Properties

Label 525.4.d.j.274.1
Level $525$
Weight $4$
Character 525.274
Analytic conductor $30.976$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [525,4,Mod(274,525)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(525, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("525.274");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 525 = 3 \cdot 5^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 525.d (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(30.9760027530\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(i, \sqrt{41})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 21x^{2} + 100 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 105)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 274.1
Root \(-3.70156i\) of defining polynomial
Character \(\chi\) \(=\) 525.274
Dual form 525.4.d.j.274.4

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-4.70156i q^{2} +3.00000i q^{3} -14.1047 q^{4} +14.1047 q^{6} -7.00000i q^{7} +28.7016i q^{8} -9.00000 q^{9} +O(q^{10})\) \(q-4.70156i q^{2} +3.00000i q^{3} -14.1047 q^{4} +14.1047 q^{6} -7.00000i q^{7} +28.7016i q^{8} -9.00000 q^{9} +24.5969 q^{11} -42.3141i q^{12} -35.0156i q^{13} -32.9109 q^{14} +22.1047 q^{16} +18.4187i q^{17} +42.3141i q^{18} +67.4031 q^{19} +21.0000 q^{21} -115.644i q^{22} -145.675i q^{23} -86.1047 q^{24} -164.628 q^{26} -27.0000i q^{27} +98.7328i q^{28} -214.419 q^{29} -88.6594 q^{31} +125.686i q^{32} +73.7906i q^{33} +86.5969 q^{34} +126.942 q^{36} -162.125i q^{37} -316.900i q^{38} +105.047 q^{39} -337.769 q^{41} -98.7328i q^{42} +122.156i q^{43} -346.931 q^{44} -684.900 q^{46} -354.219i q^{47} +66.3141i q^{48} -49.0000 q^{49} -55.2562 q^{51} +493.884i q^{52} +676.691i q^{53} -126.942 q^{54} +200.911 q^{56} +202.209i q^{57} +1008.10i q^{58} -501.319 q^{59} -708.931 q^{61} +416.837i q^{62} +63.0000i q^{63} +767.758 q^{64} +346.931 q^{66} +907.956i q^{67} -259.791i q^{68} +437.025 q^{69} +430.334 q^{71} -258.314i q^{72} +41.3406i q^{73} -762.241 q^{74} -950.700 q^{76} -172.178i q^{77} -493.884i q^{78} -890.388 q^{79} +81.0000 q^{81} +1588.04i q^{82} -1057.15i q^{83} -296.198 q^{84} +574.325 q^{86} -643.256i q^{87} +705.969i q^{88} -1473.72 q^{89} -245.109 q^{91} +2054.70i q^{92} -265.978i q^{93} -1665.38 q^{94} -377.058 q^{96} -555.034i q^{97} +230.377i q^{98} -221.372 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 18 q^{4} + 18 q^{6} - 36 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 4 q - 18 q^{4} + 18 q^{6} - 36 q^{9} + 124 q^{11} - 42 q^{14} + 50 q^{16} + 244 q^{19} + 84 q^{21} - 306 q^{24} - 428 q^{26} - 704 q^{29} + 132 q^{31} + 372 q^{34} + 162 q^{36} + 36 q^{39} + 32 q^{41} - 312 q^{44} - 1920 q^{46} - 196 q^{49} + 240 q^{51} - 162 q^{54} + 714 q^{56} - 1032 q^{59} - 1760 q^{61} + 958 q^{64} + 312 q^{66} - 96 q^{69} + 620 q^{71} - 2716 q^{74} - 1344 q^{76} - 3664 q^{79} + 324 q^{81} - 378 q^{84} + 2912 q^{86} - 1592 q^{89} - 84 q^{91} - 5176 q^{94} - 1854 q^{96} - 1116 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/525\mathbb{Z}\right)^\times\).

\(n\) \(127\) \(176\) \(451\)
\(\chi(n)\) \(-1\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) − 4.70156i − 1.66225i −0.556083 0.831127i \(-0.687696\pi\)
0.556083 0.831127i \(-0.312304\pi\)
\(3\) 3.00000i 0.577350i
\(4\) −14.1047 −1.76309
\(5\) 0 0
\(6\) 14.1047 0.959702
\(7\) − 7.00000i − 0.377964i
\(8\) 28.7016i 1.26844i
\(9\) −9.00000 −0.333333
\(10\) 0 0
\(11\) 24.5969 0.674203 0.337102 0.941468i \(-0.390553\pi\)
0.337102 + 0.941468i \(0.390553\pi\)
\(12\) − 42.3141i − 1.01792i
\(13\) − 35.0156i − 0.747045i −0.927621 0.373523i \(-0.878150\pi\)
0.927621 0.373523i \(-0.121850\pi\)
\(14\) −32.9109 −0.628273
\(15\) 0 0
\(16\) 22.1047 0.345386
\(17\) 18.4187i 0.262777i 0.991331 + 0.131388i \(0.0419435\pi\)
−0.991331 + 0.131388i \(0.958057\pi\)
\(18\) 42.3141i 0.554084i
\(19\) 67.4031 0.813860 0.406930 0.913459i \(-0.366599\pi\)
0.406930 + 0.913459i \(0.366599\pi\)
\(20\) 0 0
\(21\) 21.0000 0.218218
\(22\) − 115.644i − 1.12070i
\(23\) − 145.675i − 1.32067i −0.750973 0.660333i \(-0.770415\pi\)
0.750973 0.660333i \(-0.229585\pi\)
\(24\) −86.1047 −0.732335
\(25\) 0 0
\(26\) −164.628 −1.24178
\(27\) − 27.0000i − 0.192450i
\(28\) 98.7328i 0.666384i
\(29\) −214.419 −1.37298 −0.686492 0.727137i \(-0.740851\pi\)
−0.686492 + 0.727137i \(0.740851\pi\)
\(30\) 0 0
\(31\) −88.6594 −0.513667 −0.256834 0.966456i \(-0.582679\pi\)
−0.256834 + 0.966456i \(0.582679\pi\)
\(32\) 125.686i 0.694323i
\(33\) 73.7906i 0.389251i
\(34\) 86.5969 0.436801
\(35\) 0 0
\(36\) 126.942 0.587695
\(37\) − 162.125i − 0.720356i −0.932884 0.360178i \(-0.882716\pi\)
0.932884 0.360178i \(-0.117284\pi\)
\(38\) − 316.900i − 1.35284i
\(39\) 105.047 0.431307
\(40\) 0 0
\(41\) −337.769 −1.28660 −0.643300 0.765614i \(-0.722435\pi\)
−0.643300 + 0.765614i \(0.722435\pi\)
\(42\) − 98.7328i − 0.362733i
\(43\) 122.156i 0.433224i 0.976258 + 0.216612i \(0.0695007\pi\)
−0.976258 + 0.216612i \(0.930499\pi\)
\(44\) −346.931 −1.18868
\(45\) 0 0
\(46\) −684.900 −2.19528
