Properties

Label 525.4.d.n
Level $525$
Weight $4$
Character orbit 525.d
Analytic conductor $30.976$
Analytic rank $0$
Dimension $8$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [525,4,Mod(274,525)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(525, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("525.274");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 525 = 3 \cdot 5^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 525.d (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(30.9760027530\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: \(\mathbb{Q}[x]/(x^{8} + \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} + 48x^{6} + 668x^{4} + 2217x^{2} + 2116 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{7}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \beta_1 q^{2} - 3 \beta_{3} q^{3} + (\beta_{2} - 4) q^{4} + 3 \beta_{4} q^{6} + 7 \beta_{3} q^{7} + (\beta_{5} - 2 \beta_{3} - 4 \beta_1) q^{8} - 9 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( q + \beta_1 q^{2} - 3 \beta_{3} q^{3} + (\beta_{2} - 4) q^{4} + 3 \beta_{4} q^{6} + 7 \beta_{3} q^{7} + (\beta_{5} - 2 \beta_{3} - 4 \beta_1) q^{8} - 9 q^{9} + ( - \beta_{7} + 5 \beta_{4} + 3 \beta_{2} + 5) q^{11} + ( - 3 \beta_{6} + 12 \beta_{3}) q^{12} + (\beta_{6} - 3 \beta_{5} + \cdots - 3 \beta_1) q^{13}+ \cdots + (9 \beta_{7} - 45 \beta_{4} + \cdots - 45) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 32 q^{4} - 72 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 8 q - 32 q^{4} - 72 q^{9} + 42 q^{11} + 144 q^{16} - 144 q^{19} + 168 q^{21} - 54 q^{24} + 258 q^{26} + 480 q^{29} + 702 q^{31} + 570 q^{34} + 288 q^{36} - 30 q^{39} + 762 q^{41} + 1950 q^{44} + 1100 q^{46} - 392 q^{49} + 594 q^{51} + 126 q^{56} + 1710 q^{59} + 1374 q^{61} + 2570 q^{64} + 1326 q^{66} - 612 q^{69} - 1362 q^{71} + 6738 q^{74} + 3820 q^{76} - 690 q^{79} + 648 q^{81} - 672 q^{84} - 1080 q^{86} + 396 q^{89} + 70 q^{91} + 3464 q^{94} + 432 q^{96} - 378 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{8} + 48x^{6} + 668x^{4} + 2217x^{2} + 2116 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( \nu^{2} + 12 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( \nu^{7} + 48\nu^{5} + 622\nu^{3} + 1113\nu ) / 138 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( \nu^{4} + 24\nu^{2} + 46 ) / 3 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( ( \nu^{7} + 48\nu^{5} + 691\nu^{3} + 2493\nu ) / 69 \) Copy content Toggle raw display
\(\beta_{6}\)\(=\) \( ( 6\nu^{7} + 265\nu^{5} + 3180\nu^{3} + 5620\nu ) / 69 \) Copy content Toggle raw display
\(\beta_{7}\)\(=\) \( ( \nu^{6} + 44\nu^{4} + 526\nu^{2} + 926 ) / 3 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{2} - 12 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( \beta_{5} - 2\beta_{3} - 20\beta_1 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( 3\beta_{4} - 24\beta_{2} + 242 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( -3\beta_{6} - 24\beta_{5} + 84\beta_{3} + 434\beta_1 \) Copy content Toggle raw display
\(\nu^{6}\)\(=\) \( 3\beta_{7} - 132\beta_{4} + 530\beta_{2} - 5262 \) Copy content Toggle raw display
\(\nu^{7}\)\(=\) \( 144\beta_{6} + 530\beta_{5} - 2650\beta_{3} - 9505\beta_1 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/525\mathbb{Z}\right)^\times\).

