Properties

Label 525.4.d.h.274.1
Level $525$
Weight $4$
Character 525.274
Analytic conductor $30.976$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [525,4,Mod(274,525)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(525, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("525.274");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 525 = 3 \cdot 5^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 525.d (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(30.9760027530\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(i, \sqrt{65})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 33x^{2} + 256 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 105)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 274.1
Root \(-4.53113i\) of defining polynomial
Character \(\chi\) \(=\) 525.274
Dual form 525.4.d.h.274.4

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-4.53113i q^{2} +3.00000i q^{3} -12.5311 q^{4} +13.5934 q^{6} +7.00000i q^{7} +20.5311i q^{8} -9.00000 q^{9} +O(q^{10})\) \(q-4.53113i q^{2} +3.00000i q^{3} -12.5311 q^{4} +13.5934 q^{6} +7.00000i q^{7} +20.5311i q^{8} -9.00000 q^{9} -19.0623 q^{11} -37.5934i q^{12} -2.93774i q^{13} +31.7179 q^{14} -7.21984 q^{16} +6.49806i q^{17} +40.7802i q^{18} +5.43580 q^{19} -21.0000 q^{21} +86.3735i q^{22} +49.3774i q^{23} -61.5934 q^{24} -13.3113 q^{26} -27.0000i q^{27} -87.7179i q^{28} +291.494 q^{29} +244.307 q^{31} +196.963i q^{32} -57.1868i q^{33} +29.4436 q^{34} +112.780 q^{36} +193.121i q^{37} -24.6303i q^{38} +8.81323 q^{39} +315.113 q^{41} +95.1537i q^{42} -300.996i q^{43} +238.872 q^{44} +223.735 q^{46} -86.5058i q^{47} -21.6595i q^{48} -49.0000 q^{49} -19.4942 q^{51} +36.8132i q^{52} +509.677i q^{53} -122.340 q^{54} -143.718 q^{56} +16.3074i q^{57} -1320.80i q^{58} +83.3852 q^{59} -5.25291 q^{61} -1106.99i q^{62} -63.0000i q^{63} +834.706 q^{64} -259.121 q^{66} -205.992i q^{67} -81.4281i q^{68} -148.132 q^{69} +1004.31 q^{71} -184.780i q^{72} -1007.29i q^{73} +875.055 q^{74} -68.1168 q^{76} -133.436i q^{77} -39.9339i q^{78} +863.237 q^{79} +81.0000 q^{81} -1427.82i q^{82} +1334.72i q^{83} +263.154 q^{84} -1363.85 q^{86} +874.483i q^{87} -391.370i q^{88} -326.249 q^{89} +20.5642 q^{91} -618.755i q^{92} +732.922i q^{93} -391.969 q^{94} -590.889 q^{96} -1526.77i q^{97} +222.025i q^{98} +171.560 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 34 q^{4} + 6 q^{6} - 36 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 4 q - 34 q^{4} + 6 q^{6} - 36 q^{9} - 44 q^{11} + 14 q^{14} - 174 q^{16} - 204 q^{19} - 84 q^{21} - 198 q^{24} + 108 q^{26} + 392 q^{29} + 300 q^{31} + 924 q^{34} + 306 q^{36} + 132 q^{39} - 352 q^{41} + 504 q^{44} - 1040 q^{46} - 196 q^{49} + 696 q^{51} - 54 q^{54} - 462 q^{56} + 1688 q^{59} - 408 q^{61} + 1678 q^{64} - 456 q^{66} - 1560 q^{69} + 3340 q^{71} + 2436 q^{74} + 824 q^{76} + 1776 q^{79} + 324 q^{81} + 714 q^{84} - 2424 q^{86} - 1176 q^{89} + 308 q^{91} + 2560 q^{94} - 90 q^{96} + 396 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/525\mathbb{Z}\right)^\times\).

\(n\) \(127\) \(176\) \(451\)
\(\chi(n)\) \(-1\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) − 4.53113i − 1.60200i −0.598667 0.800998i \(-0.704303\pi\)
0.598667 0.800998i \(-0.295697\pi\)
\(3\) 3.00000i 0.577350i
\(4\) −12.5311 −1.56639
\(5\) 0 0
\(6\) 13.5934 0.924913
\(7\) 7.00000i 0.377964i
\(8\) 20.5311i 0.907356i
\(9\) −9.00000 −0.333333
\(10\) 0 0
\(11\) −19.0623 −0.522499 −0.261249 0.965271i \(-0.584135\pi\)
−0.261249 + 0.965271i \(0.584135\pi\)
\(12\) − 37.5934i − 0.904356i
\(13\) − 2.93774i − 0.0626756i −0.999509 0.0313378i \(-0.990023\pi\)
0.999509 0.0313378i \(-0.00997677\pi\)
\(14\) 31.7179 0.605498
\(15\) 0 0
\(16\) −7.21984 −0.112810
\(17\) 6.49806i 0.0927066i 0.998925 + 0.0463533i \(0.0147600\pi\)
−0.998925 + 0.0463533i \(0.985240\pi\)
\(18\) 40.7802i 0.533999i
\(19\) 5.43580 0.0656347 0.0328173 0.999461i \(-0.489552\pi\)
0.0328173 + 0.999461i \(0.489552\pi\)
\(20\) 0 0
\(21\) −21.0000 −0.218218
\(22\) 86.3735i 0.837041i
\(23\) 49.3774i 0.447648i 0.974630 + 0.223824i \(0.0718541\pi\)
−0.974630 + 0.223824i \(0.928146\pi\)
\(24\) −61.5934 −0.523862
\(25\) 0 0
\(26\) −13.3113 −0.100406
\(27\) − 27.0000i − 0.192450i
\(28\) − 87.7179i − 0.592040i
\(29\) 291.494 1.86652 0.933261 0.359200i \(-0.116950\pi\)
0.933261 + 0.359200i \(0.116950\pi\)
\(30\) 0 0
\(31\) 244.307 1.41545 0.707724 0.706489i \(-0.249722\pi\)
0.707724 + 0.706489i \(0.249722\pi\)
\(32\) 196.963i 1.08808i
\(33\) − 57.1868i − 0.301665i
\(34\) 29.4436 0.148516
\(35\) 0 0
\(36\) 112.780 0.522130
\(37\) 193.121i 0.858077i 0.903286 + 0.429038i \(0.141147\pi\)
−0.903286 + 0.429038i \(0.858853\pi\)
\(38\) − 24.6303i − 0.105147i
\(39\) 8.81323 0.0361858
\(40\) 0 0
\(41\) 315.113 1.20030 0.600151 0.799887i \(-0.295107\pi\)
0.600151 + 0.799887i \(0.295107\pi\)
\(42\) 95.1537i 0.349584i
\(43\) − 300.996i − 1.06748i −0.845650 0.533738i \(-0.820787\pi\)
0.845650 0.533738i \(-0.179213\pi\)
\(44\) 238.872 0.818437
\(45\) 0 0
\(46\) 223.735 0.717130
\(47\) − 86.5058i − 0.268472i −0.990949 0.134236i \(-0.957142\pi\)