\(47\) − 354.219i − 1.09932i −0.835388 0.549661i \(-0.814757\pi\)
0.835388 0.549661i \(-0.185243\pi\)
\(48\) 66.3141i 0.199409i
\(49\) −49.0000 −0.142857
\(50\) 0 0
\(51\) −55.2562 −0.151714
\(52\) 493.884i 1.31710i
\(53\) 676.691i 1.75378i 0.480687 + 0.876892i \(0.340387\pi\)
−0.480687 + 0.876892i \(0.659613\pi\)
\(54\) −126.942 −0.319901
\(55\) 0 0
\(56\) 200.911 0.479426
\(57\) 202.209i 0.469882i
\(58\) 1008.10i 2.28225i
\(59\) −501.319 −1.10621 −0.553103 0.833113i \(-0.686556\pi\)
−0.553103 + 0.833113i \(0.686556\pi\)
\(60\) 0 0
\(61\) −708.931 −1.48802 −0.744011 0.668167i \(-0.767079\pi\)
−0.744011 + 0.668167i \(0.767079\pi\)
\(62\) 416.837i 0.853845i
\(63\) 63.0000i 0.125988i
\(64\) 767.758 1.49953
\(65\) 0 0
\(66\) 346.931 0.647035
\(67\) 907.956i 1.65559i 0.561031 + 0.827795i \(0.310405\pi\)
−0.561031 + 0.827795i \(0.689595\pi\)
\(68\) − 259.791i − 0.463298i
\(69\) 437.025 0.762487
\(70\) 0 0
\(71\) 430.334 0.719314 0.359657 0.933085i \(-0.382894\pi\)
0.359657 + 0.933085i \(0.382894\pi\)
\(72\) − 258.314i − 0.422814i
\(73\) 41.3406i 0.0662816i 0.999451 + 0.0331408i \(0.0105510\pi\)
−0.999451 + 0.0331408i \(0.989449\pi\)
\(74\) −762.241 −1.19741
\(75\) 0 0
\(76\) −950.700 −1.43490
\(77\) − 172.178i − 0.254825i
\(78\) − 493.884i − 0.716941i
\(79\) −890.388 −1.26806 −0.634028 0.773310i \(-0.718600\pi\)
−0.634028 + 0.773310i \(0.718600\pi\)
\(80\) 0 0
\(81\) 81.0000 0.111111
\(82\) 1588.04i 2.13866i
\(83\) − 1057.15i − 1.39804i −0.715102 0.699020i \(-0.753620\pi\)
0.715102 0.699020i \(-0.246380\pi\)
\(84\) −296.198 −0.384737
\(85\) 0 0
\(86\) 574.325 0.720129
\(87\) − 643.256i − 0.792693i
\(88\) 705.969i 0.855188i
\(89\) −1473.72 −1.75522 −0.877610 0.479376i \(-0.840863\pi\)
−0.877610 + 0.479376i \(0.840863\pi\)
\(90\) 0 0
\(91\) −245.109 −0.282356
\(92\) 2054.70i 2.32845i
\(93\) − 265.978i − 0.296566i
\(94\) −1665.38 −1.82735
\(95\) 0 0
\(96\) −377.058 −0.400868
\(97\) − 555.034i − 0.580981i −0.956878 0.290491i \(-0.906181\pi\)
0.956878 0.290491i \(-0.0938185\pi\)
\(98\) 230.377i 0.237465i
\(99\) −221.372 −0.224734
\(100\) 0 0
\(101\) 1890.14 1.86214 0.931071 0.364838i \(-0.118876\pi\)
0.931071 + 0.364838i \(0.118876\pi\)
\(102\) 259.791i 0.252187i
\(103\) 662.700i 0.633959i 0.948432 + 0.316979i \(0.102669\pi\)
−0.948432 + 0.316979i \(0.897331\pi\)
\(104\) 1005.00 0.947583
\(105\) 0 0
\(106\) 3181.50 2.91523
\(107\) − 1614.53i − 1.45872i −0.684132 0.729358i \(-0.739819\pi\)
0.684132 0.729358i \(-0.260181\pi\)
\(108\) 380.827i 0.339306i
\(109\) −217.206 −0.190868 −0.0954339 0.995436i \(-0.530424\pi\)
−0.0954339 + 0.995436i \(0.530424\pi\)
\(110\) 0 0
\(111\) 486.375 0.415898
\(112\) − 154.733i − 0.130544i
\(113\) − 1658.20i − 1.38044i −0.723598 0.690221i \(-0.757513\pi\)
0.723598 0.690221i \(-0.242487\pi\)
\(114\) 950.700 0.781063
\(115\) 0 0
\(116\) 3024.31 2.42069
\(117\) 315.141i 0.249015i
\(118\) 2356.98i 1.83879i
\(119\) 128.931 0.0993202
\(120\) 0 0
\(121\) −725.994 −0.545450
\(122\) 3333.08i 2.47347i
\(123\) − 1013.31i − 0.742819i
\(124\) 1250.51 0.905640
\(125\) 0 0
\(126\) 296.198 0.209424
\(127\) 1108.81i 0.774734i 0.921926 + 0.387367i \(0.126615\pi\)
−0.921926 + 0.387367i \(0.873385\pi\)
\(128\) − 2604.17i − 1.79827i
\(129\) −366.469 −0.250122
\(130\) 0 0
\(131\) 185.488 0.123711 0.0618554 0.998085i \(-0.480298\pi\)
0.0618554 + 0.998085i \(0.480298\pi\)
\(132\) − 1040.79i − 0.686284i
\(133\) − 471.822i − 0.307610i
\(134\) 4268.81 2.75201
\(135\) 0 0
\(136\) −528.647 −0.333317
\(137\) 37.9907i 0.0236917i 0.999930 + 0.0118458i \(0.00377074\pi\)
−0.999930 + 0.0118458i \(0.996229\pi\)
\(138\) − 2054.70i − 1.26745i
\(139\) −183.609 −0.112040 −0.0560199 0.998430i \(-0.517841\pi\)
−0.0560199 + 0.998430i \(0.517841\pi\)
\(140\) 0 0
\(141\) 1062.66 0.634694
\(142\) − 2023.24i − 1.19568i
\(143\) − 861.275i − 0.503660i
\(144\) −198.942 −0.115129
\(145\) 0 0
\(146\) 194.366 0.110177
\(147\) − 147.000i − 0.0824786i
\(148\) 2286.72i 1.27005i
\(149\) 1383.34 0.760587 0.380293 0.924866i \(-0.375823\pi\)
0.380293 + 0.924866i \(0.375823\pi\)
\(150\) 0 0
\(151\) 765.256 0.412422 0.206211 0.978508i \(-0.433887\pi\)
0.206211 + 0.978508i \(0.433887\pi\)
\(152\) 1934.57i 1.03233i
\(153\) − 165.769i − 0.0875922i
\(154\) −809.506 −0.423584
\(155\) 0 0
\(156\) −1481.65 −0.760431
\(157\) 2366.76i 1.20311i 0.798832 + 0.601554i \(0.205452\pi\)
−0.798832 + 0.601554i \(0.794548\pi\)
\(158\) 4186.21i 2.10783i
\(159\) −2030.07 −1.01255
\(160\) 0 0
\(161\) −1019.72 −0.499165
\(162\) − 380.827i − 0.184695i
\(163\) − 3137.69i − 1.50775i −0.657018 0.753875i \(-0.728183\pi\)
0.657018 0.753875i \(-0.271817\pi\)
\(164\) 4764.12 2.26839
\(165\) 0 0
\(166\) −4970.26 −2.32390
\(167\) − 146.469i − 0.0678688i −0.999424 0.0339344i \(-0.989196\pi\)
0.999424 0.0339344i \(-0.0108037\pi\)
\(168\) 602.733i 0.276797i
\(169\) 970.906 0.441924
\(170\) 0 0
\(171\) −606.628 −0.271287
\(172\) − 1722.98i − 0.763812i
\(173\) − 1424.12i − 0.625860i −0.949776 0.312930i \(-0.898689\pi\)
0.949776 0.312930i \(-0.101311\pi\)
\(174\) −3024.31 −1.31766
\(175\) 0 0
\(176\) 543.706 0.232860
