Properties

Label 525.6.d.b.274.2
Level $525$
Weight $6$
Character 525.274
Analytic conductor $84.202$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [525,6,Mod(274,525)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(525, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1, 0]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("525.274");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 525 = 3 \cdot 5^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 525.d (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(84.2015054018\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(i)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 21)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 274.2
Root \(1.00000i\) of defining polynomial
Character \(\chi\) \(=\) 525.274
Dual form 525.6.d.b.274.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+6.00000i q^{2} -9.00000i q^{3} -4.00000 q^{4} +54.0000 q^{6} -49.0000i q^{7} +168.000i q^{8} -81.0000 q^{9} +O(q^{10})\) \(q+6.00000i q^{2} -9.00000i q^{3} -4.00000 q^{4} +54.0000 q^{6} -49.0000i q^{7} +168.000i q^{8} -81.0000 q^{9} +444.000 q^{11} +36.0000i q^{12} -442.000i q^{13} +294.000 q^{14} -1136.00 q^{16} +126.000i q^{17} -486.000i q^{18} -2684.00 q^{19} -441.000 q^{21} +2664.00i q^{22} +4200.00i q^{23} +1512.00 q^{24} +2652.00 q^{26} +729.000i q^{27} +196.000i q^{28} +5442.00 q^{29} +80.0000 q^{31} -1440.00i q^{32} -3996.00i q^{33} -756.000 q^{34} +324.000 q^{36} +5434.00i q^{37} -16104.0i q^{38} -3978.00 q^{39} +7962.00 q^{41} -2646.00i q^{42} -11524.0i q^{43} -1776.00 q^{44} -25200.0 q^{46} +13920.0i q^{47} +10224.0i q^{48} -2401.00 q^{49} +1134.00 q^{51} +1768.00i q^{52} -9594.00i q^{53} -4374.00 q^{54} +8232.00 q^{56} +24156.0i q^{57} +32652.0i q^{58} -27492.0 q^{59} +49478.0 q^{61} +480.000i q^{62} +3969.00i q^{63} -27712.0 q^{64} +23976.0 q^{66} +59356.0i q^{67} -504.000i q^{68} +37800.0 q^{69} +32040.0 q^{71} -13608.0i q^{72} -61846.0i q^{73} -32604.0 q^{74} +10736.0 q^{76} -21756.0i q^{77} -23868.0i q^{78} +65776.0 q^{79} +6561.00 q^{81} +47772.0i q^{82} +40188.0i q^{83} +1764.00 q^{84} +69144.0 q^{86} -48978.0i q^{87} +74592.0i q^{88} +7974.00 q^{89} -21658.0 q^{91} -16800.0i q^{92} -720.000i q^{93} -83520.0 q^{94} -12960.0 q^{96} +143662. i q^{97} -14406.0i q^{98} -35964.0 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 8 q^{4} + 108 q^{6} - 162 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 2 q - 8 q^{4} + 108 q^{6} - 162 q^{9} + 888 q^{11} + 588 q^{14} - 2272 q^{16} - 5368 q^{19} - 882 q^{21} + 3024 q^{24} + 5304 q^{26} + 10884 q^{29} + 160 q^{31} - 1512 q^{34} + 648 q^{36} - 7956 q^{39} + 15924 q^{41} - 3552 q^{44} - 50400 q^{46} - 4802 q^{49} + 2268 q^{51} - 8748 q^{54} + 16464 q^{56} - 54984 q^{59} + 98956 q^{61} - 55424 q^{64} + 47952 q^{66} + 75600 q^{69} + 64080 q^{71} - 65208 q^{74} + 21472 q^{76} + 131552 q^{79} + 13122 q^{81} + 3528 q^{84} + 138288 q^{86} + 15948 q^{89} - 43316 q^{91} - 167040 q^{94} - 25920 q^{96} - 71928 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/525\mathbb{Z}\right)^\times\).

\(n\) \(127\) \(176\) \(451\)
\(\chi(n)\) \(-1\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 6.00000i 1.06066i 0.847791 + 0.530330i \(0.177932\pi\)
−0.847791 + 0.530330i \(0.822068\pi\)
\(3\) − 9.00000i − 0.577350i
\(4\) −4.00000 −0.125000
\(5\) 0 0
\(6\) 54.0000 0.612372
\(7\) − 49.0000i − 0.377964i
\(8\) 168.000i 0.928078i
\(9\) −81.0000 −0.333333
\(10\) 0 0
\(11\) 444.000 1.10637 0.553186 0.833058i \(-0.313412\pi\)
0.553186 + 0.833058i \(0.313412\pi\)
\(12\) 36.0000i 0.0721688i
\(13\) − 442.000i − 0.725377i −0.931910 0.362689i \(-0.881859\pi\)
0.931910 0.362689i \(-0.118141\pi\)
\(14\) 294.000 0.400892
\(15\) 0 0
\(16\) −1136.00 −1.10938
\(17\) 126.000i 0.105742i 0.998601 + 0.0528711i \(0.0168372\pi\)
−0.998601 + 0.0528711i \(0.983163\pi\)
\(18\) − 486.000i − 0.353553i
\(19\) −2684.00 −1.70568 −0.852842 0.522169i \(-0.825123\pi\)
−0.852842 + 0.522169i \(0.825123\pi\)
\(20\) 0 0
\(21\) −441.000 −0.218218
\(22\) 2664.00i 1.17348i
\(23\) 4200.00i 1.65550i 0.561096 + 0.827751i \(0.310380\pi\)
−0.561096 + 0.827751i \(0.689620\pi\)
\(24\) 1512.00 0.535826
\(25\) 0 0
\(26\) 2652.00 0.769379
\(27\) 729.000i 0.192450i
\(28\) 196.000i 0.0472456i
\(29\) 5442.00 1.20161 0.600805 0.799396i \(-0.294847\pi\)
0.600805 + 0.799396i \(0.294847\pi\)
\(30\) 0 0
\(31\) 80.0000 0.0149515 0.00747577 0.999972i \(-0.497620\pi\)
0.00747577 + 0.999972i \(0.497620\pi\)
\(32\) − 1440.00i − 0.248592i
\(33\) − 3996.00i − 0.638764i
\(34\) −756.000 −0.112157
\(35\) 0 0
\(36\) 324.000 0.0416667
\(37\) 5434.00i 0.652552i 0.945274 + 0.326276i \(0.105794\pi\)
−0.945274 + 0.326276i \(0.894206\pi\)
\(38\) − 16104.0i − 1.80915i
\(39\) −3978.00 −0.418797
\(40\) 0 0
\(41\) 7962.00 0.739712 0.369856 0.929089i \(-0.379407\pi\)
0.369856 + 0.929089i \(0.379407\pi\)
\(42\) − 2646.00i − 0.231455i
\(43\) − 11524.0i − 0.950456i −0.879863 0.475228i \(-0.842366\pi\)
0.879863 0.475228i \(-0.157634\pi\)
\(44\) −1776.00 −0.138297
\(45\) 0 0
\(46\) −25200.0 −1.75592
\(47\) 13920.0i 0.919167i 0.888134 + 0.459584i \(0.152001\pi\)
−0.888134 + 0.459584i \(0.847999\pi\)
\(48\) 10224.0i 0.640498i
\(49\) −2401.00 −0.142857
\(50\) 0 0
