i \(-0.842885\pi\)
0.880637 0.473791i \(-0.157115\pi\)
\(138\) 28728.0i 0.128413i
\(139\) 275580. 1.20979 0.604896 0.796304i \(-0.293215\pi\)
0.604896 + 0.796304i \(0.293215\pi\)
\(140\) 0 0
\(141\) −80352.0 −0.340368
\(142\) − 14568.0i − 0.0606288i
\(143\) − 154360.i − 0.631240i
\(144\) −75249.0 −0.302409
\(145\) 0 0
\(146\) 78378.0 0.304307
\(147\) 21609.0i 0.0824786i
\(148\) − 303738.i − 1.13984i
\(149\) 296106. 1.09265 0.546326 0.837573i \(-0.316026\pi\)
0.546326 + 0.837573i \(0.316026\pi\)
\(150\) 0 0
\(151\) −426472. −1.52212 −0.761059 0.648683i \(-0.775320\pi\)
−0.761059 + 0.648683i \(0.775320\pi\)
\(152\) 56196.0i 0.197286i
\(153\) − 64638.0i − 0.223233i
\(154\) −16660.0 −0.0566074
\(155\) 0 0
\(156\) 126666. 0.416724
\(157\) − 178486.i − 0.577903i −0.957344 0.288952i \(-0.906693\pi\)
0.957344 0.288952i \(-0.0933067\pi\)
\(158\) − 2272.00i − 0.00724045i
\(159\) 1350.00 0.00423488
\(160\) 0 0
\(161\) 156408. 0.475548
\(162\) − 6561.00i − 0.0196419i
\(163\) 252772.i 0.745178i 0.927996 + 0.372589i \(0.121530\pi\)
−0.927996 + 0.372589i \(0.878470\pi\)
\(164\) 614854. 1.78510
\(165\) 0 0
\(166\) −37764.0 −0.106367
\(167\) − 508088.i − 1.40977i −0.709322 0.704884i \(-0.750999\pi\)
0.709322 0.704884i \(-0.249001\pi\)
\(168\) − 27783.0i − 0.0759462i
\(169\) 165177. 0.444870
\(170\) 0 0
\(171\) 72252.0 0.188956
\(172\) − 534316.i − 1.37714i
\(173\) − 221834.i − 0.563525i −0.959484 0.281762i \(-0.909081\pi\)
0.959484 0.281762i \(-0.0909190\pi\)
\(174\) −74178.0 −0.185739
\(175\) 0 0
\(176\) −315860. −0.768622
\(177\) − 381564.i − 0.915449i
\(178\) − 117286.i − 0.277457i
\(179\) 113564. 0.264916 0.132458 0.991189i \(-0.457713\pi\)
0.132458 + 0.991189i \(0.457713\pi\)
\(180\) 0 0
\(181\) 663118. 1.50451 0.752254 0.658873i \(-0.228967\pi\)
0.752254 + 0.658873i \(0.228967\pi\)
\(182\) 22246.0i 0.0497821i
\(183\) − 132822.i − 0.293185i
\(184\) −201096. −0.437884
\(185\) 0 0
\(186\) 22464.0 0.0476107
\(187\) − 271320.i − 0.567385i
\(188\) − 276768.i − 0.571112i
\(189\) −35721.0 −0.0727393
\(190\) 0 0
\(191\) 505664. 1.00295 0.501474 0.865173i \(-0.332791\pi\)
0.501474 + 0.865173i \(0.332791\pi\)
\(192\) − 241047.i − 0.471899i
\(193\) − 432382.i − 0.835554i −0.908550 0.417777i \(-0.862809\pi\)
0.908550 0.417777i \(-0.137191\pi\)
\(194\) −10002.0 −0.0190802
\(195\) 0 0
\(196\) −74431.0 −0.138393
\(197\) 131962.i 0.242261i 0.992637 + 0.121130i \(0.0386519\pi\)
−0.992637 + 0.121130i \(0.961348\pi\)
\(198\) − 27540.0i − 0.0499230i
\(199\) −298536. −0.534397 −0.267199 0.963642i \(-0.586098\pi\)
−0.267199 + 0.963642i \(0.586098\pi\)
\(200\) 0 0
\(201\) 15084.0 0.0263346
\(202\) 108770.i 0.187556i
\(203\) 403858.i 0.687842i
\(204\) 222642. 0.374569
\(205\) 0 0
\(206\) −199192. −0.327042
\(207\) 258552.i 0.419394i
\(208\) 421766.i 0.675948i
\(209\) 303280. 0.480262
\(210\) 0 0
\(211\) −1.17062e6 −1.81013 −0.905065 0.425273i \(-0.860178\pi\)
−0.905065 + 0.425273i \(0.860178\pi\)
\(212\) 4650.00i 0.00710581i
\(213\) − 131112.i − 0.198013i
\(214\) 79972.0 0.119372
\(215\) 0 0
\(216\) 45927.0 0.0669782
\(217\) − 122304.i − 0.176316i
\(218\) − 46098.0i − 0.0656963i
\(219\) 705402. 0.993863
\(220\) 0 0
\(221\) −362292. −0.498974
\(222\) 88182.0i 0.120087i
\(223\) 399376.i 0.537799i 0.963168 + 0.268899i \(0.0866599\pi\)
−0.963168 + 0.268899i \(0.913340\pi\)
\(224\) 144305. 0.192159
\(225\) 0 0
\(226\) 262706. 0.342136
\(227\) − 707916.i − 0.911837i −0.890022 0.455918i \(-0.849311\pi\)
0.890022 0.455918i \(-0.150689\pi\)
\(228\) 248868.i 0.317053i
\(229\) 735778. 0.927167 0.463584 0.886053i \(-0.346563\pi\)
0.463584 + 0.886053i \(0.346563\pi\)
\(230\) 0 0
\(231\) −149940. −0.184879
\(232\) − 519246.i − 0.633364i
\(233\) − 208758.i − 0.251915i −0.992036 0.125957i \(-0.959800\pi\)
0.992036 0.125957i \(-0.0402002\pi\)
\(234\) −36774.0 −0.0439037
\(235\) 0 0
\(236\) 1.31428e6 1.53605
\(237\) − 20448.0i − 0.0236472i
\(238\) 39102.0i 0.0447462i
\(239\) −713376. −0.807837 −0.403919 0.914795i \(-0.632352\pi\)
−0.403919 + 0.914795i \(0.632352\pi\)
\(240\) 0 0
\(241\) −505246. −0.560351 −0.280176 0.959949i \(-0.590393\pi\)
−0.280176 + 0.959949i \(0.590393\pi\)
\(242\) 45451.0i 0.0498890i