0.990949 0.134236i \(-0.0428580\pi\)
\(48\) − 21.6595i − 0.0651309i
\(49\) −49.0000 −0.142857
\(50\) 0 0
\(51\) −19.4942 −0.0535242
\(52\) 36.8132i 0.0981745i
\(53\) 509.677i 1.32093i 0.750855 + 0.660467i \(0.229642\pi\)
−0.750855 + 0.660467i \(0.770358\pi\)
\(54\) −122.340 −0.308304
\(55\) 0 0
\(56\) −143.718 −0.342948
\(57\) 16.3074i 0.0378942i
\(58\) − 1320.80i − 2.99016i
\(59\) 83.3852 0.183997 0.0919985 0.995759i \(-0.470674\pi\)
0.0919985 + 0.995759i \(0.470674\pi\)
\(60\) 0 0
\(61\) −5.25291 −0.0110257 −0.00551283 0.999985i \(-0.501755\pi\)
−0.00551283 + 0.999985i \(0.501755\pi\)
\(62\) − 1106.99i − 2.26754i
\(63\) − 63.0000i − 0.125988i
\(64\) 834.706 1.63029
\(65\) 0 0
\(66\) −259.121 −0.483266
\(67\) − 205.992i − 0.375611i −0.982206 0.187806i \(-0.939862\pi\)
0.982206 0.187806i \(-0.0601375\pi\)
\(68\) − 81.4281i − 0.145215i
\(69\) −148.132 −0.258450
\(70\) 0 0
\(71\) 1004.31 1.67872 0.839362 0.543573i \(-0.182929\pi\)
0.839362 + 0.543573i \(0.182929\pi\)
\(72\) − 184.780i − 0.302452i
\(73\) − 1007.29i − 1.61499i −0.589876 0.807494i \(-0.700823\pi\)
0.589876 0.807494i \(-0.299177\pi\)
\(74\) 875.055 1.37464
\(75\) 0 0
\(76\) −68.1168 −0.102810
\(77\) − 133.436i − 0.197486i
\(78\) − 39.9339i − 0.0579695i
\(79\) 863.237 1.22939 0.614695 0.788765i \(-0.289279\pi\)
0.614695 + 0.788765i \(0.289279\pi\)
\(80\) 0 0
\(81\) 81.0000 0.111111
\(82\) − 1427.82i − 1.92288i
\(83\) 1334.72i 1.76512i 0.470200 + 0.882560i \(0.344182\pi\)
−0.470200 + 0.882560i \(0.655818\pi\)
\(84\) 263.154 0.341815
\(85\) 0 0
\(86\) −1363.85 −1.71009
\(87\) 874.483i 1.07764i
\(88\) − 391.370i − 0.474093i
\(89\) −326.249 −0.388565 −0.194283 0.980946i \(-0.562238\pi\)
−0.194283 + 0.980946i \(0.562238\pi\)
\(90\) 0 0
\(91\) 20.5642 0.0236892
\(92\) − 618.755i − 0.701192i
\(93\) 732.922i 0.817210i
\(94\) −391.969 −0.430091
\(95\) 0 0
\(96\) −590.889 −0.628202
\(97\) − 1526.77i − 1.59815i −0.601232 0.799075i \(-0.705323\pi\)
0.601232 0.799075i \(-0.294677\pi\)
\(98\) 222.025i 0.228857i
\(99\) 171.560 0.174166
\(100\) 0 0
\(101\) 96.8716 0.0954365 0.0477182 0.998861i \(-0.484805\pi\)
0.0477182 + 0.998861i \(0.484805\pi\)
\(102\) 88.3307i 0.0857455i
\(103\) 1321.99i 1.26466i 0.774700 + 0.632329i \(0.217901\pi\)
−0.774700 + 0.632329i \(0.782099\pi\)
\(104\) 60.3152 0.0568691
\(105\) 0 0
\(106\) 2309.41 2.11613
\(107\) − 1745.71i − 1.57724i −0.614883 0.788619i \(-0.710797\pi\)
0.614883 0.788619i \(-0.289203\pi\)
\(108\) 338.340i 0.301452i
\(109\) −476.856 −0.419032 −0.209516 0.977805i \(-0.567189\pi\)
−0.209516 + 0.977805i \(0.567189\pi\)
\(110\) 0 0
\(111\) −579.362 −0.495411
\(112\) − 50.5389i − 0.0426382i
\(113\) 1641.65i 1.36666i 0.730108 + 0.683332i \(0.239470\pi\)
−0.730108 + 0.683332i \(0.760530\pi\)
\(114\) 73.8910 0.0607064
\(115\) 0 0
\(116\) −3652.75 −2.92370
\(117\) 26.4397i 0.0208919i
\(118\) − 377.829i − 0.294763i
\(119\) −45.4864 −0.0350398
\(120\) 0 0
\(121\) −967.630 −0.726995
\(122\) 23.8016i 0.0176631i
\(123\) 945.339i 0.692994i
\(124\) −3061.45 −2.21715
\(125\) 0 0
\(126\) −285.461 −0.201833
\(127\) 844.016i 0.589719i 0.955541 + 0.294859i \(0.0952728\pi\)
−0.955541 + 0.294859i \(0.904727\pi\)
\(128\) − 2206.46i − 1.52363i
\(129\) 902.988 0.616308
\(130\) 0 0
\(131\) −2796.20 −1.86493 −0.932463 0.361265i \(-0.882345\pi\)
−0.932463 + 0.361265i \(0.882345\pi\)
\(132\) 716.615i 0.472525i
\(133\) 38.0506i 0.0248076i
\(134\) −933.377 −0.601728
\(135\) 0 0
\(136\) −133.413 −0.0841179
\(137\) 2057.13i 1.28287i 0.767179 + 0.641433i \(0.221660\pi\)
−0.767179 + 0.641433i \(0.778340\pi\)
\(138\) 671.206i 0.414035i
\(139\) 1745.12 1.06489 0.532444 0.846465i \(-0.321274\pi\)
0.532444 + 0.846465i \(0.321274\pi\)
\(140\) 0 0
\(141\) 259.517 0.155002
\(142\) − 4550.65i − 2.68931i
\(143\) 56.0000i 0.0327479i
\(144\) 64.9786 0.0376033
\(145\) 0 0
\(146\) −4564.15 −2.58720
\(147\) − 147.000i − 0.0824786i
\(148\) − 2420.02i − 1.34408i
\(149\) 1173.57 0.645254 0.322627 0.946526i \(-0.395434\pi\)
0.322627 + 0.946526i \(0.395434\pi\)
\(150\) 0 0
\(151\) 1540.07 0.829994 0.414997 0.909823i \(-0.363783\pi\)
0.414997 + 0.909823i \(0.363783\pi\)
\(152\) 111.603i 0.0595540i
\(153\) − 58.4826i − 0.0309022i
\(154\) −604.615 −0.316372
\(155\) 0 0
\(156\) −110.440 −0.0566811
\(157\) 2544.53i 1.29348i 0.762712 + 0.646738i \(0.223867\pi\)
−0.762712 + 0.646738i \(0.776133\pi\)
\(158\) − 3911.44i − 1.96948i
\(159\) −1529.03 −0.762642
\(160\) 0 0
\(161\) −345.642 −0.169195
\(162\) − 367.021i − 0.178000i
\(163\) − 594.708i − 0.285774i −0.989739 0.142887i \(-0.954361\pi\)
0.989739 0.142887i \(-0.0456385\pi\)
\(164\) −3948.72 −1.88014
\(165\) 0 0
\(166\) 6047.81 2.82772
\(167\) − 928.498i − 0.430236i −0.976588 0.215118i \(-0.930986\pi\)
0.976588 0.215118i \(-0.0690135\pi\)
\(168\) − 431.154i − 0.198001i
\(169\) 2188.37 0.996072
\(170\) 0 0
\(171\) −48.9222 −0.0218782
\(172\) 3771.82i 1.67209i
\(173\) − 315.642i − 0.138716i −0.997592 0.0693578i \(-0.977905\pi\)
0.997592 0.0693578i \(-0.0220950\pi\)
\(174\) 3962.39 1.72637
\(175\) 0 0
\(176\) 137.626 0.0589431
\(177\) 250.156i 0.106231i