\(51\) 1134.00 0.0610503
\(52\) 1768.00i 0.0906721i
\(53\) − 9594.00i − 0.469148i −0.972098 0.234574i \(-0.924630\pi\)
0.972098 0.234574i \(-0.0753695\pi\)
\(54\) −4374.00 −0.204124
\(55\) 0 0
\(56\) 8232.00 0.350780
\(57\) 24156.0i 0.984777i
\(58\) 32652.0i 1.27450i
\(59\) −27492.0 −1.02820 −0.514098 0.857731i \(-0.671873\pi\)
−0.514098 + 0.857731i \(0.671873\pi\)
\(60\) 0 0
\(61\) 49478.0 1.70250 0.851251 0.524759i \(-0.175845\pi\)
0.851251 + 0.524759i \(0.175845\pi\)
\(62\) 480.000i 0.0158585i
\(63\) 3969.00i 0.125988i
\(64\) −27712.0 −0.845703
\(65\) 0 0
\(66\) 23976.0 0.677512
\(67\) 59356.0i 1.61539i 0.589600 + 0.807695i \(0.299285\pi\)
−0.589600 + 0.807695i \(0.700715\pi\)
\(68\) − 504.000i − 0.0132178i
\(69\) 37800.0 0.955805
\(70\) 0 0
\(71\) 32040.0 0.754304 0.377152 0.926151i \(-0.376903\pi\)
0.377152 + 0.926151i \(0.376903\pi\)
\(72\) − 13608.0i − 0.309359i
\(73\) − 61846.0i − 1.35833i −0.733987 0.679164i \(-0.762343\pi\)
0.733987 0.679164i \(-0.237657\pi\)
\(74\) −32604.0 −0.692136
\(75\) 0 0
\(76\) 10736.0 0.213210
\(77\) − 21756.0i − 0.418169i
\(78\) − 23868.0i − 0.444201i
\(79\) 65776.0 1.18577 0.592884 0.805288i \(-0.297989\pi\)
0.592884 + 0.805288i \(0.297989\pi\)
\(80\) 0 0
\(81\) 6561.00 0.111111
\(82\) 47772.0i 0.784583i
\(83\) 40188.0i 0.640326i 0.947362 + 0.320163i \(0.103738\pi\)
−0.947362 + 0.320163i \(0.896262\pi\)
\(84\) 1764.00 0.0272772
\(85\) 0 0
\(86\) 69144.0 1.00811
\(87\) − 48978.0i − 0.693750i
\(88\) 74592.0i 1.02680i
\(89\) 7974.00 0.106709 0.0533545 0.998576i \(-0.483009\pi\)
0.0533545 + 0.998576i \(0.483009\pi\)
\(90\) 0 0
\(91\) −21658.0 −0.274167
\(92\) − 16800.0i − 0.206938i
\(93\) − 720.000i − 0.00863227i
\(94\) −83520.0 −0.974924
\(95\) 0 0
\(96\) −12960.0 −0.143525
\(97\) 143662.i 1.55029i 0.631784 + 0.775144i \(0.282323\pi\)
−0.631784 + 0.775144i \(0.717677\pi\)
\(98\) − 14406.0i − 0.151523i
\(99\) −35964.0 −0.368791
\(100\) 0 0
\(101\) −2706.00 −0.0263952 −0.0131976 0.999913i \(-0.504201\pi\)
−0.0131976 + 0.999913i \(0.504201\pi\)
\(102\) 6804.00i 0.0647536i
\(103\) 131768.i 1.22382i 0.790928 + 0.611909i \(0.209598\pi\)
−0.790928 + 0.611909i \(0.790402\pi\)
\(104\) 74256.0 0.673206
\(105\) 0 0
\(106\) 57564.0 0.497607
\(107\) 128916.i 1.08855i 0.838908 + 0.544274i \(0.183195\pi\)
−0.838908 + 0.544274i \(0.816805\pi\)
\(108\) − 2916.00i − 0.0240563i
\(109\) 100978. 0.814068 0.407034 0.913413i \(-0.366563\pi\)
0.407034 + 0.913413i \(0.366563\pi\)
\(110\) 0 0
\(111\) 48906.0 0.376751
\(112\) 55664.0i 0.419304i
\(113\) 220146.i 1.62186i 0.585140 + 0.810932i \(0.301040\pi\)
−0.585140 + 0.810932i \(0.698960\pi\)
\(114\) −144936. −1.04451
\(115\) 0 0
\(116\) −21768.0 −0.150201
\(117\) 35802.0i 0.241792i
\(118\) − 164952.i − 1.09057i
\(119\) 6174.00 0.0399668
\(120\) 0 0
\(121\) 36085.0 0.224059
\(122\) 296868.i 1.80578i
\(123\) − 71658.0i − 0.427073i
\(124\) −320.000 −0.00186894
\(125\) 0 0
\(126\) −23814.0 −0.133631
\(127\) 74320.0i 0.408880i 0.978879 + 0.204440i \(0.0655374\pi\)
−0.978879 + 0.204440i \(0.934463\pi\)
\(128\) − 212352.i − 1.14560i
\(129\) −103716. −0.548746
\(130\) 0 0
\(131\) −155316. −0.790748 −0.395374 0.918520i \(-0.629385\pi\)
−0.395374 + 0.918520i \(0.629385\pi\)
\(132\) 15984.0i 0.0798455i
\(133\) 131516.i 0.644688i
\(134\) −356136. −1.71338
\(135\) 0 0
\(136\) −21168.0 −0.0981369
\(137\) 264246.i 1.20284i 0.798934 + 0.601419i \(0.205398\pi\)
−0.798934 + 0.601419i \(0.794602\pi\)
\(138\) 226800.i 1.01378i
\(139\) −224612. −0.986043 −0.493022 0.870017i \(-0.664108\pi\)
−0.493022 + 0.870017i \(0.664108\pi\)
\(140\) 0 0
\(141\) 125280. 0.530682
\(142\) 192240.i 0.800061i
\(143\) − 196248.i − 0.802537i
\(144\) 92016.0 0.369792
\(145\) 0 0
\(146\) 371076. 1.44072
\(147\) 21609.0i 0.0824786i
\(148\) − 21736.0i − 0.0815690i
\(149\) 82074.0 0.302859 0.151429 0.988468i \(-0.451612\pi\)
0.151429 + 0.988468i \(0.451612\pi\)
\(150\) 0 0
\(151\) −287032. −1.02444 −0.512222 0.858853i \(-0.671177\pi\)
−0.512222 + 0.858853i \(0.671177\pi\)
\(152\) − 450912.i − 1.58301i
\(153\) − 10206.0i − 0.0352474i
\(154\) 130536. 0.443536
\(155\) 0 0
\(156\) 15912.0 0.0523496
\(157\) − 129878.i − 0.420520i −0.977646 0.210260i \(-0.932569\pi\)
0.977646 0.210260i \(-0.0674310\pi\)
\(158\) 394656.i 1.25770i
\(159\) −86346.0 −0.270863
\(160\) 0 0
\(161\) 205800. 0.625721
\(162\) 39366.0i 0.117851i
\(163\) 555284.i 1.63699i 0.574513 + 0.818495i \(0.305191\pi\)
−0.574513 + 0.818495i \(0.694809\pi\)
\(164\) −31848.0 −0.0924640
\(165\) 0 0
\(166\) −241128. −0.679168
\(167\) − 43512.0i − 0.120731i −0.998176 0.0603654i \(-0.980773\pi\)
0.998176 0.0603654i \(-0.0192266\pi\)
\(168\) − 74088.0i − 0.202523i
\(169\) 175929. 0.473828
\(170\) 0 0
\(171\) 217404. 0.568561
\(172\) 46096.0i 0.118807i
\(173\) − 18330.0i − 0.0465637i −0.999729 0.0232818i \(-0.992588\pi\)
0.999729 0.0232818i \(-0.00741151\pi\)
\(174\) 293868. 0.735833
\(175\) 0 0
\(176\) −504384. −1.22738
\(177\) 247428.i 0.593630i
\(178\) 47844.0i 0.113182i
\(179\) 153324. 0.357666 0.178833 0.983879i \(-0.442768\pi\)
0.178833 + 0.983879i \(0.442768\pi\)
\(180\) 0 0
\(181\) −382066. −0.866846 −0.433423 0.901191i \(-0.642694\pi\)
−0.433423 + 0.901191i \(0.642694\pi\)
\(182\) − 129948.i − 0.290798i