\(177\) − 1503.96i − 0.638668i
\(178\) 6928.81i 2.91762i
\(179\) −1244.70 −0.519737 −0.259869 0.965644i \(-0.583679\pi\)
−0.259869 + 0.965644i \(0.583679\pi\)
\(180\) 0 0
\(181\) −3879.09 −1.59299 −0.796493 0.604648i \(-0.793314\pi\)
−0.796493 + 0.604648i \(0.793314\pi\)
\(182\) 1152.40i 0.469348i
\(183\) − 2126.79i − 0.859110i
\(184\) 4181.10 1.67519
\(185\) 0 0
\(186\) −1250.51 −0.492968
\(187\) 453.044i 0.177165i
\(188\) 4996.14i 1.93820i
\(189\) −189.000 −0.0727393
\(190\) 0 0
\(191\) 1574.90 0.596628 0.298314 0.954468i \(-0.403576\pi\)
0.298314 + 0.954468i \(0.403576\pi\)
\(192\) 2303.27i 0.865752i
\(193\) − 4775.67i − 1.78114i −0.454843 0.890572i \(-0.650305\pi\)
0.454843 0.890572i \(-0.349695\pi\)
\(194\) −2609.53 −0.965738
\(195\) 0 0
\(196\) 691.130 0.251869
\(197\) 2803.58i 1.01394i 0.861963 + 0.506971i \(0.169235\pi\)
−0.861963 + 0.506971i \(0.830765\pi\)
\(198\) 1040.79i 0.373566i
\(199\) −4102.92 −1.46155 −0.730774 0.682620i \(-0.760841\pi\)
−0.730774 + 0.682620i \(0.760841\pi\)
\(200\) 0 0
\(201\) −2723.87 −0.955855
\(202\) − 8886.63i − 3.09535i
\(203\) 1500.93i 0.518940i
\(204\) 779.372 0.267485
\(205\) 0 0
\(206\) 3115.72 1.05380
\(207\) 1311.07i 0.440222i
\(208\) − 774.009i − 0.258019i
\(209\) 1657.91 0.548707
\(210\) 0 0
\(211\) −823.512 −0.268687 −0.134343 0.990935i \(-0.542893\pi\)
−0.134343 + 0.990935i \(0.542893\pi\)
\(212\) − 9544.51i − 3.09207i
\(213\) 1291.00i 0.415296i
\(214\) −7590.82 −2.42476
\(215\) 0 0
\(216\) 774.942 0.244112
\(217\) 620.616i 0.194148i
\(218\) 1021.21i 0.317271i
\(219\) −124.022 −0.0382677
\(220\) 0 0
\(221\) 644.944 0.196306
\(222\) − 2286.72i − 0.691328i
\(223\) 817.194i 0.245396i 0.992444 + 0.122698i \(0.0391547\pi\)
−0.992444 + 0.122698i \(0.960845\pi\)
\(224\) 879.802 0.262430
\(225\) 0 0
\(226\) −7796.12 −2.29465
\(227\) − 3655.85i − 1.06893i −0.845190 0.534465i \(-0.820513\pi\)
0.845190 0.534465i \(-0.179487\pi\)
\(228\) − 2852.10i − 0.828443i
\(229\) −939.393 −0.271078 −0.135539 0.990772i \(-0.543277\pi\)
−0.135539 + 0.990772i \(0.543277\pi\)
\(230\) 0 0
\(231\) 516.534 0.147123
\(232\) − 6154.15i − 1.74155i
\(233\) − 7.64701i − 0.00215010i −0.999999 0.00107505i \(-0.999658\pi\)
0.999999 0.00107505i \(-0.000342198\pi\)
\(234\) 1481.65 0.413926
\(235\) 0 0
\(236\) 7070.94 1.95034
\(237\) − 2671.16i − 0.732112i
\(238\) − 606.178i − 0.165095i
\(239\) 889.115 0.240636 0.120318 0.992735i \(-0.461609\pi\)
0.120318 + 0.992735i \(0.461609\pi\)
\(240\) 0 0
\(241\) 2140.23 0.572051 0.286026 0.958222i \(-0.407666\pi\)
0.286026 + 0.958222i \(0.407666\pi\)
\(242\) 3413.30i 0.906676i
\(243\) 243.000i 0.0641500i
\(244\) 9999.25 2.62351
\(245\) 0 0
\(246\) −4764.12 −1.23475
\(247\) − 2360.16i − 0.607990i
\(248\) − 2544.66i − 0.651557i
\(249\) 3171.45 0.807158
\(250\) 0 0
\(251\) −6749.81 −1.69739 −0.848693 0.528886i \(-0.822610\pi\)
−0.848693 + 0.528886i \(0.822610\pi\)
\(252\) − 888.595i − 0.222128i
\(253\) − 3583.15i − 0.890398i
\(254\) 5213.15 1.28780
\(255\) 0 0
\(256\) −6101.62 −1.48965
\(257\) − 3068.64i − 0.744811i −0.928070 0.372405i \(-0.878533\pi\)
0.928070 0.372405i \(-0.121467\pi\)
\(258\) 1722.98i 0.415766i
\(259\) −1134.87 −0.272269
\(260\) 0 0
\(261\) 1929.77 0.457662
\(262\) − 872.081i − 0.205639i
\(263\) − 4674.12i − 1.09589i −0.836515 0.547944i \(-0.815411\pi\)
0.836515 0.547944i \(-0.184589\pi\)
\(264\) −2117.91 −0.493743
\(265\) 0 0
\(266\) −2218.30 −0.511326
\(267\) − 4421.17i − 1.01338i
\(268\) − 12806.4i − 2.91895i
\(269\) −2417.38 −0.547919 −0.273960 0.961741i \(-0.588333\pi\)
−0.273960 + 0.961741i \(0.588333\pi\)
\(270\) 0 0
\(271\) 7724.30 1.73143 0.865715 0.500537i \(-0.166864\pi\)
0.865715 + 0.500537i \(0.166864\pi\)
\(272\) 407.141i 0.0907593i
\(273\) − 735.328i − 0.163019i
\(274\) 178.616 0.0393816
\(275\) 0 0
\(276\) −6164.10 −1.34433
\(277\) 4576.17i 0.992620i 0.868145 + 0.496310i \(0.165312\pi\)
−0.868145 + 0.496310i \(0.834688\pi\)
\(278\) 863.250i 0.186239i
\(279\) 797.934 0.171222
\(280\) 0 0
\(281\) −1358.56 −0.288415 −0.144208 0.989547i \(-0.546063\pi\)
−0.144208 + 0.989547i \(0.546063\pi\)
\(282\) − 4996.14i − 1.05502i
\(283\) 3885.04i 0.816048i 0.912971 + 0.408024i \(0.133782\pi\)
−0.912971 + 0.408024i \(0.866218\pi\)
\(284\) −6069.73 −1.26821
\(285\) 0 0
\(286\) −4049.34 −0.837211
\(287\) 2364.38i 0.486289i
\(288\) − 1131.17i − 0.231441i
\(289\) 4573.75 0.930948
\(290\) 0 0
\(291\) 1665.10 0.335430
\(292\) − 583.097i − 0.116860i
\(293\) − 4033.91i − 0.804312i −0.915571 0.402156i \(-0.868261\pi\)
0.915571 0.402156i \(-0.131739\pi\)
\(294\) −691.130 −0.137100
\(295\) 0 0
\(296\) 4653.24 0.913730
\(297\) − 664.116i − 0.129750i
\(298\) − 6503.85i − 1.26429i
\(299\) −5100.90 −0.986598
\(300\) 0 0
\(301\) 855.093 0.163743
\(302\) − 3597.90i − 0.685549i
\(303\) 5670.43i 1.07511i
\(304\) 1489.92 0.281096
\(305\) 0 0
\(306\) −779.372 −0.145600
\(307\) 4620.36i 0.858950i 0.903079 + 0.429475i \(0.141301\pi\)
−0.903079 + 0.429475i \(0.858699\pi\)
\(308\) 2428.52i 0.449278i
\(309\) −1988.10 −0.366016
\(310\) 0 0
\(311\) 6675.89 1.21722 0.608609 0.793470i \(-0.291728\pi\)