\(178\) 1478.28i 0.622480i
\(179\) 1445.49 0.603581 0.301791 0.953374i \(-0.402416\pi\)
0.301791 + 0.953374i \(0.402416\pi\)
\(180\) 0 0
\(181\) −1843.81 −0.757180 −0.378590 0.925564i \(-0.623591\pi\)
−0.378590 + 0.925564i \(0.623591\pi\)
\(182\) − 93.1790i − 0.0379499i
\(183\) − 15.7587i − 0.00636567i
\(184\) −1013.77 −0.406176
\(185\) 0 0
\(186\) 3320.97 1.30917
\(187\) − 123.868i − 0.0484391i
\(188\) 1084.02i 0.420532i
\(189\) 189.000 0.0727393
\(190\) 0 0
\(191\) −244.074 −0.0924637 −0.0462318 0.998931i \(-0.514721\pi\)
−0.0462318 + 0.998931i \(0.514721\pi\)
\(192\) 2504.12i 0.941246i
\(193\) − 1733.03i − 0.646355i −0.946338 0.323178i \(-0.895249\pi\)
0.946338 0.323178i \(-0.104751\pi\)
\(194\) −6918.01 −2.56023
\(195\) 0 0
\(196\) 614.025 0.223770
\(197\) − 358.230i − 0.129557i −0.997900 0.0647787i \(-0.979366\pi\)
0.997900 0.0647787i \(-0.0206342\pi\)
\(198\) − 777.362i − 0.279014i
\(199\) 3203.63 1.14120 0.570601 0.821227i \(-0.306710\pi\)
0.570601 + 0.821227i \(0.306710\pi\)
\(200\) 0 0
\(201\) 617.977 0.216859
\(202\) − 438.938i − 0.152889i
\(203\) 2040.46i 0.705479i
\(204\) 244.284 0.0838398
\(205\) 0 0
\(206\) 5990.12 2.02598
\(207\) − 444.397i − 0.149216i
\(208\) 21.2100i 0.00707044i
\(209\) −103.619 −0.0342940
\(210\) 0 0
\(211\) 4943.16 1.61280 0.806401 0.591369i \(-0.201412\pi\)
0.806401 + 0.591369i \(0.201412\pi\)
\(212\) − 6386.83i − 2.06910i
\(213\) 3012.92i 0.969211i
\(214\) −7910.05 −2.52673
\(215\) 0 0
\(216\) 554.340 0.174621
\(217\) 1710.15i 0.534989i
\(218\) 2160.70i 0.671288i
\(219\) 3021.86 0.932414
\(220\) 0 0
\(221\) 19.0896 0.00581044
\(222\) 2625.16i 0.793646i
\(223\) 3160.15i 0.948965i 0.880265 + 0.474482i \(0.157365\pi\)
−0.880265 + 0.474482i \(0.842635\pi\)
\(224\) −1378.74 −0.411255
\(225\) 0 0
\(226\) 7438.51 2.18939
\(227\) 3651.11i 1.06755i 0.845628 + 0.533773i \(0.179226\pi\)
−0.845628 + 0.533773i \(0.820774\pi\)
\(228\) − 204.350i − 0.0593571i
\(229\) 4083.70 1.17842 0.589210 0.807980i \(-0.299439\pi\)
0.589210 + 0.807980i \(0.299439\pi\)
\(230\) 0 0
\(231\) 400.307 0.114019
\(232\) 5984.70i 1.69360i
\(233\) − 3682.51i − 1.03540i −0.855561 0.517702i \(-0.826788\pi\)
0.855561 0.517702i \(-0.173212\pi\)
\(234\) 119.802 0.0334687
\(235\) 0 0
\(236\) −1044.91 −0.288211
\(237\) 2589.71i 0.709789i
\(238\) 206.105i 0.0561336i
\(239\) −2658.78 −0.719591 −0.359796 0.933031i \(-0.617154\pi\)
−0.359796 + 0.933031i \(0.617154\pi\)
\(240\) 0 0
\(241\) −4820.39 −1.28842 −0.644209 0.764850i \(-0.722813\pi\)
−0.644209 + 0.764850i \(0.722813\pi\)
\(242\) 4384.46i 1.16464i
\(243\) 243.000i 0.0641500i
\(244\) 65.8249 0.0172705
\(245\) 0 0
\(246\) 4283.45 1.11017
\(247\) − 15.9690i − 0.00411369i
\(248\) 5015.91i 1.28432i
\(249\) −4004.17 −1.01909
\(250\) 0 0
\(251\) 1672.27 0.420530 0.210265 0.977644i \(-0.432567\pi\)
0.210265 + 0.977644i \(0.432567\pi\)
\(252\) 789.461i 0.197347i
\(253\) − 941.245i − 0.233896i
\(254\) 3824.34 0.944727
\(255\) 0 0
\(256\) −3320.09 −0.810569
\(257\) 3697.74i 0.897506i 0.893656 + 0.448753i \(0.148132\pi\)
−0.893656 + 0.448753i \(0.851868\pi\)
\(258\) − 4091.56i − 0.987322i
\(259\) −1351.84 −0.324323
\(260\) 0 0
\(261\) −2623.45 −0.622174
\(262\) 12670.0i 2.98760i
\(263\) 7319.00i 1.71600i 0.513646 + 0.858002i \(0.328294\pi\)
−0.513646 + 0.858002i \(0.671706\pi\)
\(264\) 1174.11 0.273717
\(265\) 0 0
\(266\) 172.412 0.0397416
\(267\) − 978.747i − 0.224338i
\(268\) 2581.32i 0.588354i
\(269\) 815.097 0.184749 0.0923743 0.995724i \(-0.470554\pi\)
0.0923743 + 0.995724i \(0.470554\pi\)
\(270\) 0 0
\(271\) −5106.02 −1.14453 −0.572267 0.820068i \(-0.693936\pi\)
−0.572267 + 0.820068i \(0.693936\pi\)
\(272\) − 46.9150i − 0.0104582i
\(273\) 61.6926i 0.0136769i
\(274\) 9321.13 2.05515
\(275\) 0 0
\(276\) 1856.26 0.404833
\(277\) − 1398.72i − 0.303398i −0.988427 0.151699i \(-0.951526\pi\)
0.988427 0.151699i \(-0.0484744\pi\)
\(278\) − 7907.39i − 1.70595i
\(279\) −2198.77 −0.471816
\(280\) 0 0
\(281\) −7102.38 −1.50780 −0.753901 0.656988i \(-0.771830\pi\)
−0.753901 + 0.656988i \(0.771830\pi\)
\(282\) − 1175.91i − 0.248313i
\(283\) 4465.18i 0.937907i 0.883223 + 0.468953i \(0.155369\pi\)
−0.883223 + 0.468953i \(0.844631\pi\)
\(284\) −12585.1 −2.62954
\(285\) 0 0
\(286\) 253.743 0.0524621
\(287\) 2205.79i 0.453671i
\(288\) − 1772.67i − 0.362692i
\(289\) 4870.78 0.991405
\(290\) 0 0
\(291\) 4580.32 0.922692
\(292\) 12622.5i 2.52970i
\(293\) 7590.61i 1.51348i 0.653718 + 0.756738i \(0.273208\pi\)
−0.653718 + 0.756738i \(0.726792\pi\)
\(294\) −666.076 −0.132130
\(295\) 0 0
\(296\) −3964.98 −0.778581
\(297\) 514.681i 0.100555i
\(298\) − 5317.61i − 1.03369i
\(299\) 145.058 0.0280566
\(300\) 0 0
\(301\) 2106.97 0.403468
\(302\) − 6978.26i − 1.32965i
\(303\) 290.615i 0.0551003i
\(304\) −39.2456 −0.00740425
\(305\) 0 0
\(306\) −264.992 −0.0495052
\(307\) − 9480.12i − 1.76241i −0.472737 0.881203i \(-0.656734\pi\)
0.472737 0.881203i \(-0.343266\pi\)
\(308\) 1672.10i 0.309340i
\(309\) −3965.98 −0.730151
\(310\) 0 0
\(311\) 7078.01 1.29054 0.645268 0.763956i \(-0.276746\pi\)
0.645268 + 0.763956i \(0.276746\pi\)