\(243\) − 59049.0i − 0.0641500i
\(244\) 457498. 0.491943
\(245\) 0 0
\(246\) −178506. −0.188068
\(247\) − 404968.i − 0.422356i
\(248\) 157248.i 0.162351i
\(249\) −339876. −0.347394
\(250\) 0 0
\(251\) 317108. 0.317704 0.158852 0.987302i \(-0.449221\pi\)
0.158852 + 0.987302i \(0.449221\pi\)
\(252\) − 123039.i − 0.122051i
\(253\) 1.08528e6i 1.06596i
\(254\) −196608. −0.191213
\(255\) 0 0
\(256\) 736033. 0.701936
\(257\) 1.44285e6i 1.36266i 0.731977 + 0.681329i \(0.238598\pi\)
−0.731977 + 0.681329i \(0.761402\pi\)
\(258\) 155124.i 0.145087i
\(259\) 480102. 0.444717
\(260\) 0 0
\(261\) −667602. −0.606619
\(262\) 77140.0i 0.0694267i
\(263\) 271496.i 0.242033i 0.992651 + 0.121016i \(0.0386153\pi\)
−0.992651 + 0.121016i \(0.961385\pi\)
\(264\) 192780. 0.170236
\(265\) 0 0
\(266\) −43708.0 −0.0378754
\(267\) − 1.05557e6i − 0.906172i
\(268\) 51956.0i 0.0441874i
\(269\) −850614. −0.716724 −0.358362 0.933583i \(-0.616665\pi\)
−0.358362 + 0.933583i \(0.616665\pi\)
\(270\) 0 0
\(271\) −540128. −0.446759 −0.223380 0.974732i \(-0.571709\pi\)
−0.223380 + 0.974732i \(0.571709\pi\)
\(272\) 741342.i 0.607570i
\(273\) 200214.i 0.162588i
\(274\) −208170. −0.167510
\(275\) 0 0
\(276\) −890568. −0.703711
\(277\) − 513574.i − 0.402164i −0.979574 0.201082i \(-0.935554\pi\)
0.979574 0.201082i \(-0.0644458\pi\)
\(278\) − 275580.i − 0.213863i
\(279\) 202176. 0.155496
\(280\) 0 0
\(281\) −1.35642e6 −1.02478 −0.512388 0.858754i \(-0.671239\pi\)
−0.512388 + 0.858754i \(0.671239\pi\)
\(282\) 80352.0i 0.0601692i
\(283\) 286756.i 0.212837i 0.994321 + 0.106418i \(0.0339383\pi\)
−0.994321 + 0.106418i \(0.966062\pi\)
\(284\) 451608. 0.332251
\(285\) 0 0
\(286\) −154360. −0.111589
\(287\) 971866.i 0.696469i
\(288\) 238545.i 0.169469i
\(289\) 783053. 0.551501
\(290\) 0 0
\(291\) −90018.0 −0.0623156
\(292\) 2.42972e6i 1.66763i
\(293\) − 1.70727e6i − 1.16180i −0.813974 0.580901i \(-0.802700\pi\)
0.813974 0.580901i \(-0.197300\pi\)
\(294\) 21609.0 0.0145803
\(295\) 0 0
\(296\) −617274. −0.409495
\(297\) − 247860.i − 0.163048i
\(298\) − 296106.i − 0.193155i
\(299\) 1.44917e6 0.937434
\(300\) 0 0
\(301\) 844564. 0.537299
\(302\) 426472.i 0.269075i
\(303\) 978930.i 0.612555i
\(304\) −828668. −0.514276
\(305\) 0 0
\(306\) −64638.0 −0.0394625
\(307\) 546788.i 0.331111i 0.986201 + 0.165555i \(0.0529416\pi\)
−0.986201 + 0.165555i \(0.947058\pi\)
\(308\) − 516460.i − 0.310213i
\(309\) −1.79273e6 −1.06812
\(310\) 0 0
\(311\) 3.23426e6 1.89616 0.948079 0.318035i \(-0.103023\pi\)
0.948079 + 0.318035i \(0.103023\pi\)
\(312\) − 257418.i − 0.149711i
\(313\) 1.81313e6i 1.04609i 0.852306 + 0.523044i \(0.175204\pi\)
−0.852306 + 0.523044i \(0.824796\pi\)
\(314\) −178486. −0.102160
\(315\) 0 0
\(316\) 70432.0 0.0396782
\(317\) 1.27658e6i 0.713509i 0.934198 + 0.356754i \(0.116117\pi\)
−0.934198 + 0.356754i \(0.883883\pi\)
\(318\) − 1350.00i 0 0.000748628i
\(319\) −2.80228e6 −1.54182
\(320\) 0 0
\(321\) 719748. 0.389868
\(322\) − 156408.i − 0.0840658i
\(323\) − 711816.i − 0.379631i
\(324\) 203391. 0.107639
\(325\) 0 0
\(326\) 252772. 0.131730
\(327\) − 414882.i − 0.214563i
\(328\) − 1.24954e6i − 0.641307i
\(329\) 437472. 0.222823
\(330\) 0 0
\(331\) −1.73621e6 −0.871029 −0.435515 0.900182i \(-0.643434\pi\)
−0.435515 + 0.900182i \(0.643434\pi\)
\(332\) − 1.17068e6i − 0.582901i
\(333\) 793638.i 0.392204i
\(334\) −508088. −0.249214
\(335\) 0 0
\(336\) 409689. 0.197973
\(337\) − 2.07215e6i − 0.993907i −0.867777 0.496953i \(-0.834452\pi\)
0.867777 0.496953i \(-0.165548\pi\)
\(338\) − 165177.i − 0.0786426i
\(339\) 2.36435e6 1.11741
\(340\) 0 0
\(341\) 848640. 0.395219
\(342\) − 72252.0i − 0.0334029i
\(343\) − 117649.i − 0.0539949i
\(344\) −1.08587e6 −0.494744
\(345\) 0 0
\(346\) −221834. −0.0996180
\(347\) 1.65146e6i 0.736282i 0.929770 + 0.368141i \(0.120006\pi\)
−0.929770 + 0.368141i \(0.879994\pi\)
\(348\) − 2.29952e6i − 1.01786i
\(349\) −1.26645e6 −0.556578 −0.278289 0.960497i \(-0.589767\pi\)
−0.278289 + 0.960497i \(0.589767\pi\)
\(350\) 0 0
\(351\) −330966. −0.143389
\(352\) 1.00130e6i 0.430732i
\(353\) 573218.i 0.244840i 0.992478 + 0.122420i \(0.0390656\pi\)
−0.992478 + 0.122420i \(0.960934\pi\)