0.608609 + 0.793470i \(0.291728\pi\)
\(312\) 3015.01i 0.547087i
\(313\) 2836.78i 0.512283i 0.966639 + 0.256141i \(0.0824513\pi\)
−0.966639 + 0.256141i \(0.917549\pi\)
\(314\) 11127.5 1.99987
\(315\) 0 0
\(316\) 12558.6 2.23569
\(317\) − 4010.63i − 0.710597i −0.934753 0.355299i \(-0.884379\pi\)
0.934753 0.355299i \(-0.115621\pi\)
\(318\) 9544.51i 1.68311i
\(319\) −5274.03 −0.925671
\(320\) 0 0
\(321\) 4843.59 0.842190
\(322\) 4794.30i 0.829739i
\(323\) 1241.48i 0.213863i
\(324\) −1142.48 −0.195898
\(325\) 0 0
\(326\) −14752.1 −2.50626
\(327\) − 651.619i − 0.110198i
\(328\) − 9694.49i − 1.63198i
\(329\) −2479.53 −0.415504
\(330\) 0 0
\(331\) 11087.5 1.84117 0.920583 0.390546i \(-0.127714\pi\)
0.920583 + 0.390546i \(0.127714\pi\)
\(332\) 14910.8i 2.46486i
\(333\) 1459.12i 0.240119i
\(334\) −688.631 −0.112815
\(335\) 0 0
\(336\) 464.198 0.0753693
\(337\) − 12118.7i − 1.95890i −0.201689 0.979450i \(-0.564643\pi\)
0.201689 0.979450i \(-0.435357\pi\)
\(338\) − 4564.78i − 0.734589i
\(339\) 4974.59 0.796999
\(340\) 0 0
\(341\) −2180.74 −0.346316
\(342\) 2852.10i 0.450947i
\(343\) 343.000i 0.0539949i
\(344\) −3506.07 −0.549520
\(345\) 0 0
\(346\) −6695.58 −1.04034
\(347\) 6361.22i 0.984116i 0.870562 + 0.492058i \(0.163755\pi\)
−0.870562 + 0.492058i \(0.836245\pi\)
\(348\) 9072.93i 1.39759i
\(349\) 3115.18 0.477799 0.238899 0.971044i \(-0.423213\pi\)
0.238899 + 0.971044i \(0.423213\pi\)
\(350\) 0 0
\(351\) −945.422 −0.143769
\(352\) 3091.48i 0.468115i
\(353\) − 11927.4i − 1.79839i −0.437550 0.899194i \(-0.644154\pi\)
0.437550 0.899194i \(-0.355846\pi\)
\(354\) −7070.94 −1.06163
\(355\) 0 0
\(356\) 20786.4 3.09460
\(357\) 386.794i 0.0573426i
\(358\) 5852.02i 0.863935i
\(359\) 6143.95 0.903245 0.451623 0.892209i \(-0.350845\pi\)
0.451623 + 0.892209i \(0.350845\pi\)
\(360\) 0 0
\(361\) −2315.82 −0.337632
\(362\) 18237.8i 2.64794i
\(363\) − 2177.98i − 0.314916i
\(364\) 3457.19 0.497819
\(365\) 0 0
\(366\) −9999.25 −1.42806
\(367\) 1927.67i 0.274178i 0.990559 + 0.137089i \(0.0437747\pi\)
−0.990559 + 0.137089i \(0.956225\pi\)
\(368\) − 3220.10i − 0.456139i
\(369\) 3039.92 0.428867
\(370\) 0 0
\(371\) 4736.83 0.662868
\(372\) 3751.54i 0.522871i
\(373\) 10452.0i 1.45090i 0.688276 + 0.725449i \(0.258368\pi\)
−0.688276 + 0.725449i \(0.741632\pi\)
\(374\) 2130.01 0.294493
\(375\) 0 0
\(376\) 10166.6 1.39443
\(377\) 7508.01i 1.02568i
\(378\) 888.595i 0.120911i
\(379\) −7066.43 −0.957726 −0.478863 0.877890i \(-0.658951\pi\)
−0.478863 + 0.877890i \(0.658951\pi\)
\(380\) 0 0
\(381\) −3326.44 −0.447293
\(382\) − 7404.51i − 0.991747i
\(383\) 7168.04i 0.956318i 0.878273 + 0.478159i \(0.158696\pi\)
−0.878273 + 0.478159i \(0.841304\pi\)
\(384\) 7812.52 1.03823
\(385\) 0 0
\(386\) −22453.1 −2.96071
\(387\) − 1099.41i − 0.144408i
\(388\) 7828.58i 1.02432i
\(389\) 7414.06 0.966344 0.483172 0.875525i \(-0.339485\pi\)
0.483172 + 0.875525i \(0.339485\pi\)
\(390\) 0 0
\(391\) 2683.15 0.347040
\(392\) − 1406.38i − 0.181206i
\(393\) 556.463i 0.0714245i
\(394\) 13181.2 1.68543
\(395\) 0 0
\(396\) 3122.38 0.396226
\(397\) 8936.01i 1.12969i 0.825198 + 0.564843i \(0.191063\pi\)
−0.825198 + 0.564843i \(0.808937\pi\)
\(398\) 19290.1i 2.42946i
\(399\) 1415.47 0.177599
\(400\) 0 0
\(401\) 1782.91 0.222031 0.111015 0.993819i \(-0.464590\pi\)
0.111015 + 0.993819i \(0.464590\pi\)
\(402\) 12806.4i 1.58887i
\(403\) 3104.46i 0.383733i
\(404\) −26659.9 −3.28312
\(405\) 0 0
\(406\) 7056.72 0.862609
\(407\) − 3987.77i − 0.485667i
\(408\) − 1585.94i − 0.192441i
\(409\) 8759.92 1.05905 0.529524 0.848295i \(-0.322371\pi\)
0.529524 + 0.848295i \(0.322371\pi\)
\(410\) 0 0
\(411\) −113.972 −0.0136784
\(412\) − 9347.17i − 1.11772i
\(413\) 3509.23i 0.418106i
\(414\) 6164.10 0.731761
\(415\) 0 0
\(416\) 4400.97 0.518691
\(417\) − 550.828i − 0.0646862i
\(418\) − 7794.75i − 0.912090i
\(419\) 3212.74 0.374588 0.187294 0.982304i \(-0.440028\pi\)
0.187294 + 0.982304i \(0.440028\pi\)
\(420\) 0 0
\(421\) 15757.8 1.82420 0.912101 0.409965i \(-0.134459\pi\)
0.912101 + 0.409965i \(0.134459\pi\)
\(422\) 3871.79i 0.446626i
\(423\) 3187.97i 0.366440i
\(424\) −19422.1 −2.22457
\(425\) 0 0
\(426\) 6069.73 0.690327
\(427\) 4962.52i 0.562419i
\(428\) 22772.5i 2.57184i
\(429\) 2583.82 0.290788
\(430\) 0 0
\(431\) −405.917 −0.0453650 −0.0226825 0.999743i \(-0.507221\pi\)
−0.0226825 + 0.999743i \(0.507221\pi\)
\(432\) − 596.827i − 0.0664695i
\(433\) − 7845.25i − 0.870713i −0.900258 0.435357i \(-0.856622\pi\)
0.900258 0.435357i \(-0.143378\pi\)
\(434\) 2917.86 0.322723
\(435\) 0 0
\(436\) 3063.63 0.336516
\(437\) − 9818.95i − 1.07484i
\(438\) 583.097i 0.0636106i
\(439\) −423.029 −0.0459911 −0.0229955 0.999736i \(-0.507320\pi\)
−0.0229955 + 0.999736i \(0.507320\pi\)
\(440\) 0 0
\(441\) 441.000 0.0476190
\(442\) − 3032.24i − 0.326310i
\(443\) − 16058.7i − 1.72229i −0.508362 0.861143i \(-0.669749\pi\)
0.508362 0.861143i \(-0.330251\pi\)
\(444\) −6860.17 −0.733264
\(445\) 0 0
\(446\) 3842.09 0.407911
\(447\) 4150.01i 0.439125i
\(448\) − 5374.30i − 0.566768i
\(449\) −2186.75 −0.229842 −0.114921 0.993375i \(-0.536662\pi\)
