Properties

Label 525.4.d.i
Level $525$
Weight $4$
Character orbit 525.d
Analytic conductor $30.976$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [525,4,Mod(274,525)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(525, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("525.274");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 525 = 3 \cdot 5^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 525.d (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(30.9760027530\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(i, \sqrt{17})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 9x^{2} + 16 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 105)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + (4 \beta_{2} + \beta_1) q^{2} - 3 \beta_{2} q^{3} + ( - 7 \beta_{3} - 5) q^{4} + (3 \beta_{3} + 9) q^{6} + 7 \beta_{2} q^{7} + ( - 44 \beta_{2} - 25 \beta_1) q^{8} - 9 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( q + (4 \beta_{2} + \beta_1) q^{2} - 3 \beta_{2} q^{3} + ( - 7 \beta_{3} - 5) q^{4} + (3 \beta_{3} + 9) q^{6} + 7 \beta_{2} q^{7} + ( - 44 \beta_{2} - 25 \beta_1) q^{8} - 9 q^{9} + ( - 10 \beta_{3} - 8) q^{11} + (36 \beta_{2} + 21 \beta_1) q^{12} + ( - 4 \beta_{2} - 22 \beta_1) q^{13} + ( - 7 \beta_{3} - 21) q^{14} + (63 \beta_{3} + 117) q^{16} + ( - 22 \beta_{2} - 28 \beta_1) q^{17} + ( - 36 \beta_{2} - 9 \beta_1) q^{18} + (26 \beta_{3} - 100) q^{19} + 21 q^{21} + ( - 112 \beta_{2} - 48 \beta_1) q^{22} + (120 \beta_{2} + 56 \beta_1) q^{23} + ( - 75 \beta_{3} - 57) q^{24} + (70 \beta_{3} + 34) q^{26} + 27 \beta_{2} q^{27} + ( - 84 \beta_{2} - 49 \beta_1) q^{28} + (84 \beta_{3} - 26) q^{29} + (18 \beta_{3} + 156) q^{31} + (620 \beta_{2} + 169 \beta_1) q^{32} + (54 \beta_{2} + 30 \beta_1) q^{33} + (106 \beta_{3} + 94) q^{34} + (63 \beta_{3} + 45) q^{36} + (54 \beta_{2} - 24 \beta_1) q^{37} + ( - 192 \beta_{2} + 4 \beta_1) q^{38} + ( - 66 \beta_{3} + 54) q^{39} + (140 \beta_{3} + 30) q^{41} + (84 \beta_{2} + 21 \beta_1) q^{42} + (148 \beta_{2} - 68 \beta_1) q^{43} + (176 \beta_{3} + 320) q^{44} + ( - 288 \beta_{3} - 416) q^{46} + ( - 200 \beta_{2} - 108 \beta_1) q^{47} + ( - 540 \beta_{2} - 189 \beta_1) q^{48} - 49 q^{49} + ( - 84 \beta_{3} + 18) q^{51} + (664 \beta_{2} + 138 \beta_1) q^{52} + (124 \beta_{2} + 214 \beta_1) q^{53} + ( - 27 \beta_{3} - 81) q^{54} + (175 \beta_{3} + 133) q^{56} + (222 \beta_{2} - 78 \beta_1) q^{57} + (568 \beta_{2} + 310 \beta_1) q^{58} + ( - 36 \beta_{3} - 164) q^{59} + ( - 252 \beta_{3} + 522) q^{61} + (768 \beta_{2} + 228 \beta_1) q^{62} - 63 \beta_{2} q^{63} + ( - 623 \beta_{3} - 1093) q^{64} + ( - 144 \beta_{3} - 192) q^{66} + (380 \beta_{2} - 28 \beta_1) q^{67} + (1048 \beta_{2} + 294 \beta_1) q^{68} + (168 \beta_{3} + 192) q^{69} + ( - 330 \beta_{3} + 392) q^{71} + (396 \beta_{2} + 225 \beta_1) q^{72} + (300 \beta_{2} - 178 \beta_1) q^{73} + (18 \beta_{3} - 138) q^{74} + (388 \beta_{3} - 228) q^{76} + ( - 126 \beta_{2} - 70 \beta_1) q^{77} + ( - 312 \beta_{2} - 210 \beta_1) q^{78} + ( - 88 \beta_{3} - 160) q^{79} + 81 q^{81} + (1240 \beta_{2} + 590 \beta_1) q^{82} + (436 \beta_{2} - 264 \beta_1) q^{83} + ( - 147 \beta_{3} - 105) q^{84} + (56 \beta_{3} - 376) q^{86} + ( - 174 \beta_{2} - 252 \beta_1) q^{87} + (1792 \beta_{2} + 640 \beta_1) q^{88} + (728 \beta_{3} - 382) q^{89} + (154 \beta_{3} - 126) q^{91} + ( - 3008 \beta_{2} - 1120 \beta_1) q^{92} + ( - 522 \beta_{2} - 54 \beta_1) q^{93} + (524 \beta_{3} + 708) q^{94} + (507 \beta_{3} + 1353) q^{96} + (176 \beta_{2} - 146 \beta_1) q^{97} + ( - 196 \beta_{2} - 49 \beta_1) q^{98} + (90 \beta_{3} + 72) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 34 q^{4} + 42 q^{6} - 36 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 4 q - 34 q^{4} + 42 q^{6} - 36 q^{9} - 52 q^{11} - 98 q^{14} + 594 q^{16} - 348 q^{19} + 84 q^{21} - 378 q^{24} + 276 q^{26} + 64 q^{29} + 660 q^{31} + 588 q^{34} + 306 q^{36} + 84 q^{39} + 400 q^{41} + 1632 q^{44} - 2240 q^{46} - 196 q^{49} - 96 q^{51} - 378 q^{54} + 882 q^{56} - 728 q^{59} + 1584 q^{61} - 5618 q^{64} - 1056 q^{66} + 1104 q^{69} + 908 q^{71} - 516 q^{74} - 136 q^{76} - 816 q^{79} + 324 q^{81} - 714 q^{84} - 1392 q^{86} - 72 q^{89} - 196 q^{91} + 3880 q^{94} + 6426 q^{96} + 468 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{4} + 9x^{2} + 16 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( \nu^{3} + 5\nu ) / 4 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( \nu^{2} + 5 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{3} - 5 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( 4\beta_{2} - 5\beta_1 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/525\mathbb{Z}\right)^\times\).