\(183\) − 445302.i − 0.982940i
\(184\) −705600. −1.53643
\(185\) 0 0
\(186\) 4320.00 0.00915591
\(187\) 55944.0i 0.116990i
\(188\) − 55680.0i − 0.114896i
\(189\) 35721.0 0.0727393
\(190\) 0 0
\(191\) −273408. −0.542285 −0.271143 0.962539i \(-0.587402\pi\)
−0.271143 + 0.962539i \(0.587402\pi\)
\(192\) 249408.i 0.488267i
\(193\) 153602.i 0.296827i 0.988925 + 0.148414i \(0.0474167\pi\)
−0.988925 + 0.148414i \(0.952583\pi\)
\(194\) −861972. −1.64433
\(195\) 0 0
\(196\) 9604.00 0.0178571
\(197\) − 154422.i − 0.283494i −0.989903 0.141747i \(-0.954728\pi\)
0.989903 0.141747i \(-0.0452719\pi\)
\(198\) − 215784.i − 0.391162i
\(199\) 366856. 0.656694 0.328347 0.944557i \(-0.393508\pi\)
0.328347 + 0.944557i \(0.393508\pi\)
\(200\) 0 0
\(201\) 534204. 0.932646
\(202\) − 16236.0i − 0.0279963i
\(203\) − 266658.i − 0.454166i
\(204\) −4536.00 −0.00763128
\(205\) 0 0
\(206\) −790608. −1.29806
\(207\) − 340200.i − 0.551834i
\(208\) 502112.i 0.804715i
\(209\) −1.19170e6 −1.88712
\(210\) 0 0
\(211\) 520244. 0.804453 0.402227 0.915540i \(-0.368236\pi\)
0.402227 + 0.915540i \(0.368236\pi\)
\(212\) 38376.0i 0.0586435i
\(213\) − 288360.i − 0.435498i
\(214\) −773496. −1.15458
\(215\) 0 0
\(216\) −122472. −0.178609
\(217\) − 3920.00i − 0.00565115i
\(218\) 605868.i 0.863449i
\(219\) −556614. −0.784231
\(220\) 0 0
\(221\) 55692.0 0.0767030
\(222\) 293436.i 0.399605i
\(223\) 304736.i 0.410357i 0.978725 + 0.205178i \(0.0657775\pi\)
−0.978725 + 0.205178i \(0.934223\pi\)
\(224\) −70560.0 −0.0939590
\(225\) 0 0
\(226\) −1.32088e6 −1.72025
\(227\) − 288588.i − 0.371718i −0.982576 0.185859i \(-0.940493\pi\)
0.982576 0.185859i \(-0.0595068\pi\)
\(228\) − 96624.0i − 0.123097i
\(229\) −772190. −0.973051 −0.486525 0.873666i \(-0.661736\pi\)
−0.486525 + 0.873666i \(0.661736\pi\)
\(230\) 0 0
\(231\) −195804. −0.241430
\(232\) 914256.i 1.11519i
\(233\) 252234.i 0.304378i 0.988351 + 0.152189i \(0.0486323\pi\)
−0.988351 + 0.152189i \(0.951368\pi\)
\(234\) −214812. −0.256460
\(235\) 0 0
\(236\) 109968. 0.128525
\(237\) − 591984.i − 0.684603i
\(238\) 37044.0i 0.0423912i
\(239\) 1.45114e6 1.64329 0.821643 0.570002i \(-0.193058\pi\)
0.821643 + 0.570002i \(0.193058\pi\)
\(240\) 0 0
\(241\) −146398. −0.162365 −0.0811825 0.996699i \(-0.525870\pi\)
−0.0811825 + 0.996699i \(0.525870\pi\)
\(242\) 216510.i 0.237651i
\(243\) − 59049.0i − 0.0641500i
\(244\) −197912. −0.212813
\(245\) 0 0
\(246\) 429948. 0.452979
\(247\) 1.18633e6i 1.23726i
\(248\) 13440.0i 0.0138762i
\(249\) 361692. 0.369692
\(250\) 0 0
\(251\) 607860. 0.609003 0.304501 0.952512i \(-0.401510\pi\)
0.304501 + 0.952512i \(0.401510\pi\)
\(252\) − 15876.0i − 0.0157485i
\(253\) 1.86480e6i 1.83160i
\(254\) −445920. −0.433683
\(255\) 0 0
\(256\) 387328. 0.369385
\(257\) − 95586.0i − 0.0902737i −0.998981 0.0451369i \(-0.985628\pi\)
0.998981 0.0451369i \(-0.0143724\pi\)
\(258\) − 622296.i − 0.582033i
\(259\) 266266. 0.246642
\(260\) 0 0
\(261\) −440802. −0.400537
\(262\) − 931896.i − 0.838715i
\(263\) − 2.20034e6i − 1.96156i −0.195121 0.980779i \(-0.562510\pi\)
0.195121 0.980779i \(-0.437490\pi\)
\(264\) 671328. 0.592823
\(265\) 0 0
\(266\) −789096. −0.683795
\(267\) − 71766.0i − 0.0616085i
\(268\) − 237424.i − 0.201924i
\(269\) −1.77025e6 −1.49160 −0.745801 0.666169i \(-0.767933\pi\)
−0.745801 + 0.666169i \(0.767933\pi\)
\(270\) 0 0
\(271\) −223504. −0.184868 −0.0924341 0.995719i \(-0.529465\pi\)
−0.0924341 + 0.995719i \(0.529465\pi\)
\(272\) − 143136.i − 0.117308i
\(273\) 194922.i 0.158290i
\(274\) −1.58548e6 −1.27580
\(275\) 0 0
\(276\) −151200. −0.119476
\(277\) 342778.i 0.268419i 0.990953 + 0.134210i \(0.0428495\pi\)
−0.990953 + 0.134210i \(0.957150\pi\)
\(278\) − 1.34767e6i − 1.04586i
\(279\) −6480.00 −0.00498384
\(280\) 0 0
\(281\) 480378. 0.362925 0.181463 0.983398i \(-0.441917\pi\)
0.181463 + 0.983398i \(0.441917\pi\)
\(282\) 751680.i 0.562873i
\(283\) − 29980.0i − 0.0222518i −0.999938 0.0111259i \(-0.996458\pi\)
0.999938 0.0111259i \(-0.00354156\pi\)
\(284\) −128160. −0.0942880
\(285\) 0 0
\(286\) 1.17749e6 0.851219
\(287\) − 390138.i − 0.279585i
\(288\) 116640.i 0.0828641i
\(289\) 1.40398e6 0.988819
\(290\) 0 0
\(291\) 1.29296e6 0.895060
\(292\) 247384.i 0.169791i
\(293\) − 198066.i − 0.134785i −0.997727 0.0673924i \(-0.978532\pi\)
0.997727 0.0673924i \(-0.0214679\pi\)
\(294\) −129654. −0.0874818
\(295\) 0 0
\(296\) −912912. −0.605619
\(297\) 323676.i 0.212921i
\(298\) 492444.i 0.321230i
\(299\) 1.85640e6 1.20086
\(300\) 0 0
\(301\) −564676. −0.359239
\(302\) − 1.72219e6i − 1.08659i
\(303\) 24354.0i 0.0152393i
\(304\) 3.04902e6 1.89224
\(305\) 0 0
\(306\) 61236.0 0.0373855
\(307\) 1.04564e6i 0.633191i 0.948561 + 0.316595i \(0.102540\pi\)
−0.948561 + 0.316595i \(0.897460\pi\)
\(308\) 87024.0i 0.0522712i
\(309\) 1.18591e6 0.706572
\(310\) 0 0
\(311\) 1.83718e6 1.07708 0.538542 0.842598i \(-0.318975\pi\)
0.538542 + 0.842598i \(0.318975\pi\)
\(312\) − 668304.i − 0.388676i
\(313\) − 365494.i − 0.210872i −0.994426 0.105436i \(-0.966376\pi\)
0.994426 0.105436i \(-0.0336239\pi\)
\(314\) 779268. 0.446029
\(315\) 0 0
\(316\) −263104. −0.148221
\(317\) 28338.0i 0.0158388i 0.999969 + 0.00791938i \(0.00252084\pi\)
−0.999969 + 0.00791938i \(0.997479\pi\)
\(318\) − 518076.i − 0.287293i
