Properties

Label 525.6.d.d
Level $525$
Weight $6$
Character orbit 525.d
Analytic conductor $84.202$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [525,6,Mod(274,525)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(525, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1, 0]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("525.274");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 525 = 3 \cdot 5^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 525.d (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(84.2015054018\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{-1}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 21)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(i = \sqrt{-1}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + i q^{2} + 9 i q^{3} + 31 q^{4} - 9 q^{6} - 49 i q^{7} + 63 i q^{8} - 81 q^{9} +O(q^{10}) \) Copy content Toggle raw display \( q + i q^{2} + 9 i q^{3} + 31 q^{4} - 9 q^{6} - 49 i q^{7} + 63 i q^{8} - 81 q^{9} - 340 q^{11} + 279 i q^{12} - 454 i q^{13} + 49 q^{14} + 929 q^{16} - 798 i q^{17} - 81 i q^{18} - 892 q^{19} + 441 q^{21} - 340 i q^{22} + 3192 i q^{23} - 567 q^{24} + 454 q^{26} - 729 i q^{27} - 1519 i q^{28} + 8242 q^{29} - 2496 q^{31} + 2945 i q^{32} - 3060 i q^{33} + 798 q^{34} - 2511 q^{36} + 9798 i q^{37} - 892 i q^{38} + 4086 q^{39} + 19834 q^{41} + 441 i q^{42} + 17236 i q^{43} - 10540 q^{44} - 3192 q^{46} + 8928 i q^{47} + 8361 i q^{48} - 2401 q^{49} + 7182 q^{51} - 14074 i q^{52} - 150 i q^{53} + 729 q^{54} + 3087 q^{56} - 8028 i q^{57} + 8242 i q^{58} + 42396 q^{59} + 14758 q^{61} - 2496 i q^{62} + 3969 i q^{63} + 26783 q^{64} + 3060 q^{66} - 1676 i q^{67} - 24738 i q^{68} - 28728 q^{69} + 14568 q^{71} - 5103 i q^{72} - 78378 i q^{73} - 9798 q^{74} - 27652 q^{76} + 16660 i q^{77} + 4086 i q^{78} + 2272 q^{79} + 6561 q^{81} + 19834 i q^{82} + 37764 i q^{83} + 13671 q^{84} - 17236 q^{86} + 74178 i q^{87} - 21420 i q^{88} + 117286 q^{89} - 22246 q^{91} + 98952 i q^{92} - 22464 i q^{93} - 8928 q^{94} - 26505 q^{96} + 10002 i q^{97} - 2401 i q^{98} + 27540 q^{99} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 62 q^{4} - 18 q^{6} - 162 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 2 q + 62 q^{4} - 18 q^{6} - 162 q^{9} - 680 q^{11} + 98 q^{14} + 1858 q^{16} - 1784 q^{19} + 882 q^{21} - 1134 q^{24} + 908 q^{26} + 16484 q^{29} - 4992 q^{31} + 1596 q^{34} - 5022 q^{36} + 8172 q^{39} + 39668 q^{41} - 21080 q^{44} - 6384 q^{46} - 4802 q^{49} + 14364 q^{51} + 1458 q^{54} + 6174 q^{56} + 84792 q^{59} + 29516 q^{61} + 53566 q^{64} + 6120 q^{66} - 57456 q^{69} + 29136 q^{71} - 19596 q^{74} - 55304 q^{76} + 4544 q^{79} + 13122 q^{81} + 27342 q^{84} - 34472 q^{86} + 234572 q^{89} - 44492 q^{91} - 17856 q^{94} - 53010 q^{96} + 55080 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/525\mathbb{Z}\right)^\times\).

\(n\) \(127\) \(176\) \(451\)
\(\chi(n)\) \(-1\) \(1\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
274.1
1.00000i
1.00000i
1.00000i 9.00000i 31.0000 0 −9.00000 49.0000i 63.0000i −81.0000 0
274.2 1.00000i 9.00000i 31.0000 0 −9.00000 49.0000i 63.0000i −81.0000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
5.b even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 525.6.d.d 2
5.b even 2 1 inner 525.6.d.d 2
5.c odd 4 1 21.6.a.b 1
5.c odd 4 1 525.6.a.c 1
15.e even 4 1 63.6.a.c 1
20.e even 4 1 336.6.a.l 1
35.f even 4 1 147.6.a.e 1
35.k even 12 2 147.6.e.e 2
35.l odd 12 2 147.6.e.f 2
60.l odd 4 1 1008.6.a.t 1
105.k odd 4 1 441.6.a.d 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
21.6.a.b 1 5.c odd 4 1
63.6.a.c 1 15.e even 4 1
147.6.a.e 1 35.f even 4 1
147.6.e.e 2 35.k even 12 2
147.6.e.f 2 35.l odd 12 2
336.6.a.l 1 20.e even 4 1
441.6.a.d 1 105.k odd 4 1
525.6.a.c 1 5.c odd 4 1
525.6.d.d 2 1.a even 1 1 trivial
525.6.d.d 2 5.b even 2 1 inner
1008.6.a.t 1 60.l odd 4 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{2}^{2} + 1 \) acting on \(S_{6}^{\mathrm{new}}(525, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} + 1 \) Copy content Toggle raw display
$3$ \( T^{2} + 81 \) Copy content Toggle raw display
$5$ \( T^{2} \) Copy content Toggle raw display
$7$ \( T^{2} + 2401 \) Copy content Toggle raw display
$11$ \( (T + 340)^{2} \) Copy content Toggle raw display
$13$ \( T^{2} + 206116 \) Copy content Toggle raw display
$17$ \( T^{2} + 636804 \) Copy content Toggle raw display
$19$ \( (T + 892)^{2} \) Copy content Toggle raw display
$23$ \( T^{2} + 10188864 \) Copy content Toggle raw display
$29$ \( (T - 8242)^{2} \) Copy content Toggle raw display
$31$ \( (T + 2496)^{2} \) Copy content Toggle raw display
$37$ \( T^{2} + 96000804 \) Copy content Toggle raw display
$41$ \( (T - 19834)^{2} \) Copy content Toggle raw display
$43$ \( T^{2} + 297079696 \) Copy content Toggle raw display
$47$ \( T^{2} + 79709184 \) Copy content Toggle raw display
$53$ \( T^{2} + 22500 \) Copy content Toggle raw display
$59$ \( (T - 42396)^{2} \) Copy content Toggle raw display
$61$ \( (T - 14758)^{2} \) Copy content Toggle raw display
$67$ \( T^{2} + 2808976 \) Copy content Toggle raw display
$71$ \( (T - 14568)^{2} \) Copy content Toggle raw display
$73$ \( T^{2} + 6143110884 \) Copy content Toggle raw display
$79$ \( (T - 2272)^{2} \) Copy content Toggle raw display
$83$ \( T^{2} + 1426119696 \) Copy content Toggle raw display
$89$ \( (T - 117286)^{2} \) Copy content Toggle raw display
$97$ \( T^{2} + 100040004 \) Copy content Toggle raw display
show more
show less