\(n\) \(127\) \(176\) \(451\)
\(\chi(n)\) \(-1\) \(1\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
274.1
4.75345i
4.60171i
1.52801i
1.37627i
1.37627i
1.52801i
4.60171i
4.75345i
4.75345i 3.00000i −14.5953 0 14.2604 7.00000i 31.3504i −9.00000 0
274.2 4.60171i 3.00000i −13.1758 0 −13.8051 7.00000i 23.8174i −9.00000 0
274.3 1.52801i 3.00000i 5.66519 0 −4.58402 7.00000i 20.8805i −9.00000 0
274.4 1.37627i 3.00000i 6.10588 0 4.12881 7.00000i 19.4135i −9.00000 0
274.5 1.37627i 3.00000i 6.10588 0 4.12881 7.00000i 19.4135i −9.00000 0
274.6 1.52801i 3.00000i 5.66519 0 −4.58402 7.00000i 20.8805i −9.00000 0
274.7 4.60171i 3.00000i −13.1758 0 −13.8051 7.00000i 23.8174i −9.00000 0
274.8 4.75345i 3.00000i −14.5953 0 14.2604 7.00000i 31.3504i −9.00000 0
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 274.8
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
5.b even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 525.4.d.n 8
5.b even 2 1 inner 525.4.d.n 8
5.c odd 4 1 525.4.a.t 4
5.c odd 4 1 525.4.a.u yes 4
15.e even 4 1 1575.4.a.bj 4
15.e even 4 1 1575.4.a.bk 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
525.4.a.t 4 5.c odd 4 1
525.4.a.u yes 4 5.c odd 4 1
525.4.d.n 8 1.a even 1 1 trivial
525.4.d.n 8 5.b even 2 1 inner
1575.4.a.bj 4 15.e even 4 1
1575.4.a.bk 4 15.e even 4 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{4}^{\mathrm{new}}(525, [\chi])\):

\( T_{2}^{8} + 48T_{2}^{6} + 668T_{2}^{4} + 2217T_{2}^{2} + 2116 \) Copy content Toggle raw display
\( T_{11}^{4} - 21T_{11}^{3} - 2643T_{11}^{2} + 61617T_{11} - 304010 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{8} + 48 T^{6} + \cdots + 2116 \) Copy content Toggle raw display
$3$ \( (T^{2} + 9)^{4} \) Copy content Toggle raw display
$5$ \( T^{8} \) Copy content Toggle raw display
$7$ \( (T^{2} + 49)^{4} \) Copy content Toggle raw display
$11$ \( (T^{4} - 21 T^{3} + \cdots - 304010)^{2} \) Copy content Toggle raw display
$13$ \( T^{8} + \cdots + 297426255424 \) Copy content Toggle raw display
$17$ \( T^{8} + \cdots + 659698266206464 \) Copy content Toggle raw display
$19$ \( (T^{4} + 72 T^{3} + \cdots + 1017760)^{2} \) Copy content Toggle raw display
$23$ \( T^{8} + \cdots + 152816100889 \) Copy content Toggle raw display
$29$ \( (T^{4} - 240 T^{3} + \cdots + 130344085)^{2} \) Copy content Toggle raw display
$31$ \( (T^{4} - 351 T^{3} + \cdots + 137611224)^{2} \) Copy content Toggle raw display
$37$ \( T^{8} + \cdots + 22\!\cdots\!24 \) Copy content Toggle raw display
$41$ \( (T^{4} - 381 T^{3} + \cdots - 91750400)^{2} \) Copy content Toggle raw display
$43$ \( T^{8} + \cdots + 13\!\cdots\!49 \) Copy content Toggle raw display
$47$ \( T^{8} + \cdots + 12\!\cdots\!16 \) Copy content Toggle raw display
$53$ \( T^{8} + \cdots + 72\!\cdots\!00 \) Copy content Toggle raw display
$59$ \( (T^{4} - 855 T^{3} + \cdots - 35121553400)^{2} \) Copy content Toggle raw display
$61$ \( (T^{4} - 687 T^{3} + \cdots + 13537528704)^{2} \) Copy content Toggle raw display
$67$ \( T^{8} + \cdots + 14\!\cdots\!44 \) Copy content Toggle raw display
$71$ \( (T^{4} + 681 T^{3} + \cdots - 3046275956)^{2} \) Copy content Toggle raw display
$73$ \( T^{8} + \cdots + 24\!\cdots\!44 \) Copy content Toggle raw display
$79$ \( (T^{4} + 345 T^{3} + \cdots - 14999641370)^{2} \) Copy content Toggle raw display
$83$ \( T^{8} + \cdots + 13\!\cdots\!16 \) Copy content Toggle raw display
$89$ \( (T^{4} - 198 T^{3} + \cdots - 25670269520)^{2} \) Copy content Toggle raw display
$97$ \( T^{8} + \cdots + 36\!\cdots\!24 \) Copy content Toggle raw display
show more
show less