Properties

Label 525.4.d.f.274.1
Level $525$
Weight $4$
Character 525.274
Analytic conductor $30.976$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [525,4,Mod(274,525)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(525, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("525.274");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 525 = 3 \cdot 5^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 525.d (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(30.9760027530\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(i)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 105)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 274.1
Root \(1.00000i\) of defining polynomial
Character \(\chi\) \(=\) 525.274
Dual form 525.4.d.f.274.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-3.00000i q^{3} +8.00000 q^{4} -7.00000i q^{7} -9.00000 q^{9} +O(q^{10})\) \(q-3.00000i q^{3} +8.00000 q^{4} -7.00000i q^{7} -9.00000 q^{9} +42.0000 q^{11} -24.0000i q^{12} +20.0000i q^{13} +64.0000 q^{16} -66.0000i q^{17} -38.0000 q^{19} -21.0000 q^{21} +12.0000i q^{23} +27.0000i q^{27} -56.0000i q^{28} +258.000 q^{29} +146.000 q^{31} -126.000i q^{33} -72.0000 q^{36} -434.000i q^{37} +60.0000 q^{39} -282.000 q^{41} +20.0000i q^{43} +336.000 q^{44} +72.0000i q^{47} -192.000i q^{48} -49.0000 q^{49} -198.000 q^{51} +160.000i q^{52} +336.000i q^{53} +114.000i q^{57} +360.000 q^{59} -682.000 q^{61} +63.0000i q^{63} +512.000 q^{64} -812.000i q^{67} -528.000i q^{68} +36.0000 q^{69} +810.000 q^{71} -124.000i q^{73} -304.000 q^{76} -294.000i q^{77} -1136.00 q^{79} +81.0000 q^{81} +156.000i q^{83} -168.000 q^{84} -774.000i q^{87} +1038.00 q^{89} +140.000 q^{91} +96.0000i q^{92} -438.000i q^{93} -1208.00i q^{97} -378.000 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 16 q^{4} - 18 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 2 q + 16 q^{4} - 18 q^{9} + 84 q^{11} + 128 q^{16} - 76 q^{19} - 42 q^{21} + 516 q^{29} + 292 q^{31} - 144 q^{36} + 120 q^{39} - 564 q^{41} + 672 q^{44} - 98 q^{49} - 396 q^{51} + 720 q^{59} - 1364 q^{61} + 1024 q^{64} + 72 q^{69} + 1620 q^{71} - 608 q^{76} - 2272 q^{79} + 162 q^{81} - 336 q^{84} + 2076 q^{89} + 280 q^{91} - 756 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/525\mathbb{Z}\right)^\times\).

\(n\) \(127\) \(176\) \(451\)
\(\chi(n)\) \(-1\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(3\) − 3.00000i − 0.577350i
\(4\) 8.00000 1.00000
\(5\) 0 0
\(6\) 0 0
\(7\) − 7.00000i − 0.377964i
\(8\) 0 0
\(9\) −9.00000 −0.333333
\(10\) 0 0
\(11\) 42.0000 1.15123 0.575613 0.817723i \(-0.304764\pi\)
0.575613 + 0.817723i \(0.304764\pi\)
\(12\) − 24.0000i − 0.577350i
\(13\) 20.0000i 0.426692i 0.976977 + 0.213346i \(0.0684362\pi\)
−0.976977 + 0.213346i \(0.931564\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 64.0000 1.00000
\(17\) − 66.0000i − 0.941609i −0.882238 0.470804i \(-0.843964\pi\)