\(354\) −381564. −0.161830
\(355\) 0 0
\(356\) 3.63587e6 1.52049
\(357\) 351918.i 0.146141i
\(358\) − 113564.i − 0.0468310i
\(359\) −4.46322e6 −1.82773 −0.913866 0.406016i \(-0.866918\pi\)
−0.913866 + 0.406016i \(0.866918\pi\)
\(360\) 0 0
\(361\) −1.68044e6 −0.678662
\(362\) − 663118.i − 0.265962i
\(363\) 409059.i 0.162937i
\(364\) −689626. −0.272810
\(365\) 0 0
\(366\) −132822. −0.0518283
\(367\) 4.50797e6i 1.74709i 0.486742 + 0.873546i \(0.338185\pi\)
−0.486742 + 0.873546i \(0.661815\pi\)
\(368\) − 2.96537e6i − 1.14146i
\(369\) −1.60655e6 −0.614228
\(370\) 0 0
\(371\) −7350.00 −0.00277238
\(372\) 696384.i 0.260910i
\(373\) 1.66535e6i 0.619774i 0.950773 + 0.309887i \(0.100291\pi\)
−0.950773 + 0.309887i \(0.899709\pi\)
\(374\) −271320. −0.100300
\(375\) 0 0
\(376\) −562464. −0.205175
\(377\) 3.74187e6i 1.35592i
\(378\) 35721.0i 0.0128586i
\(379\) 2.53232e6 0.905568 0.452784 0.891620i \(-0.350431\pi\)
0.452784 + 0.891620i \(0.350431\pi\)
\(380\) 0 0
\(381\) −1.76947e6 −0.624498
\(382\) − 505664.i − 0.177298i
\(383\) 796368.i 0.277407i 0.990334 + 0.138703i \(0.0442934\pi\)
−0.990334 + 0.138703i \(0.955707\pi\)
\(384\) −1.08921e6 −0.376949
\(385\) 0 0
\(386\) −432382. −0.147706
\(387\) 1.39612e6i 0.473853i
\(388\) − 310062.i − 0.104561i
\(389\) −1.94799e6 −0.652699 −0.326349 0.945249i \(-0.605819\pi\)
−0.326349 + 0.945249i \(0.605819\pi\)
\(390\) 0 0
\(391\) 2.54722e6 0.842605
\(392\) 151263.i 0.0497184i
\(393\) 694260.i 0.226747i
\(394\) 131962. 0.0428261
\(395\) 0 0
\(396\) 853740. 0.273582
\(397\) − 1.08116e6i − 0.344281i −0.985072 0.172140i \(-0.944932\pi\)
0.985072 0.172140i \(-0.0550683\pi\)
\(398\) 298536.i 0.0944689i
\(399\) −393372. −0.123700
\(400\) 0 0
\(401\) 2.76770e6 0.859524 0.429762 0.902942i \(-0.358598\pi\)
0.429762 + 0.902942i \(0.358598\pi\)
\(402\) − 15084.0i − 0.00465534i
\(403\) − 1.13318e6i − 0.347566i
\(404\) −3.37187e6 −1.02782
\(405\) 0 0
\(406\) 403858. 0.121594
\(407\) 3.33132e6i 0.996851i
\(408\) − 452466.i − 0.134566i
\(409\) −2.36350e6 −0.698630 −0.349315 0.937005i \(-0.613586\pi\)
−0.349315 + 0.937005i \(0.613586\pi\)
\(410\) 0 0
\(411\) −1.87353e6 −0.547087
\(412\) − 6.17495e6i − 1.79222i
\(413\) 2.07740e6i 0.599302i
\(414\) 258552. 0.0741391
\(415\) 0 0
\(416\) 1.33703e6 0.378798
\(417\) − 2.48022e6i − 0.698474i
\(418\) − 303280.i − 0.0848991i
\(419\) 2.98669e6 0.831104 0.415552 0.909569i \(-0.363588\pi\)
0.415552 + 0.909569i \(0.363588\pi\)
\(420\) 0 0
\(421\) −3.46331e6 −0.952326 −0.476163 0.879357i \(-0.657973\pi\)
−0.476163 + 0.879357i \(0.657973\pi\)
\(422\) 1.17062e6i 0.319989i
\(423\) 723168.i 0.196512i
\(424\) 9450.00 0.00255280
\(425\) 0 0
\(426\) −131112. −0.0350041
\(427\) 723142.i 0.191935i
\(428\) 2.47913e6i 0.654169i
\(429\) −1.38924e6 −0.364447
\(430\) 0 0
\(431\) 2.33693e6 0.605971 0.302986 0.952995i \(-0.402017\pi\)
0.302986 + 0.952995i \(0.402017\pi\)
\(432\) 677241.i 0.174596i
\(433\) − 3.50838e6i − 0.899264i −0.893214 0.449632i \(-0.851555\pi\)
0.893214 0.449632i \(-0.148445\pi\)
\(434\) −122304. −0.0311685
\(435\) 0 0
\(436\) 1.42904e6 0.360021
\(437\) 2.84726e6i 0.713221i
\(438\) − 705402.i − 0.175692i
\(439\) −3.54833e6 −0.878744 −0.439372 0.898305i \(-0.644799\pi\)
−0.439372 + 0.898305i \(0.644799\pi\)
\(440\) 0 0
\(441\) 194481. 0.0476190
\(442\) 362292.i 0.0882070i
\(443\) 1.76833e6i 0.428109i 0.976822 + 0.214055i \(0.0686670\pi\)
−0.976822 + 0.214055i \(0.931333\pi\)
\(444\) −2.73364e6 −0.658088
\(445\) 0 0
\(446\) 399376. 0.0950703
\(447\) − 2.66495e6i − 0.630842i
\(448\) 1.31237e6i 0.308930i
\(449\) 5.52579e6 1.29354 0.646768 0.762687i \(-0.276120\pi\)
0.646768 + 0.762687i \(0.276120\pi\)
\(450\) 0 0
\(451\) −6.74356e6 −1.56116
\(452\) 8.14389e6i 1.87493i
\(453\) 3.83825e6i 0.878795i
\(454\) −707916. −0.161191
\(455\) 0 0
\(456\) 505764. 0.113903
\(457\) 2.96226e6i 0.663488i 0.943369 + 0.331744i \(0.107637\pi\)
−0.943369 + 0.331744i \(0.892363\pi\)
\(458\) − 735778.i − 0.163902i
\(459\) −581742. −0.128884
\(460\) 0 0
\(461\) 2.11884e6 0.464350 0.232175 0.972674i \(-0.425416\pi\)
0.232175 + 0.972674i \(0.425416\pi\)
\(462\) 149940.i 0.0326823i
\(463\) 3.19226e6i 0.692062i 0.938223 + 0.346031i \(0.112471\pi\)
