Properties

Label 525.4.d.h
Level $525$
Weight $4$
Character orbit 525.d
Analytic conductor $30.976$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [525,4,Mod(274,525)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(525, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("525.274");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 525 = 3 \cdot 5^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 525.d (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(30.9760027530\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(i, \sqrt{65})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 33x^{2} + 256 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 105)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \beta_1 q^{2} + 3 \beta_{2} q^{3} + (\beta_{3} - 9) q^{4} + ( - 3 \beta_{3} + 3) q^{6} + 7 \beta_{2} q^{7} + (16 \beta_{2} - \beta_1) q^{8} - 9 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( q + \beta_1 q^{2} + 3 \beta_{2} q^{3} + (\beta_{3} - 9) q^{4} + ( - 3 \beta_{3} + 3) q^{6} + 7 \beta_{2} q^{7} + (16 \beta_{2} - \beta_1) q^{8} - 9 q^{9} + (2 \beta_{3} - 12) q^{11} + ( - 24 \beta_{2} + 3 \beta_1) q^{12} + ( - 12 \beta_{2} - 2 \beta_1) q^{13} + ( - 7 \beta_{3} + 7) q^{14} + ( - 9 \beta_{3} - 39) q^{16} + ( - 66 \beta_{2} - 16 \beta_1) q^{17} - 9 \beta_1 q^{18} + ( - 14 \beta_{3} - 44) q^{19} - 21 q^{21} + (32 \beta_{2} - 12 \beta_1) q^{22} + (140 \beta_{2} + 20 \beta_1) q^{23} + (3 \beta_{3} - 51) q^{24} + (10 \beta_{3} + 22) q^{26} - 27 \beta_{2} q^{27} + ( - 56 \beta_{2} + 7 \beta_1) q^{28} + ( - 48 \beta_{3} + 122) q^{29} + ( - 42 \beta_{3} + 96) q^{31} + ( - 16 \beta_{2} - 47 \beta_1) q^{32} + ( - 30 \beta_{2} + 6 \beta_1) q^{33} + (50 \beta_{3} + 206) q^{34} + ( - 9 \beta_{3} + 81) q^{36} + (30 \beta_{2} - 36 \beta_1) q^{37} + ( - 224 \beta_{2} - 44 \beta_1) q^{38} + (6 \beta_{3} + 30) q^{39} + ( - 100 \beta_{3} - 38) q^{41} - 21 \beta_1 q^{42} + ( - 156 \beta_{2} + 32 \beta_1) q^{43} + ( - 28 \beta_{3} + 140) q^{44} + ( - 120 \beta_{3} - 200) q^{46} + ( - 304 \beta_{2} - 48 \beta_1) q^{47} + ( - 144 \beta_{2} - 27 \beta_1) q^{48} - 49 q^{49} + (48 \beta_{3} + 150) q^{51} + (64 \beta_{2} + 6 \beta_1) q^{52} + (120 \beta_{2} - 86 \beta_1) q^{53} + (27 \beta_{3} - 27) q^{54} + (7 \beta_{3} - 119) q^{56} + ( - 174 \beta_{2} - 42 \beta_1) q^{57} + ( - 768 \beta_{2} + 122 \beta_1) q^{58} + (84 \beta_{3} + 380) q^{59} + ( - 24 \beta_{3} - 90) q^{61} + ( - 672 \beta_{2} + 96 \beta_1) q^{62} - 63 \beta_{2} q^{63} + ( - 103 \beta_{3} + 471) q^{64} + (36 \beta_{3} - 132) q^{66} + (84 \beta_{2} + 64 \beta_1) q^{67} + (272 \beta_{2} + 78 \beta_1) q^{68} + ( - 60 \beta_{3} - 360) q^{69} + ( - 42 \beta_{3} + 856) q^{71} + ( - 144 \beta_{2} + 9 \beta_1) q^{72} + ( - 92 \beta_{2} + 202 \beta_1) q^{73} + ( - 66 \beta_{3} + 642) q^{74} + (68 \beta_{3} + 172) q^{76} + ( - 70 \beta_{2} + 14 \beta_1) q^{77} + (96 \beta_{2} + 30 \beta_1) q^{78} + ( - 104 \beta_{3} + 496) q^{79} + 81 q^{81} + ( - 1600 \beta_{2} - 38 \beta_1) q^{82} + (356 \beta_{2} - 216 \beta_1) q^{83} + ( - 21 \beta_{3} + 189) q^{84} + (188 \beta_{3} - 700) q^{86} + (222 \beta_{2} - 144 \beta_1) q^{87} + ( - 192 \beta_{2} + 44 \beta_1) q^{88} + (8 \beta_{3} - 298) q^{89} + (14 \beta_{3} + 70) q^{91} + ( - 800 \beta_{2} - 40 \beta_1) q^{92} + (162 \beta_{2} - 126 \beta_1) q^{93} + (256 \beta_{3} + 512) q^{94} + (141 \beta_{3} - 93) q^{96} + ( - 104 \beta_{2} + 314 \beta_1) q^{97} - 49 \beta_1 q^{98} + ( - 18 \beta_{3} + 108) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 34 q^{4} + 6 q^{6} - 36 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 4 q - 34 q^{4} + 6 q^{6} - 36 q^{9} - 44 q^{11} + 14 q^{14} - 174 q^{16} - 204 q^{19} - 84 q^{21} - 198 q^{24} + 108 q^{26} + 392 q^{29} + 300 q^{31} + 924 q^{34} + 306 q^{36} + 132 q^{39} - 352 q^{41} + 504 q^{44} - 1040 q^{46} - 196 q^{49} + 696 q^{51} - 54 q^{54} - 462 q^{56} + 1688 q^{59} - 408 q^{61} + 1678 q^{64} - 456 q^{66} - 1560 q^{69} + 3340 q^{71} + 2436 q^{74} + 824 q^{76} + 1776 q^{79} + 324 q^{81} + 714 q^{84} - 2424 q^{86} - 1176 q^{89} + 308 q^{91} + 2560 q^{94} - 90 q^{96} + 396 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{4} + 33x^{2} + 256 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( \nu^{3} + 17\nu ) / 16 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( \nu^{2} + 17 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{3} - 17 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( 16\beta_{2} - 17\beta_1 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/525\mathbb{Z}\right)^\times\).

