Properties

Label 525.6.a.a
Level $525$
Weight $6$
Character orbit 525.a
Self dual yes
Analytic conductor $84.202$
Analytic rank $0$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [525,6,Mod(1,525)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(525, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 6, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("525.1"); S:= CuspForms(chi, 6); N := Newforms(S);
 
Level: \( N \) \(=\) \( 525 = 3 \cdot 5^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 525.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [1,-10] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(84.2015054018\)
Analytic rank: \(0\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 21)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \( q - 10 q^{2} - 9 q^{3} + 68 q^{4} + 90 q^{6} + 49 q^{7} - 360 q^{8} + 81 q^{9} + 92 q^{11} - 612 q^{12} - 670 q^{13} - 490 q^{14} + 1424 q^{16} + 222 q^{17} - 810 q^{18} - 908 q^{19} - 441 q^{21} - 920 q^{22}+ \cdots + 7452 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
0
−10.0000 −9.00000 68.0000 0 90.0000 49.0000 −360.000 81.0000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(3\) \( +1 \)
\(5\) \( +1 \)
\(7\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 525.6.a.a 1
5.b even 2 1 21.6.a.d 1
5.c odd 4 2 525.6.d.a 2
15.d odd 2 1 63.6.a.a 1
20.d odd 2 1 336.6.a.a 1
35.c odd 2 1 147.6.a.g 1
35.i odd 6 2 147.6.e.b 2
35.j even 6 2 147.6.e.a 2
60.h even 2 1 1008.6.a.bc 1
105.g even 2 1 441.6.a.b 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
21.6.a.d 1 5.b even 2 1
63.6.a.a 1 15.d odd 2 1
147.6.a.g 1 35.c odd 2 1
147.6.e.a 2 35.j even 6 2
147.6.e.b 2 35.i odd 6 2
336.6.a.a 1 20.d odd 2 1
441.6.a.b 1 105.g even 2 1
525.6.a.a 1 1.a even 1 1 trivial
525.6.d.a 2 5.c odd 4 2
1008.6.a.bc 1 60.h even 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{2} + 10 \) acting on \(S_{6}^{\mathrm{new}}(\Gamma_0(525))\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T + 10 \) Copy content Toggle raw display
$3$ \( T + 9 \) Copy content Toggle raw display
$5$ \( T \) Copy content Toggle raw display
$7$ \( T - 49 \) Copy content Toggle raw display
$11$ \( T - 92 \) Copy content Toggle raw display
$13$ \( T + 670 \) Copy content Toggle raw display
$17$ \( T - 222 \) Copy content Toggle raw display
$19$ \( T + 908 \) Copy content Toggle raw display
$23$ \( T - 1176 \) Copy content Toggle raw display
$29$ \( T - 1118 \) Copy content Toggle raw display
$31$ \( T - 3696 \) Copy content Toggle raw display
$37$ \( T + 4182 \) Copy content Toggle raw display
$41$ \( T + 6662 \) Copy content Toggle raw display
$43$ \( T - 3700 \) Copy content Toggle raw display
$47$ \( T - 7056 \) Copy content Toggle raw display
$53$ \( T - 37578 \) Copy content Toggle raw display
$59$ \( T - 32700 \) Copy content Toggle raw display
$61$ \( T + 10802 \) Copy content Toggle raw display
$67$ \( T + 64996 \) Copy content Toggle raw display
$71$ \( T + 61320 \) Copy content Toggle raw display
$73$ \( T + 38922 \) Copy content Toggle raw display
$79$ \( T + 88096 \) Copy content Toggle raw display
$83$ \( T + 71892 \) Copy content Toggle raw display
$89$ \( T - 111818 \) Copy content Toggle raw display
$97$ \( T - 150846 \) Copy content Toggle raw display
show more
show less