−0.938223 + 0.346031i \(0.887529\pi\)
\(464\) 7.65682e6 1.65102
\(465\) 0 0
\(466\) −208758. −0.0445326
\(467\) 7.42621e6i 1.57571i 0.615863 + 0.787853i \(0.288807\pi\)
−0.615863 + 0.787853i \(0.711193\pi\)
\(468\) − 1.13999e6i − 0.240596i
\(469\) −82124.0 −0.0172400
\(470\) 0 0
\(471\) −1.60637e6 −0.333653
\(472\) − 2.67095e6i − 0.551837i
\(473\) 5.86024e6i 1.20438i
\(474\) −20448.0 −0.00418028
\(475\) 0 0
\(476\) −1.21216e6 −0.245213
\(477\) − 12150.0i − 0.00244501i
\(478\) 713376.i 0.142807i
\(479\) 3.39685e6 0.676453 0.338226 0.941065i \(-0.390173\pi\)
0.338226 + 0.941065i \(0.390173\pi\)
\(480\) 0 0
\(481\) 4.44829e6 0.876659
\(482\) 505246.i 0.0990570i
\(483\) − 1.40767e6i − 0.274558i
\(484\) −1.40898e6 −0.273396
\(485\) 0 0
\(486\) −59049.0 −0.0113402
\(487\) 3.71382e6i 0.709574i 0.934947 + 0.354787i \(0.115447\pi\)
−0.934947 + 0.354787i \(0.884553\pi\)
\(488\) − 929754.i − 0.176733i
\(489\) 2.27495e6 0.430229
\(490\) 0 0
\(491\) 5.57494e6 1.04361 0.521803 0.853066i \(-0.325260\pi\)
0.521803 + 0.853066i \(0.325260\pi\)
\(492\) − 5.53369e6i − 1.03063i
\(493\) 6.57712e6i 1.21876i
\(494\) −404968. −0.0746626
\(495\) 0 0
\(496\) −2.31878e6 −0.423210
\(497\) 713832.i 0.129630i
\(498\) 339876.i 0.0614111i
\(499\) −3.92698e6 −0.706004 −0.353002 0.935623i \(-0.614839\pi\)
−0.353002 + 0.935623i \(0.614839\pi\)
\(500\) 0 0
\(501\) −4.57279e6 −0.813930
\(502\) − 317108.i − 0.0561627i
\(503\) 6.42079e6i 1.13154i 0.824564 + 0.565768i \(0.191420\pi\)
−0.824564 + 0.565768i \(0.808580\pi\)
\(504\) −250047. −0.0438475
\(505\) 0 0
\(506\) 1.08528e6 0.188437
\(507\) − 1.48659e6i − 0.256846i
\(508\) − 6.09485e6i − 1.04786i
\(509\) −146278. −0.0250256 −0.0125128 0.999922i \(-0.503983\pi\)
−0.0125128 + 0.999922i \(0.503983\pi\)
\(510\) 0 0
\(511\) −3.84052e6 −0.650636
\(512\) − 4.60877e6i − 0.776980i
\(513\) − 650268.i − 0.109094i
\(514\) 1.44285e6 0.240886
\(515\) 0 0
\(516\) −4.80884e6 −0.795090
\(517\) 3.03552e6i 0.499467i
\(518\) − 480102.i − 0.0786157i
\(519\) −1.99651e6 −0.325351
\(520\) 0 0
\(521\) 7.70937e6 1.24430 0.622149 0.782899i \(-0.286260\pi\)
0.622149 + 0.782899i \(0.286260\pi\)
\(522\) 667602.i 0.107236i
\(523\) − 569420.i − 0.0910287i −0.998964 0.0455144i \(-0.985507\pi\)
0.998964 0.0455144i \(-0.0144927\pi\)
\(524\) −2.39134e6 −0.380464
\(525\) 0 0
\(526\) 271496. 0.0427857
\(527\) − 1.99181e6i − 0.312407i
\(528\) 2.84274e6i 0.443764i
\(529\) −3.75252e6 −0.583021
\(530\) 0 0
\(531\) −3.43408e6 −0.528535
\(532\) − 1.35495e6i − 0.207560i
\(533\) 9.00464e6i 1.37293i
\(534\) −1.05557e6 −0.160190
\(535\) 0 0
\(536\) 105588. 0.0158746
\(537\) − 1.02208e6i − 0.152949i
\(538\) 850614.i 0.126700i
\(539\) 816340. 0.121032
\(540\) 0 0
\(541\) −9.44802e6 −1.38787 −0.693933 0.720040i \(-0.744124\pi\)
−0.693933 + 0.720040i \(0.744124\pi\)
\(542\) 540128.i 0.0789766i
\(543\) − 5.96806e6i − 0.868628i
\(544\) 2.35011e6 0.340479
\(545\) 0 0
\(546\) 200214. 0.0287417
\(547\) 1.35321e6i 0.193374i 0.995315 + 0.0966869i \(0.0308245\pi\)
−0.995315 + 0.0966869i \(0.969175\pi\)
\(548\) − 6.45327e6i − 0.917970i
\(549\) −1.19540e6 −0.169271
\(550\) 0 0
\(551\) −7.35186e6 −1.03162
\(552\) 1.80986e6i 0.252812i
\(553\) 111328.i 0.0154807i
\(554\) −513574. −0.0710933
\(555\) 0 0
\(556\) 8.54298e6 1.17199
\(557\) − 8.19390e6i − 1.11906i −0.828811 0.559529i \(-0.810982\pi\)
0.828811 0.559529i \(-0.189018\pi\)
\(558\) − 202176.i − 0.0274881i
\(559\) 7.82514e6 1.05916
\(560\) 0 0
\(561\) −2.44188e6 −0.327580
\(562\) 1.35642e6i 0.181157i
\(563\) − 1.05796e7i − 1.40669i −0.710847 0.703347i \(-0.751688\pi\)
0.710847 0.703347i \(-0.248312\pi\)
\(564\) −2.49091e6 −0.329732
\(565\) 0 0
\(566\) 286756. 0.0376246
\(567\) 321489.i 0.0419961i
\(568\) − 917784.i − 0.119363i
\(569\) 1.20205e7 1.55648 0.778238 0.627969i \(-0.216114\pi\)
0.778238 + 0.627969i \(0.216114\pi\)
\(570\) 0 0
\(571\) −2.48948e6 −0.319534 −0.159767 0.987155i \(-0.551074\pi\)
−0.159767 + 0.987155i \(0.551074\pi\)
\(572\) − 4.78516e6i − 0.611514i
\(573\) − 4.55098e6i − 0.579053i
\(574\) 971866. 0.123119
\(575\) 0 0
\(576\) −2.16942e6 −0.272451
\(577\) − 8.21322e6i − 1.02701i −0.858087 0.513504i \(-0.828347\pi\)