\(319\) 2.41625e6 1.32943
\(320\) 0 0
\(321\) 1.16024e6 0.628473
\(322\) 1.23480e6i 0.663677i
\(323\) − 338184.i − 0.180363i
\(324\) −26244.0 −0.0138889
\(325\) 0 0
\(326\) −3.33170e6 −1.73629
\(327\) − 908802.i − 0.470002i
\(328\) 1.33762e6i 0.686510i
\(329\) 682080. 0.347413
\(330\) 0 0
\(331\) 1.93392e6 0.970214 0.485107 0.874455i \(-0.338781\pi\)
0.485107 + 0.874455i \(0.338781\pi\)
\(332\) − 160752.i − 0.0800408i
\(333\) − 440154.i − 0.217517i
\(334\) 261072. 0.128054
\(335\) 0 0
\(336\) 500976. 0.242085
\(337\) 1.88817e6i 0.905664i 0.891596 + 0.452832i \(0.149586\pi\)
−0.891596 + 0.452832i \(0.850414\pi\)
\(338\) 1.05557e6i 0.502570i
\(339\) 1.98131e6 0.936384
\(340\) 0 0
\(341\) 35520.0 0.0165420
\(342\) 1.30442e6i 0.603050i
\(343\) 117649.i 0.0539949i
\(344\) 1.93603e6 0.882097
\(345\) 0 0
\(346\) 109980. 0.0493882
\(347\) − 2.91937e6i − 1.30156i −0.759264 0.650782i \(-0.774441\pi\)
0.759264 0.650782i \(-0.225559\pi\)
\(348\) 195912.i 0.0867187i
\(349\) 780682. 0.343092 0.171546 0.985176i \(-0.445124\pi\)
0.171546 + 0.985176i \(0.445124\pi\)
\(350\) 0 0
\(351\) 322218. 0.139599
\(352\) − 639360.i − 0.275036i
\(353\) 1.33437e6i 0.569954i 0.958534 + 0.284977i \(0.0919859\pi\)
−0.958534 + 0.284977i \(0.908014\pi\)
\(354\) −1.48457e6 −0.629639
\(355\) 0 0
\(356\) −31896.0 −0.0133386
\(357\) − 55566.0i − 0.0230748i
\(358\) 919944.i 0.379362i
\(359\) −1.01743e6 −0.416648 −0.208324 0.978060i \(-0.566801\pi\)
−0.208324 + 0.978060i \(0.566801\pi\)
\(360\) 0 0
\(361\) 4.72776e6 1.90936
\(362\) − 2.29240e6i − 0.919429i
\(363\) − 324765.i − 0.129361i
\(364\) 86632.0 0.0342709
\(365\) 0 0
\(366\) 2.67181e6 1.04257
\(367\) − 837680.i − 0.324648i −0.986737 0.162324i \(-0.948101\pi\)
0.986737 0.162324i \(-0.0518990\pi\)
\(368\) − 4.77120e6i − 1.83657i
\(369\) −644922. −0.246571
\(370\) 0 0
\(371\) −470106. −0.177321
\(372\) 2880.00i 0.00107903i
\(373\) − 1.51993e6i − 0.565655i −0.959171 0.282827i \(-0.908728\pi\)
0.959171 0.282827i \(-0.0912724\pi\)
\(374\) −335664. −0.124087
\(375\) 0 0
\(376\) −2.33856e6 −0.853059
\(377\) − 2.40536e6i − 0.871620i
\(378\) 214326.i 0.0771517i
\(379\) −2.64465e6 −0.945737 −0.472869 0.881133i \(-0.656781\pi\)
−0.472869 + 0.881133i \(0.656781\pi\)
\(380\) 0 0
\(381\) 668880. 0.236067
\(382\) − 1.64045e6i − 0.575180i
\(383\) 2.01336e6i 0.701333i 0.936500 + 0.350667i \(0.114045\pi\)
−0.936500 + 0.350667i \(0.885955\pi\)
\(384\) −1.91117e6 −0.661410
\(385\) 0 0
\(386\) −921612. −0.314833
\(387\) 933444.i 0.316819i
\(388\) − 574648.i − 0.193786i
\(389\) 726234. 0.243334 0.121667 0.992571i \(-0.461176\pi\)
0.121667 + 0.992571i \(0.461176\pi\)
\(390\) 0 0
\(391\) −529200. −0.175056
\(392\) − 403368.i − 0.132583i
\(393\) 1.39784e6i 0.456538i
\(394\) 926532. 0.300691
\(395\) 0 0
\(396\) 143856. 0.0460988
\(397\) − 4.57578e6i − 1.45710i −0.684993 0.728549i \(-0.740195\pi\)
0.684993 0.728549i \(-0.259805\pi\)
\(398\) 2.20114e6i 0.696529i
\(399\) 1.18364e6 0.372211
\(400\) 0 0
\(401\) −33870.0 −0.0105185 −0.00525926 0.999986i \(-0.501674\pi\)
−0.00525926 + 0.999986i \(0.501674\pi\)
\(402\) 3.20522e6i 0.989221i
\(403\) − 35360.0i − 0.0108455i
\(404\) 10824.0 0.00329940
\(405\) 0 0
\(406\) 1.59995e6 0.481716
\(407\) 2.41270e6i 0.721966i
\(408\) 190512.i 0.0566594i
\(409\) 5.86178e6 1.73269 0.866346 0.499444i \(-0.166462\pi\)
0.866346 + 0.499444i \(0.166462\pi\)
\(410\) 0 0
\(411\) 2.37821e6 0.694459
\(412\) − 527072.i − 0.152977i
\(413\) 1.34711e6i 0.388622i
\(414\) 2.04120e6 0.585308
\(415\) 0 0
\(416\) −636480. −0.180323
\(417\) 2.02151e6i 0.569292i
\(418\) − 7.15018e6i − 2.00159i
\(419\) −302748. −0.0842454 −0.0421227 0.999112i \(-0.513412\pi\)
−0.0421227 + 0.999112i \(0.513412\pi\)
\(420\) 0 0
\(421\) −5.36708e6 −1.47582 −0.737909 0.674900i \(-0.764187\pi\)
−0.737909 + 0.674900i \(0.764187\pi\)
\(422\) 3.12146e6i 0.853252i
\(423\) − 1.12752e6i − 0.306389i
\(424\) 1.61179e6 0.435406
\(425\) 0 0
\(426\) 1.73016e6 0.461915
\(427\) − 2.42442e6i − 0.643485i
\(428\) − 515664.i − 0.136068i
\(429\) −1.76623e6 −0.463345
\(430\) 0 0
\(431\) 1.17706e6 0.305214 0.152607 0.988287i \(-0.451233\pi\)
0.152607 + 0.988287i \(0.451233\pi\)
\(432\) − 828144.i − 0.213499i
\(433\) − 3.66249e6i − 0.938766i −0.882995 0.469383i \(-0.844476\pi\)
0.882995 0.469383i \(-0.155524\pi\)
\(434\) 23520.0 0.00599395
\(435\) 0 0
\(436\) −403912. −0.101758
\(437\) − 1.12728e7i − 2.82376i
\(438\) − 3.33968e6i − 0.831802i
\(439\) 2.53674e6 0.628225 0.314113 0.949386i \(-0.398293\pi\)
0.314113 + 0.949386i \(0.398293\pi\)
\(440\) 0 0
\(441\) 194481. 0.0476190
\(442\) 334152.i 0.0813558i
\(443\) 6.01504e6i 1.45623i 0.685457 + 0.728113i \(0.259603\pi\)
−0.685457 + 0.728113i \(0.740397\pi\)
\(444\) −195624. −0.0470939
\(445\) 0 0
\(446\) −1.82842e6 −0.435249
\(447\) − 738666.i − 0.174856i
\(448\) 1.35789e6i 0.319646i
\(449\) −5.65965e6 −1.32487 −0.662436 0.749119i \(-0.730477\pi\)
−0.662436 + 0.749119i \(0.730477\pi\)
\(450\) 0 0
\(451\) 3.53513e6 0.818397
\(452\) − 880584.i − 0.202733i
\(453\) 2.58329e6i 0.591463i
\(454\) 1.73153e6 0.394267
\(455\) 0 0
\(456\) −4.05821e6 −0.913949
\(457\) 6.46159e6i 1.44727i 0.690184 + 0.723634i \(0.257530\pi\)
−0.690184 + 0.723634i \(0.742470\pi\)
\(458\) − 4.63314e6i − 1.03208i