0.882238 0.470804i \(-0.156036\pi\)
\(18\) 0 0
\(19\) −38.0000 −0.458831 −0.229416 0.973329i \(-0.573682\pi\)
−0.229416 + 0.973329i \(0.573682\pi\)
\(20\) 0 0
\(21\) −21.0000 −0.218218
\(22\) 0 0
\(23\) 12.0000i 0.108790i 0.998519 + 0.0543951i \(0.0173230\pi\)
−0.998519 + 0.0543951i \(0.982677\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 0 0
\(27\) 27.0000i 0.192450i
\(28\) − 56.0000i − 0.377964i
\(29\) 258.000 1.65205 0.826024 0.563635i \(-0.190597\pi\)
0.826024 + 0.563635i \(0.190597\pi\)
\(30\) 0 0
\(31\) 146.000 0.845883 0.422942 0.906157i \(-0.360998\pi\)
0.422942 + 0.906157i \(0.360998\pi\)
\(32\) 0 0
\(33\) − 126.000i − 0.664660i
\(34\) 0 0
\(35\) 0 0
\(36\) −72.0000 −0.333333
\(37\) − 434.000i − 1.92836i −0.265257 0.964178i \(-0.585457\pi\)
0.265257 0.964178i \(-0.414543\pi\)
\(38\) 0 0
\(39\) 60.0000 0.246351
\(40\) 0 0
\(41\) −282.000 −1.07417 −0.537085 0.843528i \(-0.680475\pi\)
−0.537085 + 0.843528i \(0.680475\pi\)
\(42\) 0 0
\(43\) 20.0000i 0.0709296i 0.999371 + 0.0354648i \(0.0112912\pi\)
−0.999371 + 0.0354648i \(0.988709\pi\)
\(44\) 336.000 1.15123
\(45\) 0 0
\(46\) 0 0
\(47\) 72.0000i 0.223453i 0.993739 + 0.111726i \(0.0356380\pi\)
−0.993739 + 0.111726i \(0.964362\pi\)
\(48\) − 192.000i − 0.577350i
\(49\) −49.0000 −0.142857
\(50\) 0 0
\(51\) −198.000 −0.543638
\(52\) 160.000i 0.426692i
\(53\) 336.000i 0.870814i 0.900234 + 0.435407i \(0.143396\pi\)
−0.900234 + 0.435407i \(0.856604\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 114.000i 0.264906i
\(58\) 0 0
\(59\) 360.000 0.794373 0.397187 0.917738i \(-0.369987\pi\)
0.397187 + 0.917738i \(0.369987\pi\)
\(60\) 0 0
\(61\) −682.000 −1.43149 −0.715747 0.698360i \(-0.753914\pi\)
−0.715747 + 0.698360i \(0.753914\pi\)
\(62\) 0 0
\(63\) 63.0000i 0.125988i
\(64\) 512.000 1.00000
\(65\) 0 0
\(66\) 0 0
\(67\) − 812.000i − 1.48062i −0.672265 0.740310i \(-0.734679\pi\)
0.672265 0.740310i \(-0.265321\pi\)
\(68\) − 528.000i − 0.941609i
\(69\) 36.0000 0.0628100
\(70\) 0 0
\(71\) 810.000 1.35393 0.676967 0.736013i \(-0.263294\pi\)
0.676967 + 0.736013i \(0.263294\pi\)
\(72\) 0 0
\(73\) − 124.000i − 0.198810i −0.995047 0.0994048i \(-0.968306\pi\)
0.995047 0.0994048i \(-0.0316939\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) −304.000 −0.458831
\(77\) − 294.000i − 0.435122i
\(78\) 0 0
\(79\) −1136.00 −1.61785 −0.808924 0.587913i \(-0.799950\pi\)
−0.808924 + 0.587913i \(0.799950\pi\)
\(80\) 0 0
\(81\) 81.0000 0.111111
\(82\) 0 0
\(83\) 156.000i 0.206304i 0.994666 + 0.103152i \(0.0328928\pi\)
−0.994666 + 0.103152i \(0.967107\pi\)
\(84\) −168.000 −0.218218
\(85\) 0 0
\(86\) 0 0
\(87\) − 774.000i − 0.953810i
\(88\) 0 0
\(89\) 1038.00 1.23627 0.618134 0.786073i \(-0.287889\pi\)
0.618134 + 0.786073i \(0.287889\pi\)
\(90\) 0 0
\(91\) 140.000 0.161275
\(92\) 96.0000i 0.108790i
\(93\) − 438.000i − 0.488371i
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) − 1208.00i − 1.26447i −0.774776 0.632236i \(-0.782137\pi\)