0.858087 0.513504i \(-0.171653\pi\)
\(578\) − 783053.i − 0.0974926i
\(579\) −3.89144e6 −0.482407
\(580\) 0 0
\(581\) 1.85044e6 0.227423
\(582\) 90018.0i 0.0110159i
\(583\) − 51000.0i − 0.00621439i
\(584\) 4.93781e6 0.599105
\(585\) 0 0
\(586\) −1.70727e6 −0.205380
\(587\) 1.21827e6i 0.145931i 0.997334 + 0.0729655i \(0.0232463\pi\)
−0.997334 + 0.0729655i \(0.976754\pi\)
\(588\) 669879.i 0.0799012i
\(589\) 2.22643e6 0.264436
\(590\) 0 0
\(591\) 1.18766e6 0.139869
\(592\) − 9.10234e6i − 1.06745i
\(593\) − 8.42379e6i − 0.983718i −0.870675 0.491859i \(-0.836317\pi\)
0.870675 0.491859i \(-0.163683\pi\)
\(594\) −247860. −0.0288231
\(595\) 0 0
\(596\) 9.17929e6 1.05851
\(597\) 2.68682e6i 0.308534i
\(598\) − 1.44917e6i − 0.165717i
\(599\) −8.21254e6 −0.935212 −0.467606 0.883937i \(-0.654883\pi\)
−0.467606 + 0.883937i \(0.654883\pi\)
\(600\) 0 0
\(601\) 3.25478e6 0.367566 0.183783 0.982967i \(-0.441166\pi\)
0.183783 + 0.982967i \(0.441166\pi\)
\(602\) − 844564.i − 0.0949820i
\(603\) − 135756.i − 0.0152043i
\(604\) −1.32206e7 −1.47455
\(605\) 0 0
\(606\) 978930. 0.108285
\(607\) − 7.82101e6i − 0.861571i −0.902454 0.430785i \(-0.858237\pi\)
0.902454 0.430785i \(-0.141763\pi\)
\(608\) 2.62694e6i 0.288198i
\(609\) 3.63472e6 0.397126
\(610\) 0 0
\(611\) 4.05331e6 0.439245
\(612\) − 2.00378e6i − 0.216257i
\(613\) − 9.51670e6i − 1.02290i −0.859312 0.511452i \(-0.829108\pi\)
0.859312 0.511452i \(-0.170892\pi\)
\(614\) 546788. 0.0585326
\(615\) 0 0
\(616\) −1.04958e6 −0.111446
\(617\) 7.04895e6i 0.745438i 0.927944 + 0.372719i \(0.121574\pi\)
−0.927944 + 0.372719i \(0.878426\pi\)
\(618\) 1.79273e6i 0.188818i
\(619\) 6.32174e6 0.663147 0.331574 0.943429i \(-0.392420\pi\)
0.331574 + 0.943429i \(0.392420\pi\)
\(620\) 0 0
\(621\) 2.32697e6 0.242137
\(622\) − 3.23426e6i − 0.335197i
\(623\) 5.74701e6i 0.593229i
\(624\) 3.79589e6 0.390259
\(625\) 0 0
\(626\) 1.81313e6 0.184924
\(627\) − 2.72952e6i − 0.277279i
\(628\) − 5.53307e6i − 0.559844i
\(629\) 7.81880e6 0.787977
\(630\) 0 0
\(631\) 8.61236e6 0.861090 0.430545 0.902569i \(-0.358321\pi\)
0.430545 + 0.902569i \(0.358321\pi\)
\(632\) − 143136.i − 0.0142546i
\(633\) 1.05356e7i 1.04508i
\(634\) 1.27658e6 0.126132
\(635\) 0 0
\(636\) 41850.0 0.00410254
\(637\) − 1.09005e6i − 0.106439i
\(638\) 2.80228e6i 0.272559i
\(639\) −1.18001e6 −0.114323
\(640\) 0 0
\(641\) −5.22829e6 −0.502590 −0.251295 0.967910i \(-0.580857\pi\)
−0.251295 + 0.967910i \(0.580857\pi\)
\(642\) − 719748.i − 0.0689196i
\(643\) 1.61373e7i 1.53923i 0.638508 + 0.769615i \(0.279552\pi\)
−0.638508 + 0.769615i \(0.720448\pi\)
\(644\) 4.84865e6 0.460687
\(645\) 0 0
\(646\) −711816. −0.0671099
\(647\) 1.58749e7i 1.49090i 0.666560 + 0.745451i \(0.267766\pi\)
−0.666560 + 0.745451i \(0.732234\pi\)
\(648\) − 413343.i − 0.0386699i
\(649\) −1.44146e7 −1.34336
\(650\) 0 0
\(651\) −1.10074e6 −0.101796
\(652\) 7.83593e6i 0.721891i
\(653\) − 5.94112e6i − 0.545237i −0.962122 0.272619i \(-0.912110\pi\)
0.962122 0.272619i \(-0.0878897\pi\)
\(654\) −414882. −0.0379298
\(655\) 0 0
\(656\) 1.84258e7 1.67173
\(657\) − 6.34862e6i − 0.573807i
\(658\) − 437472.i − 0.0393900i
\(659\) 7.64430e6 0.685684 0.342842 0.939393i \(-0.388610\pi\)
0.342842 + 0.939393i \(0.388610\pi\)
\(660\) 0 0
\(661\) −7.58688e6 −0.675398 −0.337699 0.941254i \(-0.609649\pi\)
−0.337699 + 0.941254i \(0.609649\pi\)
\(662\) 1.73621e6i 0.153978i
\(663\) 3.26063e6i 0.288083i
\(664\) −2.37913e6 −0.209410
\(665\) 0 0
\(666\) 793638. 0.0693325
\(667\) − 2.63085e7i − 2.28971i
\(668\) − 1.57507e7i − 1.36571i
\(669\) 3.59438e6 0.310498
\(670\) 0 0
\(671\) −5.01772e6 −0.430229
\(672\) − 1.29874e6i − 0.110943i
\(673\) − 2.06681e7i − 1.75899i −0.475910 0.879494i \(-0.657881\pi\)
0.475910 0.879494i \(-0.342119\pi\)
\(674\) −2.07215e6 −0.175700
\(675\) 0 0
\(676\) 5.12049e6 0.430968
\(677\) − 7.89541e6i − 0.662068i −0.943619 0.331034i \(-0.892602\pi\)
0.943619 0.331034i \(-0.107398\pi\)
\(678\) − 2.36435e6i − 0.197532i
\(679\) 490098. 0.0407951
\(680\) 0 0
\(681\) −6.37124e6 −0.526449
\(682\) − 848640.i − 0.0698655i
\(683\) − 1.96015e7i − 1.60782i −0.594750 0.803911i \(-0.702749\pi\)