\(459\) −91854.0 −0.0203501
\(460\) 0 0
\(461\) −3.37353e6 −0.739320 −0.369660 0.929167i \(-0.620526\pi\)
−0.369660 + 0.929167i \(0.620526\pi\)
\(462\) − 1.17482e6i − 0.256075i
\(463\) − 4.54974e6i − 0.986358i −0.869928 0.493179i \(-0.835835\pi\)
0.869928 0.493179i \(-0.164165\pi\)
\(464\) −6.18211e6 −1.33304
\(465\) 0 0
\(466\) −1.51340e6 −0.322842
\(467\) − 2.01136e6i − 0.426773i −0.976968 0.213386i \(-0.931551\pi\)
0.976968 0.213386i \(-0.0684493\pi\)
\(468\) − 143208.i − 0.0302240i
\(469\) 2.90844e6 0.610560
\(470\) 0 0
\(471\) −1.16890e6 −0.242787
\(472\) − 4.61866e6i − 0.954247i
\(473\) − 5.11666e6i − 1.05156i
\(474\) 3.55190e6 0.726132
\(475\) 0 0
\(476\) −24696.0 −0.00499585
\(477\) 777114.i 0.156383i
\(478\) 8.70682e6i 1.74297i
\(479\) 7.60402e6 1.51427 0.757137 0.653257i \(-0.226598\pi\)
0.757137 + 0.653257i \(0.226598\pi\)
\(480\) 0 0
\(481\) 2.40183e6 0.473347
\(482\) − 878388.i − 0.172214i
\(483\) − 1.85220e6i − 0.361260i
\(484\) −144340. −0.0280074
\(485\) 0 0
\(486\) 354294. 0.0680414
\(487\) − 673112.i − 0.128607i −0.997930 0.0643035i \(-0.979517\pi\)
0.997930 0.0643035i \(-0.0204826\pi\)
\(488\) 8.31230e6i 1.58005i
\(489\) 4.99756e6 0.945117
\(490\) 0 0
\(491\) −2.47170e6 −0.462692 −0.231346 0.972872i \(-0.574313\pi\)
−0.231346 + 0.972872i \(0.574313\pi\)
\(492\) 286632.i 0.0533841i
\(493\) 685692.i 0.127061i
\(494\) −7.11797e6 −1.31232
\(495\) 0 0
\(496\) −90880.0 −0.0165869
\(497\) − 1.56996e6i − 0.285100i
\(498\) 2.17015e6i 0.392118i
\(499\) −6.08152e6 −1.09335 −0.546677 0.837343i \(-0.684108\pi\)
−0.546677 + 0.837343i \(0.684108\pi\)
\(500\) 0 0
\(501\) −391608. −0.0697039
\(502\) 3.64716e6i 0.645945i
\(503\) − 846216.i − 0.149129i −0.997216 0.0745644i \(-0.976243\pi\)
0.997216 0.0745644i \(-0.0237566\pi\)
\(504\) −666792. −0.116927
\(505\) 0 0
\(506\) −1.11888e7 −1.94271
\(507\) − 1.58336e6i − 0.273565i
\(508\) − 297280.i − 0.0511101i
\(509\) 7.66785e6 1.31183 0.655917 0.754833i \(-0.272282\pi\)
0.655917 + 0.754833i \(0.272282\pi\)
\(510\) 0 0
\(511\) −3.03045e6 −0.513400
\(512\) − 4.47130e6i − 0.753804i
\(513\) − 1.95664e6i − 0.328259i
\(514\) 573516. 0.0957498
\(515\) 0 0
\(516\) 414864. 0.0685933
\(517\) 6.18048e6i 1.01694i
\(518\) 1.59760e6i 0.261603i
\(519\) −164970. −0.0268835
\(520\) 0 0
\(521\) −9.68938e6 −1.56387 −0.781937 0.623357i \(-0.785768\pi\)
−0.781937 + 0.623357i \(0.785768\pi\)
\(522\) − 2.64481e6i − 0.424833i
\(523\) − 7.51678e6i − 1.20165i −0.799381 0.600824i \(-0.794839\pi\)
0.799381 0.600824i \(-0.205161\pi\)
\(524\) 621264. 0.0988435
\(525\) 0 0
\(526\) 1.32021e7 2.08055
\(527\) 10080.0i 0.00158101i
\(528\) 4.53946e6i 0.708629i
\(529\) −1.12037e7 −1.74069
\(530\) 0 0
\(531\) 2.22685e6 0.342732
\(532\) − 526064.i − 0.0805860i
\(533\) − 3.51920e6i − 0.536570i
\(534\) 430596. 0.0653457
\(535\) 0 0
\(536\) −9.97181e6 −1.49921
\(537\) − 1.37992e6i − 0.206499i
\(538\) − 1.06215e7i − 1.58208i
\(539\) −1.06604e6 −0.158053
\(540\) 0 0
\(541\) 7.34325e6 1.07869 0.539343 0.842086i \(-0.318673\pi\)
0.539343 + 0.842086i \(0.318673\pi\)
\(542\) − 1.34102e6i − 0.196082i
\(543\) 3.43859e6i 0.500474i
\(544\) 181440. 0.0262867
\(545\) 0 0
\(546\) −1.16953e6 −0.167892
\(547\) − 2.18296e6i − 0.311945i −0.987761 0.155973i \(-0.950149\pi\)
0.987761 0.155973i \(-0.0498512\pi\)
\(548\) − 1.05698e6i − 0.150355i
\(549\) −4.00772e6 −0.567501
\(550\) 0 0
\(551\) −1.46063e7 −2.04957
\(552\) 6.35040e6i 0.887061i
\(553\) − 3.22302e6i − 0.448178i
\(554\) −2.05667e6 −0.284702
\(555\) 0 0
\(556\) 898448. 0.123255
\(557\) − 1.25466e7i − 1.71351i −0.515724 0.856755i \(-0.672477\pi\)
0.515724 0.856755i \(-0.327523\pi\)
\(558\) − 38880.0i − 0.00528617i
\(559\) −5.09361e6 −0.689439
\(560\) 0 0
\(561\) 503496. 0.0675443
\(562\) 2.88227e6i 0.384940i
\(563\) 5.15972e6i 0.686050i 0.939326 + 0.343025i \(0.111451\pi\)
−0.939326 + 0.343025i \(0.888549\pi\)
\(564\) −501120. −0.0663352
\(565\) 0 0
\(566\) 179880. 0.0236016
\(567\) − 321489.i − 0.0419961i
\(568\) 5.38272e6i 0.700053i
\(569\) −1.17452e7 −1.52083 −0.760414 0.649439i \(-0.775004\pi\)
−0.760414 + 0.649439i \(0.775004\pi\)
\(570\) 0 0
\(571\) −7.54728e6 −0.968725 −0.484362 0.874867i \(-0.660948\pi\)
−0.484362 + 0.874867i \(0.660948\pi\)
\(572\) 784992.i 0.100317i
\(573\) 2.46067e6i 0.313089i
\(574\) 2.34083e6 0.296544
\(575\) 0 0
\(576\) 2.24467e6 0.281901
\(577\) − 9.28483e6i − 1.16101i −0.814258 0.580503i \(-0.802856\pi\)
0.814258 0.580503i \(-0.197144\pi\)
\(578\) 8.42389e6i 1.04880i
\(579\) 1.38242e6 0.171373
\(580\) 0 0
\(581\) 1.96921e6 0.242020
\(582\) 7.75775e6i 0.949354i
\(583\) − 4.25974e6i − 0.519053i
\(584\) 1.03901e7 1.26063
\(585\) 0 0
\(586\) 1.18840e6 0.142961
\(587\) − 1.47623e6i − 0.176831i −0.996084 0.0884155i \(-0.971820\pi\)
0.996084 0.0884155i \(-0.0281803\pi\)
\(588\) − 86436.0i − 0.0103098i
\(589\) −214720. −0.0255026
\(590\) 0 0
\(591\) −1.38980e6 −0.163675
\(592\) − 6.17302e6i − 0.723925i
\(593\) − 1.24007e7i − 1.44813i −0.689729 0.724067i \(-0.742270\pi\)
0.689729 0.724067i \(-0.257730\pi\)
\(594\) −1.94206e6 −0.225837
\(595\) 0 0
\(596\) −328296. −0.0378573
\(597\) − 3.30170e6i − 0.379142i
\(598\) 1.11384e7i 1.27371i
\(599\) 3.69127e6 0.420348 0.210174 0.977664i \(-0.432597\pi\)
0.210174 + 0.977664i \(0.432597\pi\)