\(n\) \(127\) \(176\) \(451\)
\(\chi(n)\) \(-1\) \(1\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
274.1
4.53113i
3.53113i
3.53113i
4.53113i
4.53113i 3.00000i −12.5311 0 13.5934 7.00000i 20.5311i −9.00000 0
274.2 3.53113i 3.00000i −4.46887 0 −10.5934 7.00000i 12.4689i −9.00000 0
274.3 3.53113i 3.00000i −4.46887 0 −10.5934 7.00000i 12.4689i −9.00000 0
274.4 4.53113i 3.00000i −12.5311 0 13.5934 7.00000i 20.5311i −9.00000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
5.b even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 525.4.d.h 4
5.b even 2 1 inner 525.4.d.h 4
5.c odd 4 1 105.4.a.f 2
5.c odd 4 1 525.4.a.k 2
15.e even 4 1 315.4.a.i 2
15.e even 4 1 1575.4.a.w 2
20.e even 4 1 1680.4.a.bg 2
35.f even 4 1 735.4.a.p 2
105.k odd 4 1 2205.4.a.z 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
105.4.a.f 2 5.c odd 4 1
315.4.a.i 2 15.e even 4 1
525.4.a.k 2 5.c odd 4 1
525.4.d.h 4 1.a even 1 1 trivial
525.4.d.h 4 5.b even 2 1 inner
735.4.a.p 2 35.f even 4 1
1575.4.a.w 2 15.e even 4 1
1680.4.a.bg 2 20.e even 4 1
2205.4.a.z 2 105.k odd 4 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{4}^{\mathrm{new}}(525, [\chi])\):

\( T_{2}^{4} + 33T_{2}^{2} + 256 \) Copy content Toggle raw display
\( T_{11}^{2} + 22T_{11} + 56 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{4} + 33T^{2} + 256 \) Copy content Toggle raw display
$3$ \( (T^{2} + 9)^{2} \) Copy content Toggle raw display
$5$ \( T^{4} \) Copy content Toggle raw display
$7$ \( (T^{2} + 49)^{2} \) Copy content Toggle raw display
$11$ \( (T^{2} + 22 T + 56)^{2} \) Copy content Toggle raw display
$13$ \( T^{4} + 372T^{2} + 3136 \) Copy content Toggle raw display
$17$ \( T^{4} + 15048 T^{2} + 633616 \) Copy content Toggle raw display
$19$ \( (T^{2} + 102 T - 584)^{2} \) Copy content Toggle raw display
$23$ \( T^{4} + 46800 T^{2} + 108160000 \) Copy content Toggle raw display
$29$ \( (T^{2} - 196 T - 27836)^{2} \) Copy content Toggle raw display
$31$ \( (T^{2} - 150 T - 23040)^{2} \) Copy content Toggle raw display
$37$ \( T^{4} + 46728 T^{2} + 351787536 \) Copy content Toggle raw display
$41$ \( (T^{2} + 176 T - 154756)^{2} \) Copy content Toggle raw display
$43$ \( T^{4} + 92448 T^{2} + 167547136 \) Copy content Toggle raw display
$47$ \( T^{4} + \cdots + 1677721600 \) Copy content Toggle raw display
$53$ \( T^{4} + \cdots + 8763955456 \) Copy content Toggle raw display
$59$ \( (T^{2} - 844 T + 63424)^{2} \) Copy content Toggle raw display
$61$ \( (T^{2} + 204 T + 1044)^{2} \) Copy content Toggle raw display
$67$ \( T^{4} + \cdots + 4077588736 \) Copy content Toggle raw display
$71$ \( (T^{2} - 1670 T + 668560)^{2} \) Copy content Toggle raw display
$73$ \( T^{4} + \cdots + 391645665856 \) Copy content Toggle raw display
$79$ \( (T^{2} - 888 T + 21376)^{2} \) Copy content Toggle raw display
$83$ \( T^{4} + \cdots + 294701322496 \) Copy content Toggle raw display
$89$ \( (T^{2} + 588 T + 85396)^{2} \) Copy content Toggle raw display
$97$ \( T^{4} + \cdots + 2353352356096 \) Copy content Toggle raw display
show more
show less