0.594750 0.803911i \(-0.297251\pi\)
\(684\) 2.23981e6 0.183051
\(685\) 0 0
\(686\) −117649. −0.00954504
\(687\) − 6.62200e6i − 0.535300i
\(688\) − 1.60122e7i − 1.28968i
\(689\) −68100.0 −0.00546511
\(690\) 0 0
\(691\) −1.72710e7 −1.37601 −0.688005 0.725706i \(-0.741513\pi\)
−0.688005 + 0.725706i \(0.741513\pi\)
\(692\) − 6.87685e6i − 0.545914i
\(693\) 1.34946e6i 0.106740i
\(694\) 1.65146e6 0.130158
\(695\) 0 0
\(696\) −4.67321e6 −0.365673
\(697\) 1.58275e7i 1.23405i
\(698\) 1.26645e6i 0.0983900i
\(699\) −1.87882e6 −0.145443
\(700\) 0 0
\(701\) −5.36344e6 −0.412238 −0.206119 0.978527i \(-0.566083\pi\)
−0.206119 + 0.978527i \(0.566083\pi\)
\(702\) 330966.i 0.0253478i
\(703\) 8.73982e6i 0.666982i
\(704\) −9.10622e6 −0.692479
\(705\) 0 0
\(706\) 573218. 0.0432821
\(707\) − 5.32973e6i − 0.401011i
\(708\) − 1.18285e7i − 0.886841i
\(709\) 1.73733e7 1.29798 0.648988 0.760798i \(-0.275192\pi\)
0.648988 + 0.760798i \(0.275192\pi\)
\(710\) 0 0
\(711\) −184032. −0.0136527
\(712\) − 7.38902e6i − 0.546244i
\(713\) 7.96723e6i 0.586926i
\(714\) 351918. 0.0258343
\(715\) 0 0
\(716\) 3.52048e6 0.256637
\(717\) 6.42038e6i 0.466405i
\(718\) 4.46322e6i 0.323100i
\(719\) −424608. −0.0306313 −0.0153157 0.999883i \(-0.504875\pi\)
−0.0153157 + 0.999883i \(0.504875\pi\)
\(720\) 0 0
\(721\) 9.76041e6 0.699246
\(722\) 1.68044e6i 0.119972i
\(723\) 4.54721e6i 0.323519i
\(724\) 2.05567e7 1.45749
\(725\) 0 0
\(726\) 409059. 0.0288034
\(727\) − 2.18290e7i − 1.53179i −0.642968 0.765893i \(-0.722297\pi\)
0.642968 0.765893i \(-0.277703\pi\)
\(728\) 1.40150e6i 0.0980086i
\(729\) −531441. −0.0370370
\(730\) 0 0
\(731\) 1.37543e7 0.952020
\(732\) − 4.11748e6i − 0.284023i
\(733\) 2.17675e7i 1.49640i 0.663470 + 0.748202i \(0.269083\pi\)
−0.663470 + 0.748202i \(0.730917\pi\)
\(734\) 4.50797e6 0.308845
\(735\) 0 0
\(736\) −9.40044e6 −0.639667
\(737\) − 569840.i − 0.0386442i
\(738\) 1.60655e6i 0.108581i
\(739\) −6.21786e6 −0.418822 −0.209411 0.977828i \(-0.567155\pi\)
−0.209411 + 0.977828i \(0.567155\pi\)
\(740\) 0 0
\(741\) −3.64471e6 −0.243847
\(742\) 7350.00i 0 0.000490092i
\(743\) 3.77647e6i 0.250966i 0.992096 + 0.125483i \(0.0400480\pi\)
−0.992096 + 0.125483i \(0.959952\pi\)
\(744\) 1.41523e6 0.0937336
\(745\) 0 0
\(746\) 1.66535e6 0.109562
\(747\) 3.05888e6i 0.200568i
\(748\) − 8.41092e6i − 0.549654i
\(749\) −3.91863e6 −0.255229
\(750\) 0 0
\(751\) −2.88795e6 −0.186849 −0.0934244 0.995626i \(-0.529781\pi\)
−0.0934244 + 0.995626i \(0.529781\pi\)
\(752\) − 8.29411e6i − 0.534842i
\(753\) − 2.85397e6i − 0.183427i
\(754\) 3.74187e6 0.239696
\(755\) 0 0
\(756\) −1.10735e6 −0.0704662
\(757\) − 1.25519e6i − 0.0796104i −0.999207 0.0398052i \(-0.987326\pi\)
0.999207 0.0398052i \(-0.0126737\pi\)
\(758\) − 2.53232e6i − 0.160083i
\(759\) 9.76752e6 0.615432
\(760\) 0 0
\(761\) −1.42623e7 −0.892746 −0.446373 0.894847i \(-0.647284\pi\)
−0.446373 + 0.894847i \(0.647284\pi\)
\(762\) 1.76947e6i 0.110397i
\(763\) 2.25880e6i 0.140465i
\(764\) 1.56756e7 0.971606
\(765\) 0 0
\(766\) 796368. 0.0490390
\(767\) 1.92478e7i 1.18139i
\(768\) − 6.62430e6i − 0.405263i
\(769\) 2.02261e7 1.23338 0.616689 0.787207i \(-0.288474\pi\)
0.616689 + 0.787207i \(0.288474\pi\)
\(770\) 0 0
\(771\) 1.29856e7 0.786732
\(772\) − 1.34038e7i − 0.809443i
\(773\) 2.62288e7i 1.57881i 0.613872 + 0.789406i \(0.289611\pi\)
−0.613872 + 0.789406i \(0.710389\pi\)
\(774\) 1.39612e6 0.0837663
\(775\) 0 0
\(776\) −630126. −0.0375641
\(777\) − 4.32092e6i − 0.256758i
\(778\) 1.94799e6i 0.115382i
\(779\) −1.76919e7 −1.04456
\(780\) 0 0
\(781\) −4.95312e6 −0.290570
\(782\) − 2.54722e6i − 0.148953i
\(783\) 6.00842e6i 0.350232i
\(784\) −2.23053e6 −0.129604
\(785\) 0 0
\(786\) 694260. 0.0400835
\(787\) 9.92829e6i 0.571397i 0.958320 + 0.285698i \(0.0922255\pi\)
−0.958320 + 0.285698i \(0.907774\pi\)
\(788\) 4.09082e6i 0.234690i
\(789\) 2.44346e6 0.139738
\(790\) 0 0
\(791\) −1.28726e7 −0.731518
\(792\) − 1.73502e6i − 0.0982860i
\(793\) 6.70013e6i 0.378356i
\(794\) −1.08116e6 −0.0608608
\(795\) 0 0
\(796\) −9.25462e6 −0.517697
\(797\) − 1.09033e7i − 0.608014i −0.952670 0.304007i \(-0.901675\pi\)
0.952670 0.304007i \(-0.0983246\pi\)
\(798\) 393372.i 0.0218674i