\(600\) 0 0
\(601\) 9.12223e6 1.03018 0.515092 0.857135i \(-0.327758\pi\)
0.515092 + 0.857135i \(0.327758\pi\)
\(602\) − 3.38806e6i − 0.381030i
\(603\) − 4.80784e6i − 0.538464i
\(604\) 1.14813e6 0.128055
\(605\) 0 0
\(606\) −146124. −0.0161637
\(607\) 5.67914e6i 0.625620i 0.949816 + 0.312810i \(0.101270\pi\)
−0.949816 + 0.312810i \(0.898730\pi\)
\(608\) 3.86496e6i 0.424020i
\(609\) −2.39992e6 −0.262213
\(610\) 0 0
\(611\) 6.15264e6 0.666743
\(612\) 40824.0i 0.00440592i
\(613\) − 1.40106e7i − 1.50593i −0.658060 0.752966i \(-0.728623\pi\)
0.658060 0.752966i \(-0.271377\pi\)
\(614\) −6.27382e6 −0.671600
\(615\) 0 0
\(616\) 3.65501e6 0.388094
\(617\) 253686.i 0.0268277i 0.999910 + 0.0134139i \(0.00426989\pi\)
−0.999910 + 0.0134139i \(0.995730\pi\)
\(618\) 7.11547e6i 0.749433i
\(619\) −4.30034e6 −0.451103 −0.225552 0.974231i \(-0.572418\pi\)
−0.225552 + 0.974231i \(0.572418\pi\)
\(620\) 0 0
\(621\) −3.06180e6 −0.318602
\(622\) 1.10231e7i 1.14242i
\(623\) − 390726.i − 0.0403322i
\(624\) 4.51901e6 0.464603
\(625\) 0 0
\(626\) 2.19296e6 0.223664
\(627\) 1.07253e7i 1.08953i
\(628\) 519512.i 0.0525650i
\(629\) −684684. −0.0690023
\(630\) 0 0
\(631\) 1.04150e7 1.04132 0.520662 0.853763i \(-0.325685\pi\)
0.520662 + 0.853763i \(0.325685\pi\)
\(632\) 1.10504e7i 1.10048i
\(633\) − 4.68220e6i − 0.464451i
\(634\) −170028. −0.0167995
\(635\) 0 0
\(636\) 345384. 0.0338579
\(637\) 1.06124e6i 0.103625i
\(638\) 1.44975e7i 1.41007i
\(639\) −2.59524e6 −0.251435
\(640\) 0 0
\(641\) 4.52714e6 0.435190 0.217595 0.976039i \(-0.430179\pi\)
0.217595 + 0.976039i \(0.430179\pi\)
\(642\) 6.96146e6i 0.666596i
\(643\) 1.49687e7i 1.42776i 0.700266 + 0.713882i \(0.253065\pi\)
−0.700266 + 0.713882i \(0.746935\pi\)
\(644\) −823200. −0.0782151
\(645\) 0 0
\(646\) 2.02910e6 0.191304
\(647\) 1.73020e7i 1.62493i 0.583010 + 0.812465i \(0.301875\pi\)
−0.583010 + 0.812465i \(0.698125\pi\)
\(648\) 1.10225e6i 0.103120i
\(649\) −1.22064e7 −1.13757
\(650\) 0 0
\(651\) −35280.0 −0.00326269
\(652\) − 2.22114e6i − 0.204624i
\(653\) 4.07470e6i 0.373949i 0.982365 + 0.186975i \(0.0598683\pi\)
−0.982365 + 0.186975i \(0.940132\pi\)
\(654\) 5.45281e6 0.498513
\(655\) 0 0
\(656\) −9.04483e6 −0.820618
\(657\) 5.00953e6i 0.452776i
\(658\) 4.09248e6i 0.368487i
\(659\) 3.79475e6 0.340384 0.170192 0.985411i \(-0.445561\pi\)
0.170192 + 0.985411i \(0.445561\pi\)
\(660\) 0 0
\(661\) 1.64261e7 1.46228 0.731142 0.682225i \(-0.238988\pi\)
0.731142 + 0.682225i \(0.238988\pi\)
\(662\) 1.16035e7i 1.02907i
\(663\) − 501228.i − 0.0442845i
\(664\) −6.75158e6 −0.594272
\(665\) 0 0
\(666\) 2.64092e6 0.230712
\(667\) 2.28564e7i 1.98927i
\(668\) 174048.i 0.0150913i
\(669\) 2.74262e6 0.236920
\(670\) 0 0
\(671\) 2.19682e7 1.88360
\(672\) 635040.i 0.0542473i
\(673\) 5.50675e6i 0.468660i 0.972157 + 0.234330i \(0.0752896\pi\)
−0.972157 + 0.234330i \(0.924710\pi\)
\(674\) −1.13290e7 −0.960602
\(675\) 0 0
\(676\) −703716. −0.0592285
\(677\) − 1.83957e7i − 1.54257i −0.636488 0.771286i \(-0.719614\pi\)
0.636488 0.771286i \(-0.280386\pi\)
\(678\) 1.18879e7i 0.993185i
\(679\) 7.03944e6 0.585954
\(680\) 0 0
\(681\) −2.59729e6 −0.214612
\(682\) 213120.i 0.0175454i
\(683\) 1.75835e6i 0.144229i 0.997396 + 0.0721146i \(0.0229747\pi\)
−0.997396 + 0.0721146i \(0.977025\pi\)
\(684\) −869616. −0.0710702
\(685\) 0 0
\(686\) −705894. −0.0572703
\(687\) 6.94971e6i 0.561791i
\(688\) 1.30913e7i 1.05441i
\(689\) −4.24055e6 −0.340309
\(690\) 0 0
\(691\) −5.36314e6 −0.427291 −0.213646 0.976911i \(-0.568534\pi\)
−0.213646 + 0.976911i \(0.568534\pi\)
\(692\) 73320.0i 0.00582046i
\(693\) 1.76224e6i 0.139390i
\(694\) 1.75162e7 1.38052
\(695\) 0 0
\(696\) 8.22830e6 0.643854
\(697\) 1.00321e6i 0.0782187i
\(698\) 4.68409e6i 0.363904i
\(699\) 2.27011e6 0.175733
\(700\) 0 0
\(701\) −2.12606e7 −1.63411 −0.817054 0.576561i \(-0.804394\pi\)
−0.817054 + 0.576561i \(0.804394\pi\)
\(702\) 1.93331e6i 0.148067i
\(703\) − 1.45849e7i − 1.11305i
\(704\) −1.23041e7 −0.935662
\(705\) 0 0
\(706\) −8.00622e6 −0.604527
\(707\) 132594.i 0.00997643i
\(708\) − 989712.i − 0.0742037i
\(709\) −2.07729e6 −0.155196 −0.0775980 0.996985i \(-0.524725\pi\)
−0.0775980 + 0.996985i \(0.524725\pi\)
\(710\) 0 0
\(711\) −5.32786e6 −0.395256
\(712\) 1.33963e6i 0.0990343i
\(713\) 336000.i 0.0247523i
\(714\) 333396. 0.0244746
\(715\) 0 0
\(716\) −613296. −0.0447082
\(717\) − 1.30602e7i − 0.948752i
\(718\) − 6.10459e6i − 0.441922i
\(719\) −4.23619e6 −0.305600 −0.152800 0.988257i \(-0.548829\pi\)
−0.152800 + 0.988257i \(0.548829\pi\)
\(720\) 0 0
\(721\) 6.45663e6 0.462560
\(722\) 2.83665e7i 2.02518i
\(723\) 1.31758e6i 0.0937415i
\(724\) 1.52826e6 0.108356
\(725\) 0 0
\(726\) 1.94859e6 0.137208
\(727\) − 2.14524e7i − 1.50536i −0.658389 0.752678i \(-0.728762\pi\)
0.658389 0.752678i \(-0.271238\pi\)
\(728\) − 3.63854e6i − 0.254448i
\(729\) −531441. −0.0370370
\(730\) 0 0
\(731\) 1.45202e6 0.100503
\(732\) 1.78121e6i 0.122867i
\(733\) − 1.48892e7i − 1.02355i −0.859118 0.511777i \(-0.828987\pi\)
0.859118 0.511777i \(-0.171013\pi\)
\(734\) 5.02608e6 0.344341
\(735\) 0 0
\(736\) 6.04800e6 0.411545
\(737\) 2.63541e7i 1.78722i
\(738\) − 3.86953e6i − 0.261528i
\(739\) −6.99324e6 −0.471050 −0.235525 0.971868i \(-0.575681\pi\)
−0.235525 + 0.971868i \(0.575681\pi\)