0.774776 0.632236i \(-0.217863\pi\)
\(98\) 0 0
\(99\) −378.000 −0.383742
\(100\) 0 0
\(101\) 546.000 0.537911 0.268956 0.963153i \(-0.413322\pi\)
0.268956 + 0.963153i \(0.413322\pi\)
\(102\) 0 0
\(103\) − 520.000i − 0.497448i −0.968574 0.248724i \(-0.919989\pi\)
0.968574 0.248724i \(-0.0800112\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) − 1212.00i − 1.09503i −0.836795 0.547516i \(-0.815573\pi\)
0.836795 0.547516i \(-0.184427\pi\)
\(108\) 216.000i 0.192450i
\(109\) 1078.00 0.947281 0.473641 0.880718i \(-0.342940\pi\)
0.473641 + 0.880718i \(0.342940\pi\)
\(110\) 0 0
\(111\) −1302.00 −1.11334
\(112\) − 448.000i − 0.377964i
\(113\) − 1452.00i − 1.20878i −0.796687 0.604392i \(-0.793416\pi\)
0.796687 0.604392i \(-0.206584\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 2064.00 1.65205
\(117\) − 180.000i − 0.142231i
\(118\) 0 0
\(119\) −462.000 −0.355895
\(120\) 0 0
\(121\) 433.000 0.325319
\(122\) 0 0
\(123\) 846.000i 0.620173i
\(124\) 1168.00 0.845883
\(125\) 0 0
\(126\) 0 0
\(127\) 1312.00i 0.916702i 0.888771 + 0.458351i \(0.151560\pi\)
−0.888771 + 0.458351i \(0.848440\pi\)
\(128\) 0 0
\(129\) 60.0000 0.0409512
\(130\) 0 0
\(131\) −1356.00 −0.904384 −0.452192 0.891921i \(-0.649358\pi\)
−0.452192 + 0.891921i \(0.649358\pi\)
\(132\) − 1008.00i − 0.664660i
\(133\) 266.000i 0.173422i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 984.000i 0.613641i 0.951767 + 0.306820i \(0.0992651\pi\)
−0.951767 + 0.306820i \(0.900735\pi\)
\(138\) 0 0
\(139\) 394.000 0.240422 0.120211 0.992748i \(-0.461643\pi\)
0.120211 + 0.992748i \(0.461643\pi\)
\(140\) 0 0
\(141\) 216.000 0.129011
\(142\) 0 0
\(143\) 840.000i 0.491219i
\(144\) −576.000 −0.333333
\(145\) 0 0
\(146\) 0 0
\(147\) 147.000i 0.0824786i
\(148\) − 3472.00i − 1.92836i
\(149\) 1014.00 0.557518 0.278759 0.960361i \(-0.410077\pi\)
0.278759 + 0.960361i \(0.410077\pi\)
\(150\) 0 0
\(151\) −1996.00 −1.07571 −0.537855 0.843037i \(-0.680765\pi\)
−0.537855 + 0.843037i \(0.680765\pi\)
\(152\) 0 0
\(153\) 594.000i 0.313870i
\(154\) 0 0
\(155\) 0 0
\(156\) 480.000 0.246351
\(157\) 2392.00i 1.21594i 0.793960 + 0.607969i \(0.208016\pi\)
−0.793960 + 0.607969i \(0.791984\pi\)
\(158\) 0 0
\(159\) 1008.00 0.502765
\(160\) 0 0
\(161\) 84.0000 0.0411188
\(162\) 0 0
\(163\) 2036.00i 0.978355i 0.872184 + 0.489177i \(0.162703\pi\)
−0.872184 + 0.489177i \(0.837297\pi\)
\(164\) −2256.00 −1.07417
\(165\) 0 0
\(166\) 0 0
\(167\) 3936.00i 1.82381i 0.410398 + 0.911907i \(0.365390\pi\)
−0.410398 + 0.911907i \(0.634610\pi\)
\(168\) 0 0
\(169\) 1797.00 0.817934
\(170\) 0 0
\(171\) 342.000 0.152944
\(172\) 160.000i 0.0709296i
\(173\) 378.000i 0.166120i 0.996545 + 0.0830601i \(0.0264694\pi\)
−0.996545 + 0.0830601i \(0.973531\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 2688.00 1.15123
\(177\) − 1080.00i − 0.458631i
\(178\) 0 0