−0.114921 + 0.993375i \(0.536662\pi\)
\(450\) 0 0
\(451\) −8308.05 −0.867430
\(452\) 23388.3i 2.43384i
\(453\) 2295.77i 0.238112i
\(454\) −17188.2 −1.77683
\(455\) 0 0
\(456\) −5803.72 −0.596018
\(457\) 5799.22i 0.593602i 0.954939 + 0.296801i \(0.0959198\pi\)
−0.954939 + 0.296801i \(0.904080\pi\)
\(458\) 4416.62i 0.450600i
\(459\) 497.306 0.0505714
\(460\) 0 0
\(461\) 9873.35 0.997500 0.498750 0.866746i \(-0.333793\pi\)
0.498750 + 0.866746i \(0.333793\pi\)
\(462\) − 2428.52i − 0.244556i
\(463\) − 6181.84i − 0.620506i −0.950654 0.310253i \(-0.899586\pi\)
0.950654 0.310253i \(-0.100414\pi\)
\(464\) −4739.66 −0.474209
\(465\) 0 0
\(466\) −35.9529 −0.00357400
\(467\) − 6145.50i − 0.608950i −0.952520 0.304475i \(-0.901519\pi\)
0.952520 0.304475i \(-0.0984810\pi\)
\(468\) − 4444.96i − 0.439035i
\(469\) 6355.69 0.625754
\(470\) 0 0
\(471\) −7100.28 −0.694615
\(472\) − 14388.6i − 1.40316i
\(473\) 3004.66i 0.292081i
\(474\) −12558.6 −1.21696
\(475\) 0 0
\(476\) −1818.53 −0.175110
\(477\) − 6090.22i − 0.584595i
\(478\) − 4180.23i − 0.399999i
\(479\) −10879.4 −1.03777 −0.518887 0.854843i \(-0.673653\pi\)
−0.518887 + 0.854843i \(0.673653\pi\)
\(480\) 0 0
\(481\) −5676.91 −0.538139
\(482\) − 10062.4i − 0.950894i
\(483\) − 3059.17i − 0.288193i
\(484\) 10239.9 0.961675
\(485\) 0 0
\(486\) 1142.48 0.106634
\(487\) − 8087.51i − 0.752526i −0.926513 0.376263i \(-0.877209\pi\)
0.926513 0.376263i \(-0.122791\pi\)
\(488\) − 20347.4i − 1.88747i
\(489\) 9413.08 0.870499
\(490\) 0 0
\(491\) −6959.90 −0.639707 −0.319853 0.947467i \(-0.603634\pi\)
−0.319853 + 0.947467i \(0.603634\pi\)
\(492\) 14292.4i 1.30965i
\(493\) − 3949.32i − 0.360788i
\(494\) −11096.4 −1.01063
\(495\) 0 0
\(496\) −1959.79 −0.177413
\(497\) − 3012.34i − 0.271875i
\(498\) − 14910.8i − 1.34170i
\(499\) −18632.0 −1.67151 −0.835756 0.549101i \(-0.814970\pi\)
−0.835756 + 0.549101i \(0.814970\pi\)
\(500\) 0 0
\(501\) 439.406 0.0391840
\(502\) 31734.6i 2.82149i
\(503\) 4627.62i 0.410209i 0.978740 + 0.205105i \(0.0657535\pi\)
−0.978740 + 0.205105i \(0.934247\pi\)
\(504\) −1808.20 −0.159809
\(505\) 0 0
\(506\) −16846.4 −1.48007
\(507\) 2912.72i 0.255145i
\(508\) − 15639.4i − 1.36592i
\(509\) 11351.8 0.988528 0.494264 0.869312i \(-0.335438\pi\)
0.494264 + 0.869312i \(0.335438\pi\)
\(510\) 0 0
\(511\) 289.384 0.0250521
\(512\) 7853.76i 0.677911i
\(513\) − 1819.88i − 0.156627i
\(514\) −14427.4 −1.23806
\(515\) 0 0
\(516\) 5168.93 0.440987
\(517\) − 8712.67i − 0.741166i
\(518\) 5335.68i 0.452580i
\(519\) 4272.36 0.361340
\(520\) 0 0
\(521\) 19096.1 1.60579 0.802893 0.596123i \(-0.203293\pi\)
0.802893 + 0.596123i \(0.203293\pi\)
\(522\) − 9072.93i − 0.760750i
\(523\) − 3145.11i − 0.262956i −0.991319 0.131478i \(-0.958028\pi\)
0.991319 0.131478i \(-0.0419723\pi\)
\(524\) −2616.24 −0.218113
\(525\) 0 0
\(526\) −21975.7 −1.82164
\(527\) − 1632.99i − 0.134980i
\(528\) 1631.12i 0.134442i
\(529\) −9054.20 −0.744160
\(530\) 0 0
\(531\) 4511.87 0.368735
\(532\) 6654.90i 0.542343i
\(533\) 11827.2i 0.961148i
\(534\) −20786.4 −1.68449
\(535\) 0 0
\(536\) −26059.8 −2.10002
\(537\) − 3734.09i − 0.300071i
\(538\) 11365.5i 0.910781i
\(539\) −1205.25 −0.0963148
\(540\) 0 0
\(541\) 8776.12 0.697440 0.348720 0.937227i \(-0.386616\pi\)
0.348720 + 0.937227i \(0.386616\pi\)
\(542\) − 36316.3i − 2.87808i
\(543\) − 11637.3i − 0.919710i
\(544\) −2314.98 −0.182452
\(545\) 0 0
\(546\) −3457.19 −0.270978
\(547\) 13695.1i 1.07049i 0.844696 + 0.535247i \(0.179781\pi\)
−0.844696 + 0.535247i \(0.820219\pi\)
\(548\) − 535.847i − 0.0417705i
\(549\) 6380.38 0.496007
\(550\) 0 0
\(551\) −14452.5 −1.11742
\(552\) 12543.3i 0.967171i
\(553\) 6232.71i 0.479280i
\(554\) 21515.2 1.64999
\(555\) 0 0
\(556\) 2589.75 0.197536
\(557\) − 7850.44i − 0.597188i −0.954380 0.298594i \(-0.903482\pi\)
0.954380 0.298594i \(-0.0965177\pi\)
\(558\) − 3751.54i − 0.284615i
\(559\) 4277.38 0.323638
\(560\) 0 0
\(561\) −1359.13 −0.102286
\(562\) 6387.33i 0.479419i
\(563\) − 4948.81i − 0.370457i −0.982695 0.185229i \(-0.940697\pi\)
0.982695 0.185229i \(-0.0593026\pi\)
\(564\) −14988.4 −1.11902
\(565\) 0 0
\(566\) 18265.7 1.35648
\(567\) − 567.000i − 0.0419961i
\(568\) 12351.3i 0.912408i
\(569\) 8115.76 0.597945 0.298972 0.954262i \(-0.403356\pi\)
0.298972 + 0.954262i \(0.403356\pi\)
\(570\) 0 0
\(571\) 5656.42 0.414560 0.207280 0.978282i \(-0.433539\pi\)
0.207280 + 0.978282i \(0.433539\pi\)
\(572\) 12148.0i 0.887996i
\(573\) 4724.71i 0.344463i
\(574\) 11116.3 0.808336
\(575\) 0 0
\(576\) −6909.82 −0.499842
\(577\) 9536.77i 0.688078i 0.938955 + 0.344039i \(0.111795\pi\)
−0.938955 + 0.344039i \(0.888205\pi\)
\(578\) − 21503.8i − 1.54747i
\(579\) 14327.0 1.02834
\(580\) 0 0
\(581\) −7400.05 −0.528409
\(582\) − 7828.58i − 0.557569i
\(583\) 16644.5i 1.18241i
\(584\) −1186.54 −0.0840743
\(585\) 0 0
\(586\) −18965.7 −1.33697
\(587\) 13089.6i 0.920383i 0.887820 + 0.460191i \(0.152219\pi\)
−0.887820 + 0.460191i \(0.847781\pi\)
\(588\) 2073.39i 0.145417i
\(589\) −5975.92 −0.418053
\(590\) 0 0
\(591\) −8410.73 −0.585400
\(592\) − 3583.72i − 0.248801i