\(312\) 180.945i 0.0328334i
\(313\) 5593.84i 1.01017i 0.863070 + 0.505084i \(0.168539\pi\)
−0.863070 + 0.505084i \(0.831461\pi\)
\(314\) 11529.6 2.07214
\(315\) 0 0
\(316\) −10817.3 −1.92571
\(317\) − 3567.81i − 0.632139i −0.948736 0.316070i \(-0.897637\pi\)
0.948736 0.316070i \(-0.102363\pi\)
\(318\) 6928.24i 1.22175i
\(319\) −5556.54 −0.975255
\(320\) 0 0
\(321\) 5237.14 0.910618
\(322\) 1566.15i 0.271050i
\(323\) 35.3222i 0.00608477i
\(324\) −1015.02 −0.174043
\(325\) 0 0
\(326\) −2694.70 −0.457809
\(327\) − 1430.57i − 0.241928i
\(328\) 6469.62i 1.08910i
\(329\) 605.541 0.101473
\(330\) 0 0
\(331\) −4389.67 −0.728936 −0.364468 0.931216i \(-0.618749\pi\)
−0.364468 + 0.931216i \(0.618749\pi\)
\(332\) − 16725.6i − 2.76487i
\(333\) − 1738.09i − 0.286026i
\(334\) −4207.14 −0.689236
\(335\) 0 0
\(336\) 151.617 0.0246172
\(337\) − 2348.83i − 0.379671i −0.981816 0.189835i \(-0.939205\pi\)
0.981816 0.189835i \(-0.0607955\pi\)
\(338\) − 9915.79i − 1.59570i
\(339\) −4924.94 −0.789044
\(340\) 0 0
\(341\) −4657.05 −0.739570
\(342\) 221.673i 0.0350488i
\(343\) − 343.000i − 0.0539949i
\(344\) 6179.79 0.968581
\(345\) 0 0
\(346\) −1430.21 −0.222222
\(347\) − 558.436i − 0.0863931i −0.999067 0.0431965i \(-0.986246\pi\)
0.999067 0.0431965i \(-0.0137542\pi\)
\(348\) − 10958.3i − 1.68800i
\(349\) −3233.89 −0.496006 −0.248003 0.968759i \(-0.579774\pi\)
−0.248003 + 0.968759i \(0.579774\pi\)
\(350\) 0 0
\(351\) −79.3190 −0.0120619
\(352\) − 3754.56i − 0.568519i
\(353\) − 7516.35i − 1.13330i −0.823959 0.566650i \(-0.808239\pi\)
0.823959 0.566650i \(-0.191761\pi\)
\(354\) 1133.49 0.170181
\(355\) 0 0
\(356\) 4088.27 0.608646
\(357\) − 136.459i − 0.0202302i
\(358\) − 6549.70i − 0.966935i
\(359\) 6577.76 0.967021 0.483511 0.875338i \(-0.339361\pi\)
0.483511 + 0.875338i \(0.339361\pi\)
\(360\) 0 0
\(361\) −6829.45 −0.995692
\(362\) 8354.56i 1.21300i
\(363\) − 2902.89i − 0.419731i
\(364\) −257.693 −0.0371065
\(365\) 0 0
\(366\) −71.4048 −0.0101978
\(367\) − 8307.17i − 1.18155i −0.806835 0.590777i \(-0.798821\pi\)
0.806835 0.590777i \(-0.201179\pi\)
\(368\) − 356.497i − 0.0504992i
\(369\) −2836.02 −0.400101
\(370\) 0 0
\(371\) −3567.74 −0.499266
\(372\) − 9184.34i − 1.28007i
\(373\) − 4551.09i − 0.631760i −0.948799 0.315880i \(-0.897700\pi\)
0.948799 0.315880i \(-0.102300\pi\)
\(374\) −561.261 −0.0775992
\(375\) 0 0
\(376\) 1776.06 0.243599
\(377\) − 856.335i − 0.116985i
\(378\) − 856.383i − 0.116528i
\(379\) 1788.29 0.242370 0.121185 0.992630i \(-0.461331\pi\)
0.121185 + 0.992630i \(0.461331\pi\)
\(380\) 0 0
\(381\) −2532.05 −0.340474
\(382\) 1105.93i 0.148126i
\(383\) − 1358.47i − 0.181240i −0.995886 0.0906199i \(-0.971115\pi\)
0.995886 0.0906199i \(-0.0288848\pi\)
\(384\) 6619.37 0.879670
\(385\) 0 0
\(386\) −7852.60 −1.03546
\(387\) 2708.97i 0.355825i
\(388\) 19132.2i 2.50333i
\(389\) −9722.54 −1.26723 −0.633615 0.773649i \(-0.718430\pi\)
−0.633615 + 0.773649i \(0.718430\pi\)
\(390\) 0 0
\(391\) −320.858 −0.0414999
\(392\) − 1006.03i − 0.129622i
\(393\) − 8388.61i − 1.07672i
\(394\) −1623.19 −0.207551
\(395\) 0 0
\(396\) −2149.84 −0.272812
\(397\) 4788.04i 0.605302i 0.953101 + 0.302651i \(0.0978717\pi\)
−0.953101 + 0.302651i \(0.902128\pi\)
\(398\) − 14516.1i − 1.82820i
\(399\) −114.152 −0.0143227
\(400\) 0 0
\(401\) 9681.41 1.20565 0.602826 0.797873i \(-0.294041\pi\)
0.602826 + 0.797873i \(0.294041\pi\)
\(402\) − 2800.13i − 0.347408i
\(403\) − 717.712i − 0.0887141i
\(404\) −1213.91 −0.149491
\(405\) 0 0
\(406\) 9245.58 1.13017
\(407\) − 3681.32i − 0.448344i
\(408\) − 400.238i − 0.0485655i
\(409\) −11113.1 −1.34353 −0.671767 0.740763i \(-0.734464\pi\)
−0.671767 + 0.740763i \(0.734464\pi\)
\(410\) 0 0
\(411\) −6171.40 −0.740663
\(412\) − 16566.1i − 1.98095i
\(413\) 583.696i 0.0695443i
\(414\) −2013.62 −0.239043
\(415\) 0 0
\(416\) 578.627 0.0681959
\(417\) 5235.37i 0.614814i
\(418\) 469.510i 0.0549389i
\(419\) 1230.09 0.143421 0.0717107 0.997425i \(-0.477154\pi\)
0.0717107 + 0.997425i \(0.477154\pi\)
\(420\) 0 0
\(421\) −12356.5 −1.43044 −0.715222 0.698897i \(-0.753674\pi\)
−0.715222 + 0.698897i \(0.753674\pi\)
\(422\) − 22398.1i − 2.58370i
\(423\) 778.552i 0.0894906i
\(424\) −10464.2 −1.19856
\(425\) 0 0
\(426\) 13651.9 1.55267
\(427\) − 36.7703i − 0.00416731i
\(428\) 21875.7i 2.47057i
\(429\) −168.000 −0.0189070
\(430\) 0 0
\(431\) −7375.27 −0.824256 −0.412128 0.911126i \(-0.635214\pi\)
−0.412128 + 0.911126i \(0.635214\pi\)
\(432\) 194.936i 0.0217103i
\(433\) − 690.067i − 0.0765877i −0.999267 0.0382939i \(-0.987808\pi\)
0.999267 0.0382939i \(-0.0121923\pi\)
\(434\) 7748.92 0.857051
\(435\) 0 0
\(436\) 5975.55 0.656369
\(437\) 268.406i 0.0293812i
\(438\) − 13692.5i − 1.49372i
\(439\) −8408.79 −0.914191 −0.457095 0.889418i \(-0.651110\pi\)
−0.457095 + 0.889418i \(0.651110\pi\)
\(440\) 0 0
\(441\) 441.000 0.0476190
\(442\) − 86.4976i − 0.00930830i
\(443\) 6568.55i 0.704473i 0.935911 + 0.352236i \(0.114579\pi\)
−0.935911 + 0.352236i \(0.885421\pi\)
\(444\) 7260.06 0.776007
\(445\) 0 0
\(446\) 14319.0 1.52024
\(447\) 3520.72i 0.372537i
\(448\) 5842.94i 0.616190i