\(179\) 222.000 0.0926987 0.0463493 0.998925i \(-0.485241\pi\)
0.0463493 + 0.998925i \(0.485241\pi\)
\(180\) 0 0
\(181\) −2590.00 −1.06361 −0.531804 0.846867i \(-0.678486\pi\)
−0.531804 + 0.846867i \(0.678486\pi\)
\(182\) 0 0
\(183\) 2046.00i 0.826474i
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) − 2772.00i − 1.08400i
\(188\) 576.000i 0.223453i
\(189\) 189.000 0.0727393
\(190\) 0 0
\(191\) 2214.00 0.838740 0.419370 0.907815i \(-0.362251\pi\)
0.419370 + 0.907815i \(0.362251\pi\)
\(192\) − 1536.00i − 0.577350i
\(193\) 4178.00i 1.55823i 0.626879 + 0.779117i \(0.284332\pi\)
−0.626879 + 0.779117i \(0.715668\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) −392.000 −0.142857
\(197\) 3060.00i 1.10668i 0.832955 + 0.553340i \(0.186647\pi\)
−0.832955 + 0.553340i \(0.813353\pi\)
\(198\) 0 0
\(199\) −2666.00 −0.949687 −0.474844 0.880070i \(-0.657495\pi\)
−0.474844 + 0.880070i \(0.657495\pi\)
\(200\) 0 0
\(201\) −2436.00 −0.854837
\(202\) 0 0
\(203\) − 1806.00i − 0.624416i
\(204\) −1584.00 −0.543638
\(205\) 0 0
\(206\) 0 0
\(207\) − 108.000i − 0.0362634i
\(208\) 1280.00i 0.426692i
\(209\) −1596.00 −0.528218
\(210\) 0 0
\(211\) −1348.00 −0.439811 −0.219906 0.975521i \(-0.570575\pi\)
−0.219906 + 0.975521i \(0.570575\pi\)
\(212\) 2688.00i 0.870814i
\(213\) − 2430.00i − 0.781694i
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) − 1022.00i − 0.319714i
\(218\) 0 0
\(219\) −372.000 −0.114783
\(220\) 0 0
\(221\) 1320.00 0.401777
\(222\) 0 0
\(223\) 3188.00i 0.957329i 0.877998 + 0.478664i \(0.158879\pi\)
−0.877998 + 0.478664i \(0.841121\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 3396.00i 0.992953i 0.868050 + 0.496477i \(0.165373\pi\)
−0.868050 + 0.496477i \(0.834627\pi\)
\(228\) 912.000i 0.264906i
\(229\) −5294.00 −1.52767 −0.763837 0.645409i \(-0.776687\pi\)
−0.763837 + 0.645409i \(0.776687\pi\)
\(230\) 0 0
\(231\) −882.000 −0.251218
\(232\) 0 0
\(233\) 852.000i 0.239555i 0.992801 + 0.119778i \(0.0382182\pi\)
−0.992801 + 0.119778i \(0.961782\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 2880.00 0.794373
\(237\) 3408.00i 0.934065i
\(238\) 0 0
\(239\) −4866.00 −1.31697 −0.658484 0.752595i \(-0.728802\pi\)
−0.658484 + 0.752595i \(0.728802\pi\)
\(240\) 0 0
\(241\) −2050.00 −0.547934 −0.273967 0.961739i \(-0.588336\pi\)
−0.273967 + 0.961739i \(0.588336\pi\)
\(242\) 0 0
\(243\) − 243.000i − 0.0641500i
\(244\) −5456.00 −1.43149
\(245\) 0 0
\(246\) 0 0
\(247\) − 760.000i − 0.195780i
\(248\) 0 0
\(249\) 468.000 0.119110
\(250\) 0 0
\(251\) −1152.00 −0.289696 −0.144848 0.989454i \(-0.546269\pi\)
−0.144848 + 0.989454i \(0.546269\pi\)
\(252\) 504.000i 0.125988i
\(253\) 504.000i 0.125242i
\(254\) 0 0
\(255\) 0 0
\(256\) 4096.00 1.00000
\(257\) 6450.00i 1.56553i 0.622321 + 0.782763i \(0.286190\pi\)
−0.622321 + 0.782763i \(0.713810\pi\)
\(258\) 0 0
\(259\) −3038.00 −0.728850
\(260\) 0 0
\(261\) −2322.00 −0.550683
\(262\) 0 0