\(593\) 4281.96i 0.296524i 0.988948 + 0.148262i \(0.0473679\pi\)
−0.988948 + 0.148262i \(0.952632\pi\)
\(594\) −3122.38 −0.215678
\(595\) 0 0
\(596\) −19511.5 −1.34098
\(597\) − 12308.7i − 0.843825i
\(598\) 23982.2i 1.63997i
\(599\) −3699.92 −0.252378 −0.126189 0.992006i \(-0.540275\pi\)
−0.126189 + 0.992006i \(0.540275\pi\)
\(600\) 0 0
\(601\) −17286.1 −1.17323 −0.586616 0.809865i \(-0.699540\pi\)
−0.586616 + 0.809865i \(0.699540\pi\)
\(602\) − 4020.28i − 0.272183i
\(603\) − 8171.61i − 0.551863i
\(604\) −10793.7 −0.727135
\(605\) 0 0
\(606\) 26659.9 1.78710
\(607\) − 14456.7i − 0.966689i −0.875430 0.483344i \(-0.839422\pi\)
0.875430 0.483344i \(-0.160578\pi\)
\(608\) 8471.63i 0.565082i
\(609\) −4502.79 −0.299610
\(610\) 0 0
\(611\) −12403.2 −0.821243
\(612\) 2338.12i 0.154433i
\(613\) 17981.9i 1.18480i 0.805644 + 0.592400i \(0.201819\pi\)
−0.805644 + 0.592400i \(0.798181\pi\)
\(614\) 21722.9 1.42779
\(615\) 0 0
\(616\) 4941.78 0.323231
\(617\) − 19614.7i − 1.27983i −0.768445 0.639916i \(-0.778969\pi\)
0.768445 0.639916i \(-0.221031\pi\)
\(618\) 9347.17i 0.608412i
\(619\) 10462.9 0.679385 0.339692 0.940537i \(-0.389677\pi\)
0.339692 + 0.940537i \(0.389677\pi\)
\(620\) 0 0
\(621\) −3933.22 −0.254162
\(622\) − 31387.1i − 2.02332i
\(623\) 10316.1i 0.663411i
\(624\) 2322.03 0.148967
\(625\) 0 0
\(626\) 13337.3 0.851544
\(627\) 4973.72i 0.316796i
\(628\) − 33382.4i − 2.12118i
\(629\) 2986.14 0.189293
\(630\) 0 0
\(631\) 24481.9 1.54454 0.772272 0.635292i \(-0.219120\pi\)
0.772272 + 0.635292i \(0.219120\pi\)
\(632\) − 25555.5i − 1.60846i
\(633\) − 2470.54i − 0.155126i
\(634\) −18856.2 −1.18119
\(635\) 0 0
\(636\) 28633.5 1.78521
\(637\) 1715.77i 0.106721i
\(638\) 24796.2i 1.53870i
\(639\) −3873.01 −0.239771
\(640\) 0 0
\(641\) −1109.39 −0.0683595 −0.0341797 0.999416i \(-0.510882\pi\)
−0.0341797 + 0.999416i \(0.510882\pi\)
\(642\) − 22772.5i − 1.39993i
\(643\) 30112.5i 1.84684i 0.383787 + 0.923422i \(0.374620\pi\)
−0.383787 + 0.923422i \(0.625380\pi\)
\(644\) 14382.9 0.880071
\(645\) 0 0
\(646\) 5836.90 0.355495
\(647\) 4260.27i 0.258869i 0.991588 + 0.129435i \(0.0413162\pi\)
−0.991588 + 0.129435i \(0.958684\pi\)
\(648\) 2324.83i 0.140938i
\(649\) −12330.9 −0.745808
\(650\) 0 0
\(651\) −1861.85 −0.112091
\(652\) 44256.2i 2.65829i
\(653\) − 10576.8i − 0.633844i −0.948452 0.316922i \(-0.897351\pi\)
0.948452 0.316922i \(-0.102649\pi\)
\(654\) −3063.63 −0.183176
\(655\) 0 0
\(656\) −7466.27 −0.444373
\(657\) − 372.066i − 0.0220939i
\(658\) 11657.7i 0.690674i
\(659\) −3394.70 −0.200666 −0.100333 0.994954i \(-0.531991\pi\)
−0.100333 + 0.994954i \(0.531991\pi\)
\(660\) 0 0
\(661\) −33174.4 −1.95210 −0.976048 0.217554i \(-0.930192\pi\)
−0.976048 + 0.217554i \(0.930192\pi\)
\(662\) − 52128.7i − 3.06048i
\(663\) 1934.83i 0.113337i
\(664\) 30341.9 1.77333
\(665\) 0 0
\(666\) 6860.17 0.399138
\(667\) 31235.4i 1.81326i
\(668\) 2065.89i 0.119658i
\(669\) −2451.58 −0.141680
\(670\) 0 0
\(671\) −17437.5 −1.00323
\(672\) 2639.40i 0.151514i
\(673\) 753.881i 0.0431797i 0.999767 + 0.0215899i \(0.00687280\pi\)
−0.999767 + 0.0215899i \(0.993127\pi\)
\(674\) −56976.9 −3.25619
\(675\) 0 0
\(676\) −13694.3 −0.779149
\(677\) − 15668.8i − 0.889511i −0.895652 0.444756i \(-0.853291\pi\)
0.895652 0.444756i \(-0.146709\pi\)
\(678\) − 23388.3i − 1.32481i
\(679\) −3885.24 −0.219590
\(680\) 0 0
\(681\) 10967.5 0.617147
\(682\) 10252.9i 0.575665i
\(683\) − 11557.4i − 0.647485i −0.946145 0.323742i \(-0.895059\pi\)
0.946145 0.323742i \(-0.104941\pi\)
\(684\) 8556.30 0.478302
\(685\) 0 0
\(686\) 1612.64 0.0897532
\(687\) − 2818.18i − 0.156507i
\(688\) 2700.22i 0.149630i
\(689\) 23694.7 1.31016
\(690\) 0 0
\(691\) −18503.1 −1.01866 −0.509328 0.860572i \(-0.670106\pi\)
−0.509328 + 0.860572i \(0.670106\pi\)
\(692\) 20086.8i 1.10344i
\(693\) 1549.60i 0.0849416i
\(694\) 29907.7 1.63585
\(695\) 0 0
\(696\) 18462.5 1.00549
\(697\) − 6221.28i − 0.338088i
\(698\) − 14646.2i − 0.794223i
\(699\) 22.9410 0.00124136
\(700\) 0 0
\(701\) 22580.4 1.21662 0.608311 0.793699i \(-0.291847\pi\)
0.608311 + 0.793699i \(0.291847\pi\)
\(702\) 4444.96i 0.238980i
\(703\) − 10927.7i − 0.586269i
\(704\) 18884.4 1.01099
\(705\) 0 0
\(706\) −56077.4 −2.98938
\(707\) − 13231.0i − 0.703823i
\(708\) 21212.8i 1.12603i
\(709\) 27426.6 1.45279 0.726394 0.687278i \(-0.241195\pi\)
0.726394 + 0.687278i \(0.241195\pi\)
\(710\) 0 0
\(711\) 8013.49 0.422685
\(712\) − 42298.2i − 2.22639i
\(713\) 12915.5i 0.678383i
\(714\) 1818.53 0.0953178
\(715\) 0 0
\(716\) 17556.1 0.916342
\(717\) 2667.35i 0.138931i
\(718\) − 28886.1i − 1.50142i
\(719\) −19383.0 −1.00538 −0.502688 0.864468i \(-0.667656\pi\)
−0.502688 + 0.864468i \(0.667656\pi\)
\(720\) 0 0
\(721\) 4638.90 0.239614
\(722\) 10888.0i 0.561230i
\(723\) 6420.69i 0.330274i
\(724\) 54713.3 2.80857
\(725\) 0 0
\(726\) −10239.9 −0.523469
\(727\) 12317.3i 0.628368i 0.949362 + 0.314184i \(0.101731\pi\)
−0.949362 + 0.314184i \(0.898269\pi\)
\(728\) − 7035.02i − 0.358153i
\(729\) −729.000 −0.0370370
\(730\) 0 0
\(731\) −2249.96 −0.113841
\(732\) 29997.8i 1.51468i