\(740\) 0 0
\(741\) 1.06770e7 0.714335
\(742\) − 2.82064e6i − 0.188078i
\(743\) 1.90428e6i 0.126549i 0.997996 + 0.0632745i \(0.0201544\pi\)
−0.997996 + 0.0632745i \(0.979846\pi\)
\(744\) 120960. 0.00801142
\(745\) 0 0
\(746\) 9.11958e6 0.599968
\(747\) − 3.25523e6i − 0.213442i
\(748\) − 223776.i − 0.0146238i
\(749\) 6.31688e6 0.411432
\(750\) 0 0
\(751\) 1.95361e7 1.26398 0.631988 0.774978i \(-0.282239\pi\)
0.631988 + 0.774978i \(0.282239\pi\)
\(752\) − 1.58131e7i − 1.01970i
\(753\) − 5.47074e6i − 0.351608i
\(754\) 1.44322e7 0.924493
\(755\) 0 0
\(756\) −142884. −0.00909241
\(757\) − 1.25183e6i − 0.0793973i −0.999212 0.0396986i \(-0.987360\pi\)
0.999212 0.0396986i \(-0.0126398\pi\)
\(758\) − 1.58679e7i − 1.00311i
\(759\) 1.67832e7 1.05748
\(760\) 0 0
\(761\) 2.04472e7 1.27989 0.639944 0.768422i \(-0.278958\pi\)
0.639944 + 0.768422i \(0.278958\pi\)
\(762\) 4.01328e6i 0.250387i
\(763\) − 4.94792e6i − 0.307689i
\(764\) 1.09363e6 0.0677857
\(765\) 0 0
\(766\) −1.20802e7 −0.743876
\(767\) 1.21515e7i 0.745831i
\(768\) − 3.48595e6i − 0.213264i
\(769\) −2.21064e6 −0.134804 −0.0674020 0.997726i \(-0.521471\pi\)
−0.0674020 + 0.997726i \(0.521471\pi\)
\(770\) 0 0
\(771\) −860274. −0.0521196
\(772\) − 614408.i − 0.0371034i
\(773\) 1.29151e7i 0.777405i 0.921363 + 0.388703i \(0.127077\pi\)
−0.921363 + 0.388703i \(0.872923\pi\)
\(774\) −5.60066e6 −0.336037
\(775\) 0 0
\(776\) −2.41352e7 −1.43879
\(777\) − 2.39639e6i − 0.142399i
\(778\) 4.35740e6i 0.258095i
\(779\) −2.13700e7 −1.26171
\(780\) 0 0
\(781\) 1.42258e7 0.834541
\(782\) − 3.17520e6i − 0.185675i
\(783\) 3.96722e6i 0.231250i
\(784\) 2.72754e6 0.158482
\(785\) 0 0
\(786\) −8.38706e6 −0.484232
\(787\) 1.35499e7i 0.779830i 0.920851 + 0.389915i \(0.127496\pi\)
−0.920851 + 0.389915i \(0.872504\pi\)
\(788\) 617688.i 0.0354367i
\(789\) −1.98031e7 −1.13251
\(790\) 0 0
\(791\) 1.07872e7 0.613007
\(792\) − 6.04195e6i − 0.342266i
\(793\) − 2.18693e7i − 1.23496i
\(794\) 2.74547e7 1.54549
\(795\) 0 0
\(796\) −1.46742e6 −0.0820867
\(797\) 2.45956e7i 1.37155i 0.727813 + 0.685776i \(0.240537\pi\)
−0.727813 + 0.685776i \(0.759463\pi\)
\(798\) 7.10186e6i 0.394789i
\(799\) −1.75392e6 −0.0971948
\(800\) 0 0
\(801\) −645894. −0.0355697
\(802\) − 203220.i − 0.0111566i
\(803\) − 2.74596e7i − 1.50282i
\(804\) −2.13682e6 −0.116581
\(805\) 0 0
\(806\) 212160. 0.0115034
\(807\) 1.59322e7i 0.861177i
\(808\) − 454608.i − 0.0244968i
\(809\) −1.55237e7 −0.833920 −0.416960 0.908925i \(-0.636905\pi\)
−0.416960 + 0.908925i \(0.636905\pi\)
\(810\) 0 0
\(811\) −2.66262e7 −1.42153 −0.710766 0.703429i \(-0.751651\pi\)
−0.710766 + 0.703429i \(0.751651\pi\)
\(812\) 1.06663e6i 0.0567707i
\(813\) 2.01154e6i 0.106734i
\(814\) −1.44762e7 −0.765760
\(815\) 0 0
\(816\) −1.28822e6 −0.0677276
\(817\) 3.09304e7i 1.62118i
\(818\) 3.51707e7i 1.83780i
\(819\) 1.75430e6 0.0913889
\(820\) 0 0
\(821\) −1.23891e7 −0.641477 −0.320739 0.947168i \(-0.603931\pi\)
−0.320739 + 0.947168i \(0.603931\pi\)
\(822\) 1.42693e7i 0.736585i
\(823\) − 3.65630e6i − 0.188166i −0.995564 0.0940831i \(-0.970008\pi\)
0.995564 0.0940831i \(-0.0299919\pi\)
\(824\) −2.21370e7 −1.13580
\(825\) 0 0
\(826\) −8.08265e6 −0.412196
\(827\) − 2.80463e7i − 1.42597i −0.701178 0.712987i \(-0.747342\pi\)
0.701178 0.712987i \(-0.252658\pi\)
\(828\) 1.36080e6i 0.0689792i
\(829\) −2.11153e7 −1.06712 −0.533558 0.845763i \(-0.679145\pi\)
−0.533558 + 0.845763i \(0.679145\pi\)
\(830\) 0 0
\(831\) 3.08500e6 0.154972
\(832\) 1.22487e7i 0.613454i
\(833\) − 302526.i − 0.0151060i
\(834\) −1.21290e7 −0.603826
\(835\) 0 0
\(836\) 4.76678e6 0.235890
\(837\) 58320.0i 0.00287742i
\(838\) − 1.81649e6i − 0.0893557i
\(839\) −1.33947e7 −0.656944 −0.328472 0.944514i \(-0.606534\pi\)
−0.328472 + 0.944514i \(0.606534\pi\)
\(840\) 0 0
\(841\) 9.10422e6 0.443867
\(842\) − 3.22025e7i − 1.56534i
\(843\) − 4.32340e6i − 0.209535i
\(844\) −2.08098e6 −0.100557
\(845\) 0 0
\(846\) 6.76512e6 0.324975
\(847\) − 1.76816e6i − 0.0846865i
\(848\) 1.08988e7i 0.520461i
\(849\) −269820. −0.0128471
\(850\) 0 0
\(851\) −2.28228e7 −1.08030
\(852\) 1.15344e6i 0.0544372i
\(853\) 3.01513e7i 1.41884i 0.704786 + 0.709420i \(0.251043\pi\)
−0.704786 + 0.709420i \(0.748957\pi\)
\(854\) 1.45465e7 0.682519
\(855\) 0 0
\(856\) −2.16579e7 −1.01026
\(857\) − 2.39894e7i − 1.11575i −0.829925 0.557875i \(-0.811617\pi\)
0.829925 0.557875i \(-0.188383\pi\)
\(858\) − 1.05974e7i − 0.491452i
\(859\) 8.87576e6 0.410414 0.205207 0.978719i \(-0.434213\pi\)
0.205207 + 0.978719i \(0.434213\pi\)
\(860\) 0 0
\(861\) −3.51124e6 −0.161418
\(862\) 7.06234e6i 0.323728i
\(863\) − 8.71286e6i − 0.398230i −0.979976 0.199115i \(-0.936193\pi\)
0.979976 0.199115i \(-0.0638067\pi\)
\(864\) 1.04976e6 0.0478416
\(865\) 0 0
\(866\) 2.19750e7 0.995711
\(867\) − 1.26358e7i − 0.570895i
\(868\) 15680.0i 0 0.000706394i
\(869\) 2.92045e7 1.31190
\(870\) 0 0
\(871\) 2.62354e7 1.17177
\(872\) 1.69643e7i 0.755518i
\(873\) − 1.16366e7i − 0.516763i
\(874\) 6.76368e7 2.99505
\(875\) 0 0
\(876\) 2.22646e6 0.0980288
\(877\) 2.95788e7i 1.29862i 0.760524 + 0.649310i \(0.224942\pi\)
−0.760524 + 0.649310i \(0.775058\pi\)
\(878\) 1.52205e7i 0.666333i
\(879\) −1.78259e6 −0.0778180
\(880\) 0 0
\(881\) 2.45670e7 1.06638 0.533190 0.845995i \(-0.320993\pi\)