\(449\) −2954.55 −0.310543 −0.155271 0.987872i \(-0.549625\pi\)
−0.155271 + 0.987872i \(0.549625\pi\)
\(450\) 0 0
\(451\) −6006.76 −0.627156
\(452\) − 20571.7i − 2.14073i
\(453\) 4620.21i 0.479197i
\(454\) 16543.7 1.71020
\(455\) 0 0
\(456\) −334.810 −0.0343835
\(457\) 8144.84i 0.833697i 0.908976 + 0.416849i \(0.136865\pi\)
−0.908976 + 0.416849i \(0.863135\pi\)
\(458\) − 18503.8i − 1.88782i
\(459\) 175.448 0.0178414
\(460\) 0 0
\(461\) 2495.26 0.252095 0.126048 0.992024i \(-0.459771\pi\)
0.126048 + 0.992024i \(0.459771\pi\)
\(462\) − 1813.84i − 0.182657i
\(463\) − 5755.66i − 0.577728i −0.957370 0.288864i \(-0.906722\pi\)
0.957370 0.288864i \(-0.0932776\pi\)
\(464\) −2104.54 −0.210562
\(465\) 0 0
\(466\) −16685.9 −1.65871
\(467\) 4143.73i 0.410598i 0.978699 + 0.205299i \(0.0658166\pi\)
−0.978699 + 0.205299i \(0.934183\pi\)
\(468\) − 331.319i − 0.0327248i
\(469\) 1441.95 0.141968
\(470\) 0 0
\(471\) −7633.60 −0.746789
\(472\) 1711.99i 0.166951i
\(473\) 5737.67i 0.557755i
\(474\) 11734.3 1.13708
\(475\) 0 0
\(476\) 569.996 0.0548860
\(477\) − 4587.09i − 0.440312i
\(478\) 12047.3i 1.15278i
\(479\) 6765.96 0.645396 0.322698 0.946502i \(-0.395410\pi\)
0.322698 + 0.946502i \(0.395410\pi\)
\(480\) 0 0
\(481\) 567.339 0.0537805
\(482\) 21841.8i 2.06404i
\(483\) − 1036.93i − 0.0976848i
\(484\) 12125.5 1.13876
\(485\) 0 0
\(486\) 1101.06 0.102768
\(487\) − 6360.42i − 0.591824i −0.955215 0.295912i \(-0.904377\pi\)
0.955215 0.295912i \(-0.0956235\pi\)
\(488\) − 107.848i − 0.0100042i
\(489\) 1784.12 0.164992
\(490\) 0 0
\(491\) −7072.54 −0.650060 −0.325030 0.945704i \(-0.605374\pi\)
−0.325030 + 0.945704i \(0.605374\pi\)
\(492\) − 11846.2i − 1.08550i
\(493\) 1894.15i 0.173039i
\(494\) −72.3576 −0.00659012
\(495\) 0 0
\(496\) −1763.86 −0.159677
\(497\) 7030.15i 0.634498i
\(498\) 18143.4i 1.63258i
\(499\) 18473.9 1.65732 0.828661 0.559751i \(-0.189103\pi\)
0.828661 + 0.559751i \(0.189103\pi\)
\(500\) 0 0
\(501\) 2785.49 0.248397
\(502\) − 7577.28i − 0.673687i
\(503\) 11379.2i 1.00869i 0.863501 + 0.504347i \(0.168267\pi\)
−0.863501 + 0.504347i \(0.831733\pi\)
\(504\) 1293.46 0.114316
\(505\) 0 0
\(506\) −4264.90 −0.374700
\(507\) 6565.11i 0.575082i
\(508\) − 10576.5i − 0.923730i
\(509\) −6064.48 −0.528101 −0.264051 0.964509i \(-0.585059\pi\)
−0.264051 + 0.964509i \(0.585059\pi\)
\(510\) 0 0
\(511\) 7051.02 0.610408
\(512\) − 2607.89i − 0.225105i
\(513\) − 146.767i − 0.0126314i
\(514\) 16755.0 1.43780
\(515\) 0 0
\(516\) −11315.5 −0.965379
\(517\) 1649.00i 0.140276i
\(518\) 6125.38i 0.519563i
\(519\) 946.926 0.0800875
\(520\) 0 0
\(521\) 2682.88 0.225603 0.112801 0.993618i \(-0.464018\pi\)
0.112801 + 0.993618i \(0.464018\pi\)
\(522\) 11887.2i 0.996720i
\(523\) − 4309.02i − 0.360268i −0.983642 0.180134i \(-0.942347\pi\)
0.983642 0.180134i \(-0.0576532\pi\)
\(524\) 35039.6 2.92120
\(525\) 0 0
\(526\) 33163.3 2.74903
\(527\) 1587.52i 0.131221i
\(528\) 412.879i 0.0340308i
\(529\) 9728.87 0.799611
\(530\) 0 0
\(531\) −750.467 −0.0613323
\(532\) − 476.817i − 0.0388584i
\(533\) − 925.720i − 0.0752296i
\(534\) −4434.83 −0.359389
\(535\) 0 0
\(536\) 4229.25 0.340813
\(537\) 4336.47i 0.348478i
\(538\) − 3693.31i − 0.295966i
\(539\) 934.051 0.0746427
\(540\) 0 0
\(541\) 4081.47 0.324355 0.162178 0.986762i \(-0.448148\pi\)
0.162178 + 0.986762i \(0.448148\pi\)
\(542\) 23136.0i 1.83354i
\(543\) − 5531.44i − 0.437158i
\(544\) −1279.88 −0.100872
\(545\) 0 0
\(546\) 279.537 0.0219104
\(547\) − 8844.82i − 0.691366i −0.938351 0.345683i \(-0.887647\pi\)
0.938351 0.345683i \(-0.112353\pi\)
\(548\) − 25778.2i − 2.00947i
\(549\) 47.2762 0.00367522
\(550\) 0 0
\(551\) 1584.51 0.122509
\(552\) − 3041.32i − 0.234506i
\(553\) 6042.66i 0.464666i
\(554\) −6337.80 −0.486042
\(555\) 0 0
\(556\) −21868.4 −1.66803
\(557\) 11144.7i 0.847787i 0.905712 + 0.423894i \(0.139337\pi\)
−0.905712 + 0.423894i \(0.860663\pi\)
\(558\) 9962.90i 0.755848i
\(559\) −884.249 −0.0669047
\(560\) 0 0
\(561\) 371.603 0.0279663
\(562\) 32181.8i 2.41549i
\(563\) − 21857.5i − 1.63621i −0.575071 0.818104i \(-0.695025\pi\)
0.575071 0.818104i \(-0.304975\pi\)
\(564\) −3252.05 −0.242794
\(565\) 0 0
\(566\) 20232.3 1.50252
\(567\) 567.000i 0.0419961i
\(568\) 20619.6i 1.52320i
\(569\) −23496.4 −1.73115 −0.865573 0.500783i \(-0.833046\pi\)
−0.865573 + 0.500783i \(0.833046\pi\)
\(570\) 0 0
\(571\) 11067.8 0.811164 0.405582 0.914059i \(-0.367069\pi\)
0.405582 + 0.914059i \(0.367069\pi\)
\(572\) − 701.743i − 0.0512961i
\(573\) − 732.222i − 0.0533839i
\(574\) 9994.72 0.726780
\(575\) 0 0
\(576\) −7512.36 −0.543429
\(577\) − 20482.9i − 1.47784i −0.673791 0.738922i \(-0.735335\pi\)
0.673791 0.738922i \(-0.264665\pi\)
\(578\) − 22070.1i − 1.58823i
\(579\) 5199.10 0.373173
\(580\) 0 0
\(581\) −9343.07 −0.667153
\(582\) − 20754.0i − 1.47815i
\(583\) − 9715.60i − 0.690187i
\(584\) 20680.8 1.46537
\(585\) 0 0
\(586\) 34394.1 2.42458
\(587\) 23444.3i 1.64847i 0.566248 + 0.824235i \(0.308394\pi\)
−0.566248 + 0.824235i \(0.691606\pi\)
\(588\) 1842.08i 0.129194i
\(589\) 1328.01 0.0929025
\(590\) 0 0
\(591\) 1074.69 0.0748000
\(592\) − 1394.30i − 0.0967996i