\(263\) 1968.00i 0.461415i 0.973023 + 0.230707i \(0.0741040\pi\)
−0.973023 + 0.230707i \(0.925896\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) − 3114.00i − 0.713759i
\(268\) − 6496.00i − 1.48062i
\(269\) 3894.00 0.882607 0.441304 0.897358i \(-0.354516\pi\)
0.441304 + 0.897358i \(0.354516\pi\)
\(270\) 0 0
\(271\) 7094.00 1.59015 0.795073 0.606513i \(-0.207432\pi\)
0.795073 + 0.606513i \(0.207432\pi\)
\(272\) − 4224.00i − 0.941609i
\(273\) − 420.000i − 0.0931119i
\(274\) 0 0
\(275\) 0 0
\(276\) 288.000 0.0628100
\(277\) 3310.00i 0.717973i 0.933343 + 0.358987i \(0.116878\pi\)
−0.933343 + 0.358987i \(0.883122\pi\)
\(278\) 0 0
\(279\) −1314.00 −0.281961
\(280\) 0 0
\(281\) 7158.00 1.51961 0.759805 0.650151i \(-0.225294\pi\)
0.759805 + 0.650151i \(0.225294\pi\)
\(282\) 0 0
\(283\) − 5164.00i − 1.08469i −0.840155 0.542346i \(-0.817536\pi\)
0.840155 0.542346i \(-0.182464\pi\)
\(284\) 6480.00 1.35393
\(285\) 0 0
\(286\) 0 0
\(287\) 1974.00i 0.405998i
\(288\) 0 0
\(289\) 557.000 0.113373
\(290\) 0 0
\(291\) −3624.00 −0.730043
\(292\) − 992.000i − 0.198810i
\(293\) − 8598.00i − 1.71434i −0.515037 0.857168i \(-0.672222\pi\)
0.515037 0.857168i \(-0.327778\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) 1134.00i 0.221553i
\(298\) 0 0
\(299\) −240.000 −0.0464199
\(300\) 0 0
\(301\) 140.000 0.0268089
\(302\) 0 0
\(303\) − 1638.00i − 0.310563i
\(304\) −2432.00 −0.458831
\(305\) 0 0
\(306\) 0 0
\(307\) 448.000i 0.0832857i 0.999133 + 0.0416429i \(0.0132592\pi\)
−0.999133 + 0.0416429i \(0.986741\pi\)
\(308\) − 2352.00i − 0.435122i
\(309\) −1560.00 −0.287202
\(310\) 0 0
\(311\) −5832.00 −1.06335 −0.531676 0.846948i \(-0.678438\pi\)
−0.531676 + 0.846948i \(0.678438\pi\)
\(312\) 0 0
\(313\) 9848.00i 1.77841i 0.457510 + 0.889204i \(0.348741\pi\)
−0.457510 + 0.889204i \(0.651259\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) −9088.00 −1.61785
\(317\) 5616.00i 0.995035i 0.867454 + 0.497517i \(0.165755\pi\)
−0.867454 + 0.497517i \(0.834245\pi\)
\(318\) 0 0
\(319\) 10836.0 1.90188
\(320\) 0 0
\(321\) −3636.00 −0.632217
\(322\) 0 0
\(323\) 2508.00i 0.432040i
\(324\) 648.000 0.111111
\(325\) 0 0
\(326\) 0 0
\(327\) − 3234.00i − 0.546913i
\(328\) 0 0
\(329\) 504.000 0.0844572
\(330\) 0 0
\(331\) 452.000 0.0750579 0.0375290 0.999296i \(-0.488051\pi\)
0.0375290 + 0.999296i \(0.488051\pi\)
\(332\) 1248.00i 0.206304i
\(333\) 3906.00i 0.642785i
\(334\) 0 0
\(335\) 0 0
\(336\) −1344.00 −0.218218
\(337\) 2302.00i 0.372101i 0.982540 + 0.186050i \(0.0595688\pi\)
−0.982540 + 0.186050i \(0.940431\pi\)
\(338\) 0 0
\(339\) −4356.00 −0.697892
\(340\) 0 0
\(341\) 6132.00 0.973802
\(342\) 0 0
\(343\) 343.000i 0.0539949i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) − 1584.00i − 0.245054i −0.992465 0.122527i \(-0.960900\pi\)
0.992465 0.122527i \(-0.0390997\pi\)
\(348\) − 6192.00i − 0.953810i
\(349\) −8174.00 −1.25371 −0.626854 0.779137i \(-0.715658\pi\)
−0.626854 + 0.779137i \(0.715658\pi\)