0.533190 + 0.845995i \(0.320993\pi\)
\(882\) 1.16689e6i 0.0505076i
\(883\) 1.45682e7i 0.628788i 0.949293 + 0.314394i \(0.101801\pi\)
−0.949293 + 0.314394i \(0.898199\pi\)
\(884\) −222768. −0.00958787
\(885\) 0 0
\(886\) −3.60902e7 −1.54456
\(887\) − 1.61714e7i − 0.690141i −0.938577 0.345070i \(-0.887855\pi\)
0.938577 0.345070i \(-0.112145\pi\)
\(888\) 8.21621e6i 0.349654i
\(889\) 3.64168e6 0.154542
\(890\) 0 0
\(891\) 2.91308e6 0.122930
\(892\) − 1.21894e6i − 0.0512946i
\(893\) − 3.73613e7i − 1.56781i
\(894\) 4.43200e6 0.185462
\(895\) 0 0
\(896\) −1.04052e7 −0.432995
\(897\) − 1.67076e7i − 0.693319i
\(898\) − 3.39579e7i − 1.40524i
\(899\) 435360. 0.0179659
\(900\) 0 0
\(901\) 1.20884e6 0.0496087
\(902\) 2.12108e7i 0.868041i
\(903\) 5.08208e6i 0.207407i
\(904\) −3.69845e7 −1.50522
\(905\) 0 0
\(906\) −1.54997e7 −0.627341
\(907\) − 3.14446e7i − 1.26919i −0.772844 0.634596i \(-0.781167\pi\)
0.772844 0.634596i \(-0.218833\pi\)
\(908\) 1.15435e6i 0.0464648i
\(909\) 219186. 0.00879839
\(910\) 0 0
\(911\) 1.51427e7 0.604514 0.302257 0.953227i \(-0.402260\pi\)
0.302257 + 0.953227i \(0.402260\pi\)
\(912\) − 2.74412e7i − 1.09249i
\(913\) 1.78435e7i 0.708439i
\(914\) −3.87695e7 −1.53506
\(915\) 0 0
\(916\) 3.08876e6 0.121631
\(917\) 7.61048e6i 0.298875i
\(918\) − 551124.i − 0.0215845i
\(919\) −4.14876e7 −1.62043 −0.810214 0.586134i \(-0.800649\pi\)
−0.810214 + 0.586134i \(0.800649\pi\)
\(920\) 0 0
\(921\) 9.41072e6 0.365573
\(922\) − 2.02412e7i − 0.784167i
\(923\) − 1.41617e7i − 0.547155i
\(924\) 783216. 0.0301788
\(925\) 0 0
\(926\) 2.72985e7 1.04619
\(927\) − 1.06732e7i − 0.407939i
\(928\) − 7.83648e6i − 0.298711i
\(929\) 1.78495e7 0.678556 0.339278 0.940686i \(-0.389817\pi\)
0.339278 + 0.940686i \(0.389817\pi\)
\(930\) 0 0
\(931\) 6.44428e6 0.243669
\(932\) − 1.00894e6i − 0.0380473i
\(933\) − 1.65346e7i − 0.621855i
\(934\) 1.20681e7 0.452661
\(935\) 0 0
\(936\) −6.01474e6 −0.224402
\(937\) − 2.96399e7i − 1.10288i −0.834215 0.551439i \(-0.814079\pi\)
0.834215 0.551439i \(-0.185921\pi\)
\(938\) 1.74507e7i 0.647597i
\(939\) −3.28945e6 −0.121747
\(940\) 0 0
\(941\) −3.22282e7 −1.18648 −0.593242 0.805024i \(-0.702152\pi\)
−0.593242 + 0.805024i \(0.702152\pi\)
\(942\) − 7.01341e6i − 0.257515i
\(943\) 3.34404e7i 1.22459i
\(944\) 3.12309e7 1.14066
\(945\) 0 0
\(946\) 3.06999e7 1.11535
\(947\) − 4.84885e7i − 1.75697i −0.477772 0.878484i \(-0.658556\pi\)
0.477772 0.878484i \(-0.341444\pi\)
\(948\) 2.36794e6i 0.0855754i
\(949\) −2.73359e7 −0.985300
\(950\) 0 0
\(951\) 255042. 0.00914451
\(952\) 1.03723e6i 0.0370923i
\(953\) − 2.03264e7i − 0.724983i −0.931987 0.362491i \(-0.881926\pi\)
0.931987 0.362491i \(-0.118074\pi\)
\(954\) −4.66268e6 −0.165869
\(955\) 0 0
\(956\) −5.80454e6 −0.205411
\(957\) − 2.17462e7i − 0.767546i
\(958\) 4.56241e7i 1.60613i
\(959\) 1.29481e7 0.454630
\(960\) 0 0
\(961\) −2.86228e7 −0.999776
\(962\) 1.44110e7i 0.502060i
\(963\) − 1.04422e7i − 0.362849i
\(964\) 585592. 0.0202956
\(965\) 0 0
\(966\) 1.11132e7 0.383174
\(967\) 3.66292e6i 0.125968i 0.998015 + 0.0629841i \(0.0200618\pi\)
−0.998015 + 0.0629841i \(0.979938\pi\)
\(968\) 6.06228e6i 0.207945i
\(969\) −3.04366e6 −0.104132
\(970\) 0 0
\(971\) 1.48741e6 0.0506271 0.0253136 0.999680i \(-0.491942\pi\)
0.0253136 + 0.999680i \(0.491942\pi\)
\(972\) 236196.i 0.00801875i
\(973\) 1.10060e7i 0.372689i
\(974\) 4.03867e6 0.136408
\(975\) 0 0
\(976\) −5.62070e7 −1.88871
\(977\) − 4.07930e7i − 1.36725i −0.729831 0.683627i \(-0.760401\pi\)
0.729831 0.683627i \(-0.239599\pi\)
\(978\) 2.99853e7i 1.00245i
\(979\) 3.54046e6 0.118060
\(980\) 0 0
\(981\) −8.17922e6 −0.271356
\(982\) − 1.48302e7i − 0.490759i
\(983\) − 9.26326e6i − 0.305759i −0.988245 0.152880i \(-0.951145\pi\)
0.988245 0.152880i \(-0.0488547\pi\)
\(984\) 1.20385e7 0.396357
\(985\) 0 0
\(986\) −4.11415e6 −0.134768
\(987\) − 6.13872e6i − 0.200579i
\(988\) − 4.74531e6i − 0.154658i
\(989\) 4.84008e7 1.57348
\(990\) 0 0
\(991\) −5.22051e7 −1.68861 −0.844303 0.535866i \(-0.819985\pi\)
−0.844303 + 0.535866i \(0.819985\pi\)
\(992\) − 115200.i − 0.00371684i
\(993\) − 1.74052e7i − 0.560153i
\(994\) 9.41976e6 0.302394
\(995\) 0 0
\(996\) −1.44677e6 −0.0462116
\(997\) 1.86609e7i 0.594560i 0.954790 + 0.297280i \(0.0960795\pi\)
−0.954790 + 0.297280i \(0.903921\pi\)
\(998\) − 3.64891e7i − 1.15968i
\(999\) −3.96139e6 −0.125584
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 525.6.d.b.274.2 2
5.2 odd 4 21.6.a.a.1.1 1
5.3 odd 4 525.6.a.d.1.1 1
5.4 even 2 inner 525.6.d.b.274.1 2
15.2 even 4 63.6.a.d.1.1 1
20.7 even 4 336.6.a.r.1.1 1
35.2 odd 12 147.6.e.j.67.1 2
35.12 even 12 147.6.e.i.67.1 2
35.17 even 12 147.6.e.i.79.1 2
35.27 even 4 147.6.a.b.1.1 1
35.32 odd 12 147.6.e.j.79.1 2
60.47 odd 4 1008.6.a.c.1.1 1
105.62 odd 4 441.6.a.j.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
21.6.a.a.1.1 1 5.2 odd 4
63.6.a.d.1.1 1 15.2 even 4
147.6.a.b.1.1 1 35.27 even 4
147.6.e.i.67.1 2 35.12 even 12
147.6.e.i.79.1 2 35.17 even 12
147.6.e.j.67.1 2 35.2 odd 12
147.6.e.j.79.1 2 35.32 odd 12
336.6.a.r.1.1 1 20.7 even 4
441.6.a.j.1.1 1 105.62 odd 4
525.6.a.d.1.1 1 5.3 odd 4
525.6.d.b.274.1 2 5.4 even 2 inner
525.6.d.b.274.2 2 1.1 even 1 trivial
1008.6.a.c.1.1 1 60.47 odd 4