\(593\) 4404.69i 0.305024i 0.988302 + 0.152512i \(0.0487362\pi\)
−0.988302 + 0.152512i \(0.951264\pi\)
\(594\) 2332.09 0.161089
\(595\) 0 0
\(596\) −14706.2 −1.01072
\(597\) 9610.89i 0.658874i
\(598\) − 657.277i − 0.0449466i
\(599\) −3327.05 −0.226945 −0.113472 0.993541i \(-0.536197\pi\)
−0.113472 + 0.993541i \(0.536197\pi\)
\(600\) 0 0
\(601\) −14244.8 −0.966818 −0.483409 0.875395i \(-0.660602\pi\)
−0.483409 + 0.875395i \(0.660602\pi\)
\(602\) − 9546.97i − 0.646354i
\(603\) 1853.93i 0.125204i
\(604\) −19298.8 −1.30010
\(605\) 0 0
\(606\) 1316.81 0.0882704
\(607\) − 11446.5i − 0.765402i −0.923872 0.382701i \(-0.874994\pi\)
0.923872 0.382701i \(-0.125006\pi\)
\(608\) 1070.65i 0.0714156i
\(609\) −6121.38 −0.407308
\(610\) 0 0
\(611\) −254.132 −0.0168266
\(612\) 732.852i 0.0484049i
\(613\) − 19436.4i − 1.28063i −0.768111 0.640316i \(-0.778803\pi\)
0.768111 0.640316i \(-0.221197\pi\)
\(614\) −42955.6 −2.82337
\(615\) 0 0
\(616\) 2739.59 0.179190
\(617\) 20530.1i 1.33956i 0.742558 + 0.669781i \(0.233612\pi\)
−0.742558 + 0.669781i \(0.766388\pi\)
\(618\) 17970.4i 1.16970i
\(619\) −5833.35 −0.378776 −0.189388 0.981902i \(-0.560650\pi\)
−0.189388 + 0.981902i \(0.560650\pi\)
\(620\) 0 0
\(621\) 1333.19 0.0861499
\(622\) − 32071.4i − 2.06744i
\(623\) − 2283.74i − 0.146864i
\(624\) −63.6301 −0.00408212
\(625\) 0 0
\(626\) 25346.4 1.61829
\(627\) − 310.856i − 0.0197997i
\(628\) − 31885.9i − 2.02609i
\(629\) −1254.91 −0.0795493
\(630\) 0 0
\(631\) 24776.6 1.56314 0.781568 0.623820i \(-0.214420\pi\)
0.781568 + 0.623820i \(0.214420\pi\)
\(632\) 17723.2i 1.11549i
\(633\) 14829.5i 0.931152i
\(634\) −16166.2 −1.01268
\(635\) 0 0
\(636\) 19160.5 1.19460
\(637\) 143.949i 0.00895366i
\(638\) 25177.4i 1.56235i
\(639\) −9038.77 −0.559574
\(640\) 0 0
\(641\) 27219.4 1.67723 0.838613 0.544728i \(-0.183367\pi\)
0.838613 + 0.544728i \(0.183367\pi\)
\(642\) − 23730.1i − 1.45881i
\(643\) 7091.79i 0.434950i 0.976066 + 0.217475i \(0.0697821\pi\)
−0.976066 + 0.217475i \(0.930218\pi\)
\(644\) 4331.28 0.265026
\(645\) 0 0
\(646\) 160.049 0.00974777
\(647\) − 27773.0i − 1.68758i −0.536670 0.843792i \(-0.680318\pi\)
0.536670 0.843792i \(-0.319682\pi\)
\(648\) 1663.02i 0.100817i
\(649\) −1589.51 −0.0961382
\(650\) 0 0
\(651\) −5130.46 −0.308876
\(652\) 7452.37i 0.447634i
\(653\) 21380.4i 1.28129i 0.767839 + 0.640643i \(0.221332\pi\)
−0.767839 + 0.640643i \(0.778668\pi\)
\(654\) −6482.09 −0.387568
\(655\) 0 0
\(656\) −2275.06 −0.135406
\(657\) 9065.59i 0.538329i
\(658\) − 2743.78i − 0.162559i
\(659\) 17232.3 1.01863 0.509315 0.860580i \(-0.329899\pi\)
0.509315 + 0.860580i \(0.329899\pi\)
\(660\) 0 0
\(661\) 26577.7 1.56392 0.781962 0.623326i \(-0.214219\pi\)
0.781962 + 0.623326i \(0.214219\pi\)
\(662\) 19890.1i 1.16775i
\(663\) 57.2689i 0.00335466i
\(664\) −27403.4 −1.60159
\(665\) 0 0
\(666\) −7875.49 −0.458212
\(667\) 14393.2i 0.835544i
\(668\) 11635.1i 0.673917i
\(669\) −9480.44 −0.547885
\(670\) 0 0
\(671\) 100.132 0.00576090
\(672\) − 4136.22i − 0.237438i
\(673\) − 31695.2i − 1.81540i −0.419624 0.907698i \(-0.637838\pi\)
0.419624 0.907698i \(-0.362162\pi\)
\(674\) −10642.9 −0.608231
\(675\) 0 0
\(676\) −27422.7 −1.56024
\(677\) − 20440.3i − 1.16039i −0.814477 0.580195i \(-0.802976\pi\)
0.814477 0.580195i \(-0.197024\pi\)
\(678\) 22315.5i 1.26405i
\(679\) 10687.4 0.604044
\(680\) 0 0
\(681\) −10953.3 −0.616348
\(682\) 21101.7i 1.18479i
\(683\) − 22896.9i − 1.28276i −0.767223 0.641381i \(-0.778362\pi\)
0.767223 0.641381i \(-0.221638\pi\)
\(684\) 613.051 0.0342699
\(685\) 0 0
\(686\) −1554.18 −0.0864997
\(687\) 12251.1i 0.680361i
\(688\) 2173.14i 0.120422i
\(689\) 1497.30 0.0827904
\(690\) 0 0
\(691\) −23764.0 −1.30829 −0.654143 0.756371i \(-0.726971\pi\)
−0.654143 + 0.756371i \(0.726971\pi\)
\(692\) 3955.35i 0.217283i
\(693\) 1200.92i 0.0658287i
\(694\) −2530.34 −0.138401
\(695\) 0 0
\(696\) −17954.1 −0.977800
\(697\) 2047.62i 0.111276i
\(698\) 14653.2i 0.794600i
\(699\) 11047.5 0.597791
\(700\) 0 0
\(701\) 26259.5 1.41485 0.707423 0.706791i \(-0.249858\pi\)
0.707423 + 0.706791i \(0.249858\pi\)
\(702\) 359.405i 0.0193232i
\(703\) 1049.77i 0.0563196i
\(704\) −15911.4 −0.851822
\(705\) 0 0
\(706\) −34057.6 −1.81554
\(707\) 678.101i 0.0360716i
\(708\) − 3134.73i − 0.166399i
\(709\) −12783.0 −0.677116 −0.338558 0.940945i \(-0.609939\pi\)
−0.338558 + 0.940945i \(0.609939\pi\)
\(710\) 0 0
\(711\) −7769.14 −0.409797
\(712\) − 6698.26i − 0.352567i
\(713\) 12063.3i 0.633623i
\(714\) −618.315 −0.0324087
\(715\) 0 0
\(716\) −18113.6 −0.945444
\(717\) − 7976.35i − 0.415456i
\(718\) − 29804.7i − 1.54916i
\(719\) 27609.0 1.43205 0.716025 0.698075i \(-0.245960\pi\)
0.716025 + 0.698075i \(0.245960\pi\)
\(720\) 0 0
\(721\) −9253.95 −0.477996
\(722\) 30945.1i 1.59509i
\(723\) − 14461.2i − 0.743868i
\(724\) 23105.1 1.18604
\(725\) 0 0
\(726\) −13153.4 −0.672407
\(727\) − 31306.2i − 1.59709i −0.601937 0.798544i \(-0.705604\pi\)
0.601937 0.798544i \(-0.294396\pi\)
\(728\) 422.206i 0.0214945i
\(729\) −729.000 −0.0370370
\(730\) 0 0
\(731\) 1955.89 0.0989621
\(732\) 197.475i 0.00997113i