\(799\) 7.12454e6 0.394812
\(800\) 0 0
\(801\) −9.50017e6 −0.523179
\(802\) − 2.76770e6i − 0.151944i
\(803\) − 2.66485e7i − 1.45843i
\(804\) 467604. 0.0255116
\(805\) 0 0
\(806\) −1.13318e6 −0.0614416
\(807\) 7.65553e6i 0.413801i
\(808\) 6.85251e6i 0.369251i
\(809\) −6.06398e6 −0.325751 −0.162876 0.986647i \(-0.552077\pi\)
−0.162876 + 0.986647i \(0.552077\pi\)
\(810\) 0 0
\(811\) −8.59438e6 −0.458841 −0.229421 0.973327i \(-0.573683\pi\)
−0.229421 + 0.973327i \(0.573683\pi\)
\(812\) 1.25196e7i 0.666347i
\(813\) 4.86115e6i 0.257937i
\(814\) 3.33132e6 0.176220
\(815\) 0 0
\(816\) 6.67208e6 0.350781
\(817\) 1.53745e7i 0.805835i
\(818\) 2.36350e6i 0.123501i
\(819\) 1.80193e6 0.0938701
\(820\) 0 0
\(821\) −2.01396e6 −0.104278 −0.0521391 0.998640i \(-0.516604\pi\)
−0.0521391 + 0.998640i \(0.516604\pi\)
\(822\) 1.87353e6i 0.0967122i
\(823\) − 2.64679e7i − 1.36213i −0.732221 0.681067i \(-0.761516\pi\)
0.732221 0.681067i \(-0.238484\pi\)
\(824\) −1.25491e7 −0.643864
\(825\) 0 0
\(826\) 2.07740e6 0.105943
\(827\) 3.90229e6i 0.198407i 0.995067 + 0.0992033i \(0.0316294\pi\)
−0.995067 + 0.0992033i \(0.968371\pi\)
\(828\) 8.01511e6i 0.406288i
\(829\) 1.95595e7 0.988487 0.494244 0.869323i \(-0.335445\pi\)
0.494244 + 0.869323i \(0.335445\pi\)
\(830\) 0 0
\(831\) −4.62217e6 −0.232190
\(832\) 1.21595e7i 0.608985i
\(833\) − 1.91600e6i − 0.0956715i
\(834\) −2.48022e6 −0.123474
\(835\) 0 0
\(836\) 9.40168e6 0.465254
\(837\) − 1.81958e6i − 0.0897756i
\(838\) − 2.98669e6i − 0.146920i
\(839\) 2.45448e7 1.20380 0.601901 0.798570i \(-0.294410\pi\)
0.601901 + 0.798570i \(0.294410\pi\)
\(840\) 0 0
\(841\) 4.74194e7 2.31188
\(842\) 3.46331e6i 0.168349i
\(843\) 1.22078e7i 0.591655i
\(844\) −3.62892e7 −1.75356
\(845\) 0 0
\(846\) 723168. 0.0347387
\(847\) − 2.22710e6i − 0.106667i
\(848\) 139350.i 0.00665453i
\(849\) 2.58080e6 0.122881
\(850\) 0 0
\(851\) −3.12752e7 −1.48039
\(852\) − 4.06447e6i − 0.191825i
\(853\) 3.38305e7i 1.59197i 0.605314 + 0.795987i \(0.293048\pi\)
−0.605314 + 0.795987i \(0.706952\pi\)
\(854\) 723142. 0.0339296
\(855\) 0 0
\(856\) 5.03824e6 0.235014
\(857\) − 3.18009e7i − 1.47907i −0.673120 0.739534i \(-0.735046\pi\)
0.673120 0.739534i \(-0.264954\pi\)
\(858\) 1.38924e6i 0.0644257i
\(859\) −638420. −0.0295205 −0.0147602 0.999891i \(-0.504699\pi\)
−0.0147602 + 0.999891i \(0.504699\pi\)
\(860\) 0 0
\(861\) 8.74679e6 0.402106
\(862\) − 2.33693e6i − 0.107122i
\(863\) − 4.22256e6i − 0.192996i −0.995333 0.0964981i \(-0.969236\pi\)
0.995333 0.0964981i \(-0.0307642\pi\)
\(864\) 2.14690e6 0.0978427
\(865\) 0 0
\(866\) −3.50838e6 −0.158969
\(867\) − 7.04748e6i − 0.318409i
\(868\) − 3.79142e6i − 0.170806i
\(869\) −772480. −0.0347007
\(870\) 0 0
\(871\) −760904. −0.0339848
\(872\) − 2.90417e6i − 0.129340i
\(873\) 810162.i 0.0359779i
\(874\) 2.84726e6 0.126081
\(875\) 0 0
\(876\) 2.18675e7 0.962805
\(877\) 2.45043e7i 1.07583i 0.842999 + 0.537915i \(0.180788\pi\)
−0.842999 + 0.537915i \(0.819212\pi\)
\(878\) 3.54833e6i 0.155341i
\(879\) −1.53654e7 −0.670767
\(880\) 0 0
\(881\) −2.77630e7 −1.20511 −0.602555 0.798078i \(-0.705850\pi\)
−0.602555 + 0.798078i \(0.705850\pi\)
\(882\) − 194481.i − 0.00841794i
\(883\) 3.30170e7i 1.42507i 0.701638 + 0.712534i \(0.252452\pi\)
−0.701638 + 0.712534i \(0.747548\pi\)
\(884\) −1.12311e7 −0.483381
\(885\) 0 0
\(886\) 1.76833e6 0.0756797
\(887\) − 4.34462e6i − 0.185414i −0.995693 0.0927070i \(-0.970448\pi\)
0.995693 0.0927070i \(-0.0295520\pi\)
\(888\) 5.55547e6i 0.236422i
\(889\) 9.63379e6 0.408830
\(890\) 0 0
\(891\) −2.23074e6 −0.0941358
\(892\) 1.23807e7i 0.520993i
\(893\) 7.96378e6i 0.334188i
\(894\) −2.66495e6 −0.111518
\(895\) 0 0
\(896\) 5.93013e6 0.246771
\(897\) − 1.30425e7i − 0.541228i
\(898\) − 5.52579e6i − 0.228667i
\(899\) −2.05720e7 −0.848942
\(900\) 0 0
\(901\) −119700. −0.00491227
\(902\) 6.74356e6i 0.275977i
\(903\) − 7.60108e6i − 0.310210i
\(904\) 1.65505e7 0.673580
\(905\) 0 0
\(906\) 3.83825e6 0.155350
\(907\) − 1.96499e7i − 0.793128i −0.918007 0.396564i \(-0.870203\pi\)
0.918007 0.396564i \(-0.129797\pi\)
\(908\) − 2.19454e7i − 0.883342i
\(909\) 8.81037e6 0.353659
\(910\) 0 0
\(911\) −7.26518e6 −0.290035 −0.145018 0.989429i \(-0.546324\pi\)