\(733\) 1234.02i 0.0621822i 0.999517 + 0.0310911i \(0.00989821\pi\)
−0.999517 + 0.0310911i \(0.990102\pi\)
\(734\) 9063.05 0.455754
\(735\) 0 0
\(736\) 18309.3 0.916970
\(737\) 22332.9i 1.11620i
\(738\) − 14292.4i − 0.712885i
\(739\) 15257.3 0.759473 0.379736 0.925095i \(-0.376015\pi\)
0.379736 + 0.925095i \(0.376015\pi\)
\(740\) 0 0
\(741\) 7080.49 0.351023
\(742\) − 22270.5i − 1.10186i
\(743\) − 35565.1i − 1.75606i −0.478602 0.878032i \(-0.658856\pi\)
0.478602 0.878032i \(-0.341144\pi\)
\(744\) 7633.99 0.376177
\(745\) 0 0
\(746\) 49140.8 2.41176
\(747\) 9514.35i 0.466013i
\(748\) − 6390.04i − 0.312357i
\(749\) −11301.7 −0.551343
\(750\) 0 0
\(751\) 14266.7 0.693209 0.346605 0.938011i \(-0.387335\pi\)
0.346605 + 0.938011i \(0.387335\pi\)
\(752\) − 7829.89i − 0.379690i
\(753\) − 20249.4i − 0.979986i
\(754\) 35299.4 1.70494
\(755\) 0 0
\(756\) 2665.79 0.128246
\(757\) 15927.9i 0.764744i 0.924009 + 0.382372i \(0.124893\pi\)
−0.924009 + 0.382372i \(0.875107\pi\)
\(758\) 33223.3i 1.59198i
\(759\) 10749.4 0.514071
\(760\) 0 0
\(761\) −2566.48 −0.122253 −0.0611266 0.998130i \(-0.519469\pi\)
−0.0611266 + 0.998130i \(0.519469\pi\)
\(762\) 15639.4i 0.743514i
\(763\) 1520.44i 0.0721413i
\(764\) −22213.5 −1.05191
\(765\) 0 0
\(766\) 33701.0 1.58964
\(767\) 17554.0i 0.826386i
\(768\) − 18304.9i − 0.860052i
\(769\) −14433.1 −0.676816 −0.338408 0.940999i \(-0.609888\pi\)
−0.338408 + 0.940999i \(0.609888\pi\)
\(770\) 0 0
\(771\) 9205.91 0.430017
\(772\) 67359.4i 3.14031i
\(773\) − 29443.2i − 1.36999i −0.728550 0.684993i \(-0.759805\pi\)
0.728550 0.684993i \(-0.240195\pi\)
\(774\) −5168.93 −0.240043
\(775\) 0 0
\(776\) 15930.4 0.736941
\(777\) − 3404.62i − 0.157195i
\(778\) − 34857.7i − 1.60631i
\(779\) −22766.7 −1.04711
\(780\) 0 0
\(781\) 10584.9 0.484964
\(782\) − 12615.0i − 0.576869i
\(783\) 5789.31i 0.264231i
\(784\) −1083.13 −0.0493408
\(785\) 0 0
\(786\) 2616.24 0.118726
\(787\) − 26390.6i − 1.19533i −0.801747 0.597664i \(-0.796096\pi\)
0.801747 0.597664i \(-0.203904\pi\)
\(788\) − 39543.6i − 1.78767i
\(789\) 14022.4 0.632711
\(790\) 0 0
\(791\) −11607.4 −0.521758
\(792\) − 6353.72i − 0.285063i
\(793\) 24823.7i 1.11162i
\(794\) 42013.2 1.87783
\(795\) 0 0
\(796\) 57870.3 2.57683
\(797\) 3738.33i 0.166146i 0.996543 + 0.0830730i \(0.0264735\pi\)
−0.996543 + 0.0830730i \(0.973527\pi\)
\(798\) − 6654.90i − 0.295214i
\(799\) 6524.26 0.288876
\(800\) 0 0
\(801\) 13263.5 0.585073
\(802\) − 8382.48i − 0.369072i
\(803\) 1016.85i 0.0446873i
\(804\) 38419.3 1.68525
\(805\) 0 0
\(806\) 14595.8 0.637861
\(807\) − 7252.14i − 0.316341i
\(808\) 54250.1i 2.36202i
\(809\) −43204.1 −1.87760 −0.938798 0.344468i \(-0.888059\pi\)
−0.938798 + 0.344468i \(0.888059\pi\)
\(810\) 0 0
\(811\) −30192.4 −1.30727 −0.653637 0.756809i \(-0.726758\pi\)
−0.653637 + 0.756809i \(0.726758\pi\)
\(812\) − 21170.2i − 0.914935i
\(813\) 23172.9i 0.999642i
\(814\) −18748.7 −0.807301
\(815\) 0 0
\(816\) −1221.42 −0.0523999
\(817\) 8233.71i 0.352584i
\(818\) − 41185.3i − 1.76041i
\(819\) 2205.98 0.0941188
\(820\) 0 0
\(821\) −40274.7 −1.71206 −0.856028 0.516929i \(-0.827075\pi\)
−0.856028 + 0.516929i \(0.827075\pi\)
\(822\) 535.847i 0.0227370i
\(823\) 25184.2i 1.06667i 0.845905 + 0.533334i \(0.179061\pi\)
−0.845905 + 0.533334i \(0.820939\pi\)
\(824\) −19020.5 −0.804140
\(825\) 0 0
\(826\) 16498.9 0.694999
\(827\) 38941.7i 1.63741i 0.574218 + 0.818703i \(0.305306\pi\)
−0.574218 + 0.818703i \(0.694694\pi\)
\(828\) − 18492.3i − 0.776150i
\(829\) 8327.05 0.348867 0.174433 0.984669i \(-0.444191\pi\)
0.174433 + 0.984669i \(0.444191\pi\)
\(830\) 0 0
\(831\) −13728.5 −0.573089
\(832\) − 26883.5i − 1.12021i
\(833\) − 902.519i − 0.0375395i
\(834\) −2589.75 −0.107525
\(835\) 0 0
\(836\) −23384.2 −0.967418
\(837\) 2393.80i 0.0988553i
\(838\) − 15104.9i − 0.622660i
\(839\) −8784.41 −0.361468 −0.180734 0.983532i \(-0.557847\pi\)
−0.180734 + 0.983532i \(0.557847\pi\)
\(840\) 0 0
\(841\) 21586.4 0.885087
\(842\) − 74086.4i − 3.03229i
\(843\) − 4075.67i − 0.166517i
\(844\) 11615.4 0.473718
\(845\) 0 0
\(846\) 14988.4 0.609117
\(847\) 5081.96i 0.206161i
\(848\) 14958.0i 0.605732i
\(849\) −11655.1 −0.471145
\(850\) 0 0
\(851\) −23617.6 −0.951350
\(852\) − 18209.2i − 0.732203i
\(853\) − 9076.15i − 0.364316i −0.983269 0.182158i \(-0.941692\pi\)
0.983269 0.182158i \(-0.0583082\pi\)
\(854\) 23331.6 0.934884
\(855\) 0 0
\(856\) 46339.6 1.85030
\(857\) − 36396.7i − 1.45074i −0.688357 0.725372i \(-0.741668\pi\)
0.688357 0.725372i \(-0.258332\pi\)
\(858\) − 12148.0i − 0.483364i
\(859\) −8915.27 −0.354115 −0.177058 0.984200i \(-0.556658\pi\)
−0.177058 + 0.984200i \(0.556658\pi\)
\(860\) 0 0
\(861\) −7093.14 −0.280759
\(862\) 1908.44i 0.0754081i
\(863\) − 6148.26i − 0.242514i −0.992621 0.121257i \(-0.961308\pi\)
0.992621 0.121257i \(-0.0386925\pi\)
\(864\) 3393.52 0.133623
\(865\) 0 0
\(866\) −36884.9 −1.44735
\(867\) 13721.2i 0.537483i
\(868\) − 8753.59i − 0.342300i
\(869\) −21900.8 −0.854928
\(870\) 0 0
\(871\) 31792.6 1.23680
\(872\) − 6234.16i − 0.242105i
\(873\) 4995.31i 0.193660i
\(874\) −46164.4 −1.78665