\(733\) − 15765.8i − 0.794441i −0.917723 0.397220i \(-0.869975\pi\)
0.917723 0.397220i \(-0.130025\pi\)
\(734\) −37640.8 −1.89285
\(735\) 0 0
\(736\) −9725.53 −0.487076
\(737\) 3926.68i 0.196256i
\(738\) 12850.4i 0.640959i
\(739\) −3966.51 −0.197443 −0.0987216 0.995115i \(-0.531475\pi\)
−0.0987216 + 0.995115i \(0.531475\pi\)
\(740\) 0 0
\(741\) 47.9070 0.00237504
\(742\) 16165.9i 0.799823i
\(743\) 8224.50i 0.406094i 0.979169 + 0.203047i \(0.0650844\pi\)
−0.979169 + 0.203047i \(0.934916\pi\)
\(744\) −15047.7 −0.741500
\(745\) 0 0
\(746\) −20621.6 −1.01208
\(747\) − 12012.5i − 0.588373i
\(748\) 1552.20i 0.0758745i
\(749\) 12220.0 0.596140
\(750\) 0 0
\(751\) 18929.2 0.919754 0.459877 0.887983i \(-0.347894\pi\)
0.459877 + 0.887983i \(0.347894\pi\)
\(752\) 624.558i 0.0302863i
\(753\) 5016.82i 0.242793i
\(754\) −3880.16 −0.187410
\(755\) 0 0
\(756\) −2368.38 −0.113938
\(757\) 34906.8i 1.67597i 0.545695 + 0.837984i \(0.316266\pi\)
−0.545695 + 0.837984i \(0.683734\pi\)
\(758\) − 8102.96i − 0.388276i
\(759\) 2823.74 0.135040
\(760\) 0 0
\(761\) −13683.4 −0.651803 −0.325902 0.945404i \(-0.605668\pi\)
−0.325902 + 0.945404i \(0.605668\pi\)
\(762\) 11473.0i 0.545438i
\(763\) − 3337.99i − 0.158379i
\(764\) 3058.52 0.144834
\(765\) 0 0
\(766\) −6155.42 −0.290345
\(767\) − 244.964i − 0.0115321i
\(768\) − 9960.28i − 0.467982i
\(769\) −41837.3 −1.96189 −0.980943 0.194294i \(-0.937758\pi\)
−0.980943 + 0.194294i \(0.937758\pi\)
\(770\) 0 0
\(771\) −11093.2 −0.518175
\(772\) 21716.9i 1.01245i
\(773\) 19640.0i 0.913843i 0.889507 + 0.456921i \(0.151048\pi\)
−0.889507 + 0.456921i \(0.848952\pi\)
\(774\) 12274.7 0.570031
\(775\) 0 0
\(776\) 31346.4 1.45009
\(777\) − 4055.53i − 0.187248i
\(778\) 44054.1i 2.03010i
\(779\) 1712.89 0.0787814
\(780\) 0 0
\(781\) −19144.4 −0.877131
\(782\) 1453.85i 0.0664827i
\(783\) − 7870.34i − 0.359212i
\(784\) 353.772 0.0161157
\(785\) 0 0
\(786\) −38009.9 −1.72489
\(787\) − 24935.3i − 1.12941i −0.825293 0.564705i \(-0.808990\pi\)
0.825293 0.564705i \(-0.191010\pi\)
\(788\) 4489.02i 0.202938i
\(789\) −21957.0 −0.990736
\(790\) 0 0
\(791\) −11491.5 −0.516551
\(792\) 3522.33i 0.158031i
\(793\) 15.4317i 0 0.000691041i
\(794\) 21695.2 0.969692
\(795\) 0 0
\(796\) −40145.1 −1.78757
\(797\) 1168.33i 0.0519251i 0.999663 + 0.0259625i \(0.00826506\pi\)
−0.999663 + 0.0259625i \(0.991735\pi\)
\(798\) 517.237i 0.0229448i
\(799\) 562.120 0.0248891
\(800\) 0 0
\(801\) 2936.24 0.129522
\(802\) − 43867.7i − 1.93145i
\(803\) 19201.2i 0.843829i
\(804\) −7743.95 −0.339686
\(805\) 0 0
\(806\) −3252.05 −0.142120
\(807\) 2445.29i 0.106665i
\(808\) 1988.88i 0.0865949i
\(809\) 35175.7 1.52869 0.764345 0.644807i \(-0.223062\pi\)
0.764345 + 0.644807i \(0.223062\pi\)
\(810\) 0 0
\(811\) −15256.5 −0.660577 −0.330288 0.943880i \(-0.607146\pi\)
−0.330288 + 0.943880i \(0.607146\pi\)
\(812\) − 25569.3i − 1.10506i
\(813\) − 15318.1i − 0.660797i
\(814\) −16680.5 −0.718245
\(815\) 0 0
\(816\) 140.745 0.00603806
\(817\) − 1636.16i − 0.0700635i
\(818\) 50354.7i 2.15233i
\(819\) −185.078 −0.00789639
\(820\) 0 0
\(821\) −15971.9 −0.678956 −0.339478 0.940614i \(-0.610250\pi\)
−0.339478 + 0.940614i \(0.610250\pi\)
\(822\) 27963.4i 1.18654i
\(823\) 2312.41i 0.0979409i 0.998800 + 0.0489705i \(0.0155940\pi\)
−0.998800 + 0.0489705i \(0.984406\pi\)
\(824\) −27142.0 −1.14750
\(825\) 0 0
\(826\) 2644.80 0.111410
\(827\) − 10422.4i − 0.438238i −0.975698 0.219119i \(-0.929682\pi\)
0.975698 0.219119i \(-0.0703183\pi\)
\(828\) 5568.79i 0.233731i
\(829\) 13213.4 0.553584 0.276792 0.960930i \(-0.410729\pi\)
0.276792 + 0.960930i \(0.410729\pi\)
\(830\) 0 0
\(831\) 4196.17 0.175167
\(832\) − 2452.15i − 0.102179i
\(833\) − 318.405i − 0.0132438i
\(834\) 23722.2 0.984929
\(835\) 0 0
\(836\) 1298.46 0.0537179
\(837\) − 6596.30i − 0.272403i
\(838\) − 5573.67i − 0.229761i
\(839\) 10119.6 0.416409 0.208205 0.978085i \(-0.433238\pi\)
0.208205 + 0.978085i \(0.433238\pi\)
\(840\) 0 0
\(841\) 60579.9 2.48390
\(842\) 55988.7i 2.29157i
\(843\) − 21307.1i − 0.870530i
\(844\) −61943.4 −2.52628
\(845\) 0 0
\(846\) 3527.72 0.143364
\(847\) − 6773.41i − 0.274778i
\(848\) − 3679.79i − 0.149015i
\(849\) −13395.5 −0.541501
\(850\) 0 0
\(851\) −9535.80 −0.384116
\(852\) − 37755.3i − 1.51816i
\(853\) 35378.1i 1.42007i 0.704165 + 0.710037i \(0.251322\pi\)
−0.704165 + 0.710037i \(0.748678\pi\)
\(854\) −166.611 −0.00667602
\(855\) 0 0
\(856\) 35841.4 1.43112
\(857\) − 6697.57i − 0.266960i −0.991052 0.133480i \(-0.957385\pi\)
0.991052 0.133480i \(-0.0426152\pi\)
\(858\) 761.230i 0.0302890i
\(859\) 24298.4 0.965135 0.482568 0.875859i \(-0.339704\pi\)
0.482568 + 0.875859i \(0.339704\pi\)
\(860\) 0 0
\(861\) −6617.37 −0.261927
\(862\) 33418.3i 1.32045i
\(863\) 24942.9i 0.983853i 0.870637 + 0.491926i \(0.163707\pi\)
−0.870637 + 0.491926i \(0.836293\pi\)
\(864\) 5318.00 0.209401
\(865\) 0 0
\(866\) −3126.78 −0.122693
\(867\) 14612.3i 0.572388i
\(868\) − 21430.1i − 0.838002i
\(869\) −16455.3 −0.642355
\(870\) 0 0
\(871\) −605.152 −0.0235417
\(872\) − 9790.39i − 0.380212i
\(873\) 13741.0i 0.532716i
\(874\) 1216.18 0.0470686