−0.145018 + 0.989429i \(0.546324\pi\)
\(912\) 7.45801e6i 0.296918i
\(913\) 1.28398e7i 0.509777i
\(914\) 2.96226e6 0.117289
\(915\) 0 0
\(916\) 2.28091e7 0.898193
\(917\) − 3.77986e6i − 0.148440i
\(918\) 581742.i 0.0227837i
\(919\) −9.82532e6 −0.383758 −0.191879 0.981419i \(-0.561458\pi\)
−0.191879 + 0.981419i \(0.561458\pi\)
\(920\) 0 0
\(921\) 4.92109e6 0.191167
\(922\) − 2.11884e6i − 0.0820863i
\(923\) 6.61387e6i 0.255536i
\(924\) −4.64814e6 −0.179102
\(925\) 0 0
\(926\) 3.19226e6 0.122340
\(927\) 1.61346e7i 0.616677i
\(928\) − 2.42727e7i − 0.925226i
\(929\) −2.71152e7 −1.03080 −0.515399 0.856951i \(-0.672356\pi\)
−0.515399 + 0.856951i \(0.672356\pi\)
\(930\) 0 0
\(931\) 2.14169e6 0.0809809
\(932\) − 6.47150e6i − 0.244042i
\(933\) − 2.91084e7i − 1.09475i
\(934\) 7.42621e6 0.278548
\(935\) 0 0
\(936\) −2.31676e6 −0.0864354
\(937\) 4.53522e7i 1.68752i 0.536720 + 0.843761i \(0.319663\pi\)
−0.536720 + 0.843761i \(0.680337\pi\)
\(938\) 82124.0i 0.00304764i
\(939\) 1.63182e7 0.603959
\(940\) 0 0
\(941\) 4.65780e7 1.71477 0.857387 0.514672i \(-0.172086\pi\)
0.857387 + 0.514672i \(0.172086\pi\)
\(942\) 1.60637e6i 0.0589820i
\(943\) − 6.33101e7i − 2.31843i
\(944\) 3.93859e7 1.43850
\(945\) 0 0
\(946\) 5.86024e6 0.212906
\(947\) − 2.53799e7i − 0.919632i −0.888014 0.459816i \(-0.847915\pi\)
0.888014 0.459816i \(-0.152085\pi\)
\(948\) − 633888.i − 0.0229082i
\(949\) −3.55836e7 −1.28258
\(950\) 0 0
\(951\) 1.14892e7 0.411944
\(952\) 2.46343e6i 0.0880942i
\(953\) 1.52948e7i 0.545520i 0.962082 + 0.272760i \(0.0879365\pi\)
−0.962082 + 0.272760i \(0.912063\pi\)
\(954\) −12150.0 −0.000432220 0
\(955\) 0 0
\(956\) −2.21147e7 −0.782592
\(957\) 2.52205e7i 0.890173i
\(958\) − 3.39685e6i − 0.119581i
\(959\) 1.02003e7 0.358152
\(960\) 0 0
\(961\) −2.23991e7 −0.782389
\(962\) − 4.44829e6i − 0.154973i
\(963\) − 6.47773e6i − 0.225091i
\(964\) −1.56626e7 −0.542840
\(965\) 0 0
\(966\) −1.40767e6 −0.0485354
\(967\) 5.71465e6i 0.196527i 0.995160 + 0.0982637i \(0.0313289\pi\)
−0.995160 + 0.0982637i \(0.968671\pi\)
\(968\) 2.86341e6i 0.0982190i
\(969\) −6.40634e6 −0.219180
\(970\) 0 0
\(971\) 1.30250e7 0.443332 0.221666 0.975123i \(-0.428851\pi\)
0.221666 + 0.975123i \(0.428851\pi\)
\(972\) − 1.83052e6i − 0.0621453i
\(973\) 1.35034e7i 0.457258i
\(974\) 3.71382e6 0.125436
\(975\) 0 0
\(976\) 1.37102e7 0.460700
\(977\) 1.70360e7i 0.570992i 0.958380 + 0.285496i \(0.0921583\pi\)
−0.958380 + 0.285496i \(0.907842\pi\)
\(978\) − 2.27495e6i − 0.0760544i
\(979\) −3.98772e7 −1.32974
\(980\) 0 0
\(981\) −3.73394e6 −0.123878
\(982\) − 5.57494e6i − 0.184485i
\(983\) − 1.36985e7i − 0.452156i −0.974109 0.226078i \(-0.927410\pi\)
0.974109 0.226078i \(-0.0725903\pi\)
\(984\) −1.12459e7 −0.370259
\(985\) 0 0
\(986\) 6.57712e6 0.215448
\(987\) − 3.93725e6i − 0.128647i
\(988\) − 1.25540e7i − 0.409157i
\(989\) −5.50173e7 −1.78858
\(990\) 0 0
\(991\) −3.49088e7 −1.12915 −0.564574 0.825383i \(-0.690959\pi\)
−0.564574 + 0.825383i \(0.690959\pi\)
\(992\) 7.35072e6i 0.237165i
\(993\) 1.56259e7i 0.502889i
\(994\) 713832. 0.0229155
\(995\) 0 0
\(996\) −1.05362e7 −0.336538
\(997\) − 875662.i − 0.0278996i −0.999903 0.0139498i \(-0.995559\pi\)
0.999903 0.0139498i \(-0.00444051\pi\)
\(998\) 3.92698e6i 0.124805i
\(999\) 7.14274e6 0.226439
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 525.6.d.d.274.1 2
5.2 odd 4 21.6.a.b.1.1 1
5.3 odd 4 525.6.a.c.1.1 1
5.4 even 2 inner 525.6.d.d.274.2 2
15.2 even 4 63.6.a.c.1.1 1
20.7 even 4 336.6.a.l.1.1 1
35.2 odd 12 147.6.e.f.67.1 2
35.12 even 12 147.6.e.e.67.1 2
35.17 even 12 147.6.e.e.79.1 2
35.27 even 4 147.6.a.e.1.1 1
35.32 odd 12 147.6.e.f.79.1 2
60.47 odd 4 1008.6.a.t.1.1 1
105.62 odd 4 441.6.a.d.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
21.6.a.b.1.1 1 5.2 odd 4
63.6.a.c.1.1 1 15.2 even 4
147.6.a.e.1.1 1 35.27 even 4
147.6.e.e.67.1 2 35.12 even 12
147.6.e.e.79.1 2 35.17 even 12
147.6.e.f.67.1 2 35.2 odd 12
147.6.e.f.79.1 2 35.32 odd 12
336.6.a.l.1.1 1 20.7 even 4
441.6.a.d.1.1 1 105.62 odd 4
525.6.a.c.1.1 1 5.3 odd 4
525.6.d.d.274.1 2 1.1 even 1 trivial
525.6.d.d.274.2 2 5.4 even 2 inner
1008.6.a.t.1.1 1 60.47 odd 4