\(n\) \(127\) \(176\) \(451\)
\(\chi(n)\) \(-1\) \(1\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
274.1
1.56155i
2.56155i
2.56155i
1.56155i
5.56155i 3.00000i −22.9309 0 16.6847 7.00000i 83.0388i −9.00000 0
274.2 1.43845i 3.00000i 5.93087 0 4.31534 7.00000i 20.0388i −9.00000 0
274.3 1.43845i 3.00000i 5.93087 0 4.31534 7.00000i 20.0388i −9.00000 0
274.4 5.56155i 3.00000i −22.9309 0 16.6847 7.00000i 83.0388i −9.00000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
5.b even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 525.4.d.i 4
5.b even 2 1 inner 525.4.d.i 4
5.c odd 4 1 105.4.a.c 2
5.c odd 4 1 525.4.a.p 2
15.e even 4 1 315.4.a.m 2
15.e even 4 1 1575.4.a.m 2
20.e even 4 1 1680.4.a.bk 2
35.f even 4 1 735.4.a.k 2
105.k odd 4 1 2205.4.a.bh 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
105.4.a.c 2 5.c odd 4 1
315.4.a.m 2 15.e even 4 1
525.4.a.p 2 5.c odd 4 1
525.4.d.i 4 1.a even 1 1 trivial
525.4.d.i 4 5.b even 2 1 inner
735.4.a.k 2 35.f even 4 1
1575.4.a.m 2 15.e even 4 1
1680.4.a.bk 2 20.e even 4 1
2205.4.a.bh 2 105.k odd 4 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{4}^{\mathrm{new}}(525, [\chi])\):

\( T_{2}^{4} + 33T_{2}^{2} + 64 \) Copy content Toggle raw display
\( T_{11}^{2} + 26T_{11} - 256 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{4} + 33T^{2} + 64 \) Copy content Toggle raw display
$3$ \( (T^{2} + 9)^{2} \) Copy content Toggle raw display
$5$ \( T^{4} \) Copy content Toggle raw display
$7$ \( (T^{2} + 49)^{2} \) Copy content Toggle raw display
$11$ \( (T^{2} + 26 T - 256)^{2} \) Copy content Toggle raw display
$13$ \( T^{4} + 4212 T^{2} + 4032064 \) Copy content Toggle raw display
$17$ \( T^{4} + 6792 T^{2} + 10679824 \) Copy content Toggle raw display
$19$ \( (T^{2} + 174 T + 4696)^{2} \) Copy content Toggle raw display
$23$ \( T^{4} + 43584 T^{2} + 23658496 \) Copy content Toggle raw display
$29$ \( (T^{2} - 32 T - 29732)^{2} \) Copy content Toggle raw display
$31$ \( (T^{2} - 330 T + 25848)^{2} \) Copy content Toggle raw display
$37$ \( T^{4} + 13608 T^{2} + 3640464 \) Copy content Toggle raw display
$41$ \( (T^{2} - 200 T - 73300)^{2} \) Copy content Toggle raw display
$43$ \( T^{4} + 105552 T^{2} + 181494784 \) Copy content Toggle raw display
$47$ \( T^{4} + 141776 T^{2} + 798401536 \) Copy content Toggle raw display
$53$ \( T^{4} + \cdots + 37769590336 \) Copy content Toggle raw display
$59$ \( (T^{2} + 364 T + 27616)^{2} \) Copy content Toggle raw display
$61$ \( (T^{2} - 792 T - 113076)^{2} \) Copy content Toggle raw display
$67$ \( T^{4} + \cdots + 23074825216 \) Copy content Toggle raw display
$71$ \( (T^{2} - 454 T - 411296)^{2} \) Copy content Toggle raw display
$73$ \( T^{4} + 571956 T^{2} + 277688896 \) Copy content Toggle raw display
$79$ \( (T^{2} + 408 T + 8704)^{2} \) Copy content Toggle raw display
$83$ \( T^{4} + 1237664 T^{2} + 697805056 \) Copy content Toggle raw display
$89$ \( (T^{2} + 36 T - 2252108)^{2} \) Copy content Toggle raw display
$97$ \( T^{4} + 305188 T^{2} + 817502464 \) Copy content Toggle raw display
show more
show less