\(875\) 0 0
\(876\) −37867.4 −1.46052
\(877\) 16276.6i 0.626705i 0.949637 + 0.313353i \(0.101452\pi\)
−0.949637 + 0.313353i \(0.898548\pi\)
\(878\) 38101.3i 1.46453i
\(879\) −22771.8 −0.873806
\(880\) 0 0
\(881\) 26636.5 1.01862 0.509311 0.860582i \(-0.329900\pi\)
0.509311 + 0.860582i \(0.329900\pi\)
\(882\) − 1998.23i − 0.0762855i
\(883\) − 21788.3i − 0.830392i −0.909732 0.415196i \(-0.863713\pi\)
0.909732 0.415196i \(-0.136287\pi\)
\(884\) −239.215 −0.00910142
\(885\) 0 0
\(886\) 29763.0 1.12856
\(887\) 26813.2i 1.01499i 0.861654 + 0.507496i \(0.169429\pi\)
−0.861654 + 0.507496i \(0.830571\pi\)
\(888\) − 11895.0i − 0.449514i
\(889\) −5908.11 −0.222893
\(890\) 0 0
\(891\) −1544.04 −0.0580554
\(892\) − 39600.2i − 1.48645i
\(893\) − 470.229i − 0.0176211i
\(894\) 15952.8 0.596803
\(895\) 0 0
\(896\) 15445.2 0.575879
\(897\) 435.174i 0.0161985i
\(898\) 13387.4i 0.497488i
\(899\) 71214.2 2.64196
\(900\) 0 0
\(901\) −3311.91 −0.122459
\(902\) 27217.4i 1.00470i
\(903\) 6320.92i 0.232942i
\(904\) −33704.8 −1.24005
\(905\) 0 0
\(906\) 20934.8 0.767672
\(907\) − 15543.0i − 0.569014i −0.958674 0.284507i \(-0.908170\pi\)
0.958674 0.284507i \(-0.0918300\pi\)
\(908\) − 45752.6i − 1.67219i
\(909\) −871.844 −0.0318122
\(910\) 0 0
\(911\) 48711.1 1.77154 0.885768 0.464128i \(-0.153632\pi\)
0.885768 + 0.464128i \(0.153632\pi\)
\(912\) − 117.737i − 0.00427485i
\(913\) − 25442.8i − 0.922273i
\(914\) 36905.3 1.33558
\(915\) 0 0
\(916\) −51173.3 −1.84587
\(917\) − 19573.4i − 0.704876i
\(918\) − 794.976i − 0.0285818i
\(919\) −1030.47 −0.0369883 −0.0184941 0.999829i \(-0.505887\pi\)
−0.0184941 + 0.999829i \(0.505887\pi\)
\(920\) 0 0
\(921\) 28440.4 1.01753
\(922\) − 11306.3i − 0.403855i
\(923\) − 2950.40i − 0.105215i
\(924\) −5016.30 −0.178598
\(925\) 0 0
\(926\) −26079.6 −0.925518
\(927\) − 11897.9i − 0.421553i
\(928\) 57413.6i 2.03092i
\(929\) −879.756 −0.0310698 −0.0155349 0.999879i \(-0.504945\pi\)
−0.0155349 + 0.999879i \(0.504945\pi\)
\(930\) 0 0
\(931\) −266.354 −0.00937638
\(932\) 46146.0i 1.62185i
\(933\) 21234.0i 0.745092i
\(934\) 18775.8 0.657776
\(935\) 0 0
\(936\) −542.836 −0.0189564
\(937\) 18668.1i 0.650864i 0.945565 + 0.325432i \(0.105510\pi\)
−0.945565 + 0.325432i \(0.894490\pi\)
\(938\) − 6533.64i − 0.227432i
\(939\) −16781.5 −0.583221
\(940\) 0 0
\(941\) 29613.4 1.02590 0.512948 0.858420i \(-0.328553\pi\)
0.512948 + 0.858420i \(0.328553\pi\)
\(942\) 34588.8i 1.19635i
\(943\) 15559.5i 0.537313i
\(944\) −602.028 −0.0207567
\(945\) 0 0
\(946\) 25998.1 0.893521
\(947\) − 20738.9i − 0.711640i −0.934554 0.355820i \(-0.884202\pi\)
0.934554 0.355820i \(-0.115798\pi\)
\(948\) − 32452.0i − 1.11181i
\(949\) −2959.15 −0.101220
\(950\) 0 0
\(951\) 10703.4 0.364966
\(952\) − 933.888i − 0.0317936i
\(953\) − 45776.5i − 1.55598i −0.628279 0.777988i \(-0.716240\pi\)
0.628279 0.777988i \(-0.283760\pi\)
\(954\) −20784.7 −0.705377
\(955\) 0 0
\(956\) 33317.5 1.12716
\(957\) − 16669.6i − 0.563064i
\(958\) − 30657.4i − 1.03392i
\(959\) −14399.9 −0.484878
\(960\) 0 0
\(961\) 29895.1 1.00349
\(962\) − 2570.68i − 0.0861561i
\(963\) 15711.4i 0.525746i
\(964\) 60404.9 2.01817
\(965\) 0 0
\(966\) −4698.44 −0.156491
\(967\) − 34461.0i − 1.14601i −0.819552 0.573005i \(-0.805778\pi\)
0.819552 0.573005i \(-0.194222\pi\)
\(968\) − 19866.5i − 0.659643i
\(969\) −105.967 −0.00351304
\(970\) 0 0
\(971\) −22762.8 −0.752309 −0.376154 0.926557i \(-0.622754\pi\)
−0.376154 + 0.926557i \(0.622754\pi\)
\(972\) − 3045.06i − 0.100484i
\(973\) 12215.9i 0.402490i
\(974\) −28819.9 −0.948099
\(975\) 0 0
\(976\) 37.9251 0.00124381
\(977\) − 4809.57i − 0.157494i −0.996895 0.0787470i \(-0.974908\pi\)
0.996895 0.0787470i \(-0.0250919\pi\)
\(978\) − 8084.10i − 0.264316i
\(979\) 6219.04 0.203025
\(980\) 0 0
\(981\) 4291.70 0.139677
\(982\) 32046.6i 1.04139i
\(983\) − 27591.6i − 0.895256i −0.894220 0.447628i \(-0.852269\pi\)
0.894220 0.447628i \(-0.147731\pi\)
\(984\) −19408.9 −0.628793
\(985\) 0 0
\(986\) 8582.63 0.277207
\(987\) 1816.62i 0.0585853i
\(988\) 200.109i 0.00644365i
\(989\) 14862.4 0.477854
\(990\) 0 0
\(991\) −22263.4 −0.713643 −0.356822 0.934173i \(-0.616140\pi\)
−0.356822 + 0.934173i \(0.616140\pi\)
\(992\) 48119.5i 1.54012i
\(993\) − 13169.0i − 0.420851i
\(994\) 31854.5 1.01646
\(995\) 0 0
\(996\) 50176.8 1.59630
\(997\) − 30378.2i − 0.964983i −0.875901 0.482491i \(-0.839732\pi\)
0.875901 0.482491i \(-0.160268\pi\)
\(998\) − 83707.4i − 2.65502i
\(999\) 5214.26 0.165137
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 525.4.d.h.274.1 4
5.2 odd 4 105.4.a.f.1.2 2
5.3 odd 4 525.4.a.k.1.1 2
5.4 even 2 inner 525.4.d.h.274.4 4
15.2 even 4 315.4.a.i.1.1 2
15.8 even 4 1575.4.a.w.1.2 2
20.7 even 4 1680.4.a.bg.1.2 2
35.27 even 4 735.4.a.p.1.2 2
105.62 odd 4 2205.4.a.z.1.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
105.4.a.f.1.2 2 5.2 odd 4
315.4.a.i.1.1 2 15.2 even 4
525.4.a.k.1.1 2 5.3 odd 4
525.4.d.h.274.1 4 1.1 even 1 trivial
525.4.d.h.274.4 4 5.4 even 2 inner
735.4.a.p.1.2 2 35.27 even 4
1575.4.a.w.1.2 2 15.8 even 4
1680.4.a.bg.1.2 2 20.7 even 4
2205.4.a.z.1.1 2 105.62 odd 4