\(350\) 0 0
\(351\) −540.000 −0.0821170
\(352\) 0 0
\(353\) 8610.00i 1.29820i 0.760704 + 0.649099i \(0.224854\pi\)
−0.760704 + 0.649099i \(0.775146\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 8304.00 1.23627
\(357\) 1386.00i 0.205476i
\(358\) 0 0
\(359\) 2154.00 0.316668 0.158334 0.987386i \(-0.449388\pi\)
0.158334 + 0.987386i \(0.449388\pi\)
\(360\) 0 0
\(361\) −5415.00 −0.789474
\(362\) 0 0
\(363\) − 1299.00i − 0.187823i
\(364\) 1120.00 0.161275
\(365\) 0 0
\(366\) 0 0
\(367\) − 6644.00i − 0.944997i −0.881331 0.472499i \(-0.843352\pi\)
0.881331 0.472499i \(-0.156648\pi\)
\(368\) 768.000i 0.108790i
\(369\) 2538.00 0.358057
\(370\) 0 0
\(371\) 2352.00 0.329137
\(372\) − 3504.00i − 0.488371i
\(373\) 7958.00i 1.10469i 0.833615 + 0.552345i \(0.186267\pi\)
−0.833615 + 0.552345i \(0.813733\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 5160.00i 0.704917i
\(378\) 0 0
\(379\) −3440.00 −0.466229 −0.233115 0.972449i \(-0.574892\pi\)
−0.233115 + 0.972449i \(0.574892\pi\)
\(380\) 0 0
\(381\) 3936.00 0.529258
\(382\) 0 0
\(383\) 12936.0i 1.72585i 0.505336 + 0.862923i \(0.331369\pi\)
−0.505336 + 0.862923i \(0.668631\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) − 180.000i − 0.0236432i
\(388\) − 9664.00i − 1.26447i
\(389\) 14862.0 1.93710 0.968552 0.248812i \(-0.0800401\pi\)
0.968552 + 0.248812i \(0.0800401\pi\)
\(390\) 0 0
\(391\) 792.000 0.102438
\(392\) 0 0
\(393\) 4068.00i 0.522146i
\(394\) 0 0
\(395\) 0 0
\(396\) −3024.00 −0.383742
\(397\) − 10460.0i − 1.32235i −0.750232 0.661174i \(-0.770058\pi\)
0.750232 0.661174i \(-0.229942\pi\)
\(398\) 0 0
\(399\) 798.000 0.100125
\(400\) 0 0
\(401\) −9150.00 −1.13947 −0.569737 0.821827i \(-0.692955\pi\)
−0.569737 + 0.821827i \(0.692955\pi\)
\(402\) 0 0
\(403\) 2920.00i 0.360932i
\(404\) 4368.00 0.537911
\(405\) 0 0
\(406\) 0 0
\(407\) − 18228.0i − 2.21997i
\(408\) 0 0
\(409\) 4894.00 0.591669 0.295835 0.955239i \(-0.404402\pi\)
0.295835 + 0.955239i \(0.404402\pi\)
\(410\) 0 0
\(411\) 2952.00 0.354286
\(412\) − 4160.00i − 0.497448i
\(413\) − 2520.00i − 0.300245i
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) − 1182.00i − 0.138808i
\(418\) 0 0
\(419\) 1668.00 0.194480 0.0972400 0.995261i \(-0.468999\pi\)
0.0972400 + 0.995261i \(0.468999\pi\)
\(420\) 0 0
\(421\) −12418.0 −1.43757 −0.718784 0.695233i \(-0.755301\pi\)
−0.718784 + 0.695233i \(0.755301\pi\)
\(422\) 0 0
\(423\) − 648.000i − 0.0744843i
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) 4774.00i 0.541054i
\(428\) − 9696.00i − 1.09503i
\(429\) 2520.00 0.283605
\(430\) 0 0
\(431\) 15186.0 1.69718 0.848589 0.529052i \(-0.177452\pi\)
0.848589 + 0.529052i \(0.177452\pi\)
\(432\) 1728.00i 0.192450i
\(433\) − 5704.00i − 0.633064i −0.948582 0.316532i \(-0.897482\pi\)
0.948582 0.316532i \(-0.102518\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 8624.00 0.947281
\(437\) − 456.000i − 0.0499163i
\(438\) 0 0