\(875\) 0 0
\(876\) 1749.29 0.0674692
\(877\) 14287.0i 0.550101i 0.961430 + 0.275050i \(0.0886945\pi\)
−0.961430 + 0.275050i \(0.911306\pi\)
\(878\) 1988.90i 0.0764488i
\(879\) 12101.7 0.464370
\(880\) 0 0
\(881\) −13315.9 −0.509221 −0.254610 0.967044i \(-0.581947\pi\)
−0.254610 + 0.967044i \(0.581947\pi\)
\(882\) − 2073.39i − 0.0791549i
\(883\) − 5271.78i − 0.200917i −0.994941 0.100458i \(-0.967969\pi\)
0.994941 0.100458i \(-0.0320309\pi\)
\(884\) −9096.73 −0.346104
\(885\) 0 0
\(886\) −75501.1 −2.86288
\(887\) − 2606.07i − 0.0986507i −0.998783 0.0493253i \(-0.984293\pi\)
0.998783 0.0493253i \(-0.0157071\pi\)
\(888\) 13959.7i 0.527542i
\(889\) 7761.69 0.292822
\(890\) 0 0
\(891\) 1992.35 0.0749115
\(892\) − 11526.3i − 0.432654i
\(893\) − 23875.4i − 0.894694i
\(894\) 19511.5 0.729937
\(895\) 0 0
\(896\) −18229.2 −0.679682
\(897\) − 15302.7i − 0.569612i
\(898\) 10281.1i 0.382056i
\(899\) 19010.2 0.705258
\(900\) 0 0
\(901\) −12463.8 −0.460854
\(902\) 39060.8i 1.44189i
\(903\) 2565.28i 0.0945373i
\(904\) 47592.8 1.75101
\(905\) 0 0
\(906\) 10793.7 0.395802
\(907\) − 18610.6i − 0.681317i −0.940187 0.340659i \(-0.889350\pi\)
0.940187 0.340659i \(-0.110650\pi\)
\(908\) 51564.6i 1.88462i
\(909\) −17011.3 −0.620714
\(910\) 0 0
\(911\) 41091.7 1.49443 0.747216 0.664581i \(-0.231390\pi\)
0.747216 + 0.664581i \(0.231390\pi\)
\(912\) 4469.77i 0.162291i
\(913\) − 26002.6i − 0.942563i
\(914\) 27265.4 0.986716
\(915\) 0 0
\(916\) 13249.8 0.477934
\(917\) − 1298.41i − 0.0467583i
\(918\) − 2338.12i − 0.0840624i
\(919\) −38891.3 −1.39598 −0.697990 0.716107i \(-0.745922\pi\)
−0.697990 + 0.716107i \(0.745922\pi\)
\(920\) 0 0
\(921\) −13861.1 −0.495915
\(922\) − 46420.2i − 1.65810i
\(923\) − 15068.4i − 0.537360i
\(924\) −7285.56 −0.259391
\(925\) 0 0
\(926\) −29064.3 −1.03144
\(927\) − 5964.30i − 0.211320i
\(928\) − 26949.4i − 0.953295i
\(929\) −18699.4 −0.660396 −0.330198 0.943912i \(-0.607115\pi\)
−0.330198 + 0.943912i \(0.607115\pi\)
\(930\) 0 0
\(931\) −3302.75 −0.116266
\(932\) 107.859i 0.00379080i
\(933\) 20027.7i 0.702761i
\(934\) −28893.4 −1.01223
\(935\) 0 0
\(936\) −9045.03 −0.315861
\(937\) − 21509.6i − 0.749933i −0.927038 0.374967i \(-0.877654\pi\)
0.927038 0.374967i \(-0.122346\pi\)
\(938\) − 29881.7i − 1.04016i
\(939\) −8510.35 −0.295767
\(940\) 0 0
\(941\) −11241.7 −0.389448 −0.194724 0.980858i \(-0.562381\pi\)
−0.194724 + 0.980858i \(0.562381\pi\)
\(942\) 33382.4i 1.15463i
\(943\) 49204.5i 1.69917i
\(944\) −11081.5 −0.382068
\(945\) 0 0
\(946\) 14126.6 0.485513
\(947\) 36556.3i 1.25441i 0.778856 + 0.627203i \(0.215800\pi\)
−0.778856 + 0.627203i \(0.784200\pi\)
\(948\) 37675.9i 1.29078i
\(949\) 1447.57 0.0495153
\(950\) 0 0
\(951\) 12031.9 0.410263
\(952\) 3700.53i 0.125982i
\(953\) − 36633.4i − 1.24520i −0.782542 0.622598i \(-0.786077\pi\)
0.782542 0.622598i \(-0.213923\pi\)
\(954\) −28633.5 −0.971745
\(955\) 0 0
\(956\) −12540.7 −0.424263
\(957\) − 15822.1i − 0.534436i
\(958\) 51150.3i 1.72504i
\(959\) 265.935 0.00895462
\(960\) 0 0
\(961\) −21930.5 −0.736146
\(962\) 26690.3i 0.894523i
\(963\) 14530.8i 0.486239i
\(964\) −30187.3 −1.00858
\(965\) 0 0
\(966\) −14382.9 −0.479050
\(967\) 35515.8i 1.18109i 0.807006 + 0.590544i \(0.201087\pi\)
−0.807006 + 0.590544i \(0.798913\pi\)
\(968\) − 20837.2i − 0.691871i
\(969\) −3724.44 −0.123474
\(970\) 0 0
\(971\) −39661.0 −1.31080 −0.655398 0.755283i \(-0.727499\pi\)
−0.655398 + 0.755283i \(0.727499\pi\)
\(972\) − 3427.44i − 0.113102i
\(973\) 1285.26i 0.0423471i
\(974\) −38023.9 −1.25089
\(975\) 0 0
\(976\) −15670.7 −0.513942
\(977\) − 50325.3i − 1.64795i −0.566624 0.823977i \(-0.691751\pi\)
0.566624 0.823977i \(-0.308249\pi\)
\(978\) − 44256.2i − 1.44699i
\(979\) −36249.0 −1.18337
\(980\) 0 0
\(981\) 1954.86 0.0636226
\(982\) 32722.4i 1.06335i
\(983\) 51189.0i 1.66091i 0.557084 + 0.830456i \(0.311920\pi\)
−0.557084 + 0.830456i \(0.688080\pi\)
\(984\) 29083.5 0.942223
\(985\) 0 0
\(986\) −18568.0 −0.599721
\(987\) − 7438.59i − 0.239892i
\(988\) 33289.3i 1.07194i
\(989\) 17795.1 0.572145
\(990\) 0 0
\(991\) −55137.3 −1.76740 −0.883700 0.468054i \(-0.844955\pi\)
−0.883700 + 0.468054i \(0.844955\pi\)
\(992\) − 11143.2i − 0.356651i
\(993\) 33262.6i 1.06300i
\(994\) −14162.7 −0.451925
\(995\) 0 0
\(996\) −44732.3 −1.42309
\(997\) − 41606.5i − 1.32166i −0.750537 0.660828i \(-0.770205\pi\)
0.750537 0.660828i \(-0.229795\pi\)
\(998\) 87599.6i 2.77848i
\(999\) −4377.37 −0.138633
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 525.4.d.j.274.1 4
5.2 odd 4 105.4.a.g.1.2 2
5.3 odd 4 525.4.a.i.1.1 2
5.4 even 2 inner 525.4.d.j.274.4 4
15.2 even 4 315.4.a.g.1.1 2
15.8 even 4 1575.4.a.y.1.2 2
20.7 even 4 1680.4.a.y.1.2 2
35.27 even 4 735.4.a.q.1.2 2
105.62 odd 4 2205.4.a.v.1.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
105.4.a.g.1.2 2 5.2 odd 4
315.4.a.g.1.1 2 15.2 even 4
525.4.a.i.1.1 2 5.3 odd 4
525.4.d.j.274.1 4 1.1 even 1 trivial
525.4.d.j.274.4 4 5.4 even 2 inner
735.4.a.q.1.2 2 35.27 even 4
1575.4.a.y.1.2 2 15.8 even 4
1680.4.a.y.1.2 2 20.7 even 4
2205.4.a.v.1.1 2 105.62 odd 4