\(439\) 17206.0 1.87061 0.935305 0.353843i \(-0.115125\pi\)
0.935305 + 0.353843i \(0.115125\pi\)
\(440\) 0 0
\(441\) 441.000 0.0476190
\(442\) 0 0
\(443\) 3456.00i 0.370654i 0.982677 + 0.185327i \(0.0593344\pi\)
−0.982677 + 0.185327i \(0.940666\pi\)
\(444\) −10416.0 −1.11334
\(445\) 0 0
\(446\) 0 0
\(447\) − 3042.00i − 0.321883i
\(448\) − 3584.00i − 0.377964i
\(449\) −16074.0 −1.68949 −0.844743 0.535173i \(-0.820247\pi\)
−0.844743 + 0.535173i \(0.820247\pi\)
\(450\) 0 0
\(451\) −11844.0 −1.23661
\(452\) − 11616.0i − 1.20878i
\(453\) 5988.00i 0.621061i
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) − 7526.00i − 0.770353i −0.922843 0.385177i \(-0.874141\pi\)
0.922843 0.385177i \(-0.125859\pi\)
\(458\) 0 0
\(459\) 1782.00 0.181213
\(460\) 0 0
\(461\) −2274.00 −0.229741 −0.114871 0.993380i \(-0.536645\pi\)
−0.114871 + 0.993380i \(0.536645\pi\)
\(462\) 0 0
\(463\) − 10024.0i − 1.00617i −0.864238 0.503083i \(-0.832199\pi\)
0.864238 0.503083i \(-0.167801\pi\)
\(464\) 16512.0 1.65205
\(465\) 0 0
\(466\) 0 0
\(467\) 2460.00i 0.243759i 0.992545 + 0.121879i \(0.0388921\pi\)
−0.992545 + 0.121879i \(0.961108\pi\)
\(468\) − 1440.00i − 0.142231i
\(469\) −5684.00 −0.559622
\(470\) 0 0
\(471\) 7176.00 0.702023
\(472\) 0 0
\(473\) 840.000i 0.0816559i
\(474\) 0 0
\(475\) 0 0
\(476\) −3696.00 −0.355895
\(477\) − 3024.00i − 0.290271i
\(478\) 0 0
\(479\) −19320.0 −1.84291 −0.921454 0.388486i \(-0.872998\pi\)
−0.921454 + 0.388486i \(0.872998\pi\)
\(480\) 0 0
\(481\) 8680.00 0.822815
\(482\) 0 0
\(483\) − 252.000i − 0.0237400i
\(484\) 3464.00 0.325319
\(485\) 0 0
\(486\) 0 0
\(487\) 12544.0i 1.16719i 0.812044 + 0.583596i \(0.198355\pi\)
−0.812044 + 0.583596i \(0.801645\pi\)
\(488\) 0 0
\(489\) 6108.00 0.564853
\(490\) 0 0
\(491\) −15510.0 −1.42557 −0.712787 0.701381i \(-0.752567\pi\)
−0.712787 + 0.701381i \(0.752567\pi\)
\(492\) 6768.00i 0.620173i
\(493\) − 17028.0i − 1.55558i
\(494\) 0 0
\(495\) 0 0
\(496\) 9344.00 0.845883
\(497\) − 5670.00i − 0.511739i
\(498\) 0 0
\(499\) 14344.0 1.28682 0.643412 0.765520i \(-0.277518\pi\)
0.643412 + 0.765520i \(0.277518\pi\)
\(500\) 0 0
\(501\) 11808.0 1.05298
\(502\) 0 0
\(503\) − 21384.0i − 1.89556i −0.318929 0.947779i \(-0.603323\pi\)
0.318929 0.947779i \(-0.396677\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) − 5391.00i − 0.472234i
\(508\) 10496.0i 0.916702i
\(509\) 7134.00 0.621236 0.310618 0.950535i \(-0.399464\pi\)
0.310618 + 0.950535i \(0.399464\pi\)
\(510\) 0 0
\(511\) −868.000 −0.0751430
\(512\) 0 0
\(513\) − 1026.00i − 0.0883022i
\(514\) 0 0
\(515\) 0 0
\(516\) 480.000 0.0409512
\(517\) 3024.00i 0.257244i
\(518\) 0 0
\(519\) 1134.00 0.0959096
\(520\) 0 0
\(521\) −19122.0 −1.60797 −0.803983 0.594653i \(-0.797290\pi\)
−0.803983 + 0.594653i \(0.797290\pi\)
\(522\) 0 0
\(523\) − 15640.0i − 1.30763i −0.756655 0.653814i \(-0.773168\pi\)
0.756655 0.653814i \(-0.226832\pi\)
\(524\) −10848.0 −0.904384
\(525\) 0 0
\(526\) 0 0
\(527\) − 9636.00i − 0.796491i
\(528\) − 8064.00i − 0.664660i
\(529\) 12023.0 0.988165
\(530\) 0 0
\(531\) −3240.00 −0.264791
\(532\) 2128.00i 0.173422i
\(533\) − 5640.00i − 0.458341i
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) − 666.000i − 0.0535196i
\(538\) 0 0
\(539\) −2058.00 −0.164461
\(540\) 0 0
\(541\) 2846.00 0.226172 0.113086 0.993585i \(-0.463926\pi\)
0.113086 + 0.993585i \(0.463926\pi\)
\(542\) 0 0
\(543\) 7770.00i 0.614075i
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) 4444.00i 0.347371i 0.984801 + 0.173685i \(0.0555676\pi\)
−0.984801 + 0.173685i \(0.944432\pi\)
\(548\) 7872.00i 0.613641i
\(549\) 6138.00 0.477165
\(550\) 0 0
\(551\) −9804.00 −0.758012
\(552\) 0 0
\(553\) 7952.00i 0.611489i
\(554\) 0 0
\(555\) 0 0
\(556\) 3152.00 0.240422
\(557\) − 18552.0i − 1.41126i −0.708579 0.705631i \(-0.750663\pi\)
0.708579 0.705631i \(-0.249337\pi\)
\(558\) 0 0
\(559\) −400.000 −0.0302651
\(560\) 0 0
\(561\) −8316.00 −0.625850
\(562\) 0 0
\(563\) − 16452.0i − 1.23156i −0.787918 0.615781i \(-0.788841\pi\)
0.787918 0.615781i \(-0.211159\pi\)
\(564\) 1728.00 0.129011
\(565\) 0 0
\(566\) 0 0
\(567\) − 567.000i − 0.0419961i
\(568\) 0 0
\(569\) −7722.00 −0.568933 −0.284467 0.958686i \(-0.591817\pi\)
−0.284467 + 0.958686i \(0.591817\pi\)
\(570\) 0 0
\(571\) 2576.00 0.188796 0.0943978 0.995535i \(-0.469907\pi\)
0.0943978 + 0.995535i \(0.469907\pi\)
\(572\) 6720.00i 0.491219i
\(573\) − 6642.00i − 0.484247i
\(574\) 0 0
\(575\) 0 0
\(576\) −4608.00 −0.333333
\(577\) 2464.00i 0.177778i 0.996042 + 0.0888888i \(0.0283316\pi\)
−0.996042 + 0.0888888i \(0.971668\pi\)
\(578\) 0 0
\(579\) 12534.0 0.899646
\(580\) 0 0
\(581\) 1092.00 0.0779755
\(582\) 0 0
\(583\) 14112.0i 1.00250i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) − 1452.00i − 0.102096i −0.998696 0.0510481i \(-0.983744\pi\)
0.998696 0.0510481i \(-0.0162562\pi\)
\(588\) 1176.00i 0.0824786i
\(589\) −5548.00 −0.388118
\(590\) 0 0
\(591\) 9180.00 0.638942
\(592\) − 27776.0i − 1.92836i
\(593\) 10698.0i 0.740833i 0.928866 + 0.370417i \(0.120785\pi\)
−0.928866 + 0.370417i \(0.879215\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 8112.00 0.557518
\(597\) 7998.00i 0.548302i
\(598\) 0 0
\(599\) 8730.00 0.595489 0.297745 0.954646i \(-0.403766\pi\)
0.297745 + 0.954646i \(0.403766\pi\)
\(600\) 0 0
\(601\) 1910.00 0.129635 0.0648174 0.997897i \(-0.479354\pi\)
0.0648174 + 0.997897i \(0.479354\pi\)
\(602\) 0 0
\(603\) 7308.00i 0.493540i
\(604\) −15968.0 −1.07571
\(605\) 0 0
\(606\) 0 0
\(607\) 5596.00i 0.374192i 0.982342 + 0.187096i \(0.0599076\pi\)
−0.982342 + 0.187096i \(0.940092\pi\)
\(608\) 0 0
\(609\) −5418.00 −0.360506
\(610\) 0 0
\(611\) −1440.00 −0.0953456
\(612\) 4752.00i 0.313870i
\(613\) 28586.0i 1.88349i 0.336332 + 0.941744i \(0.390814\pi\)
−0.336332 + 0.941744i \(0.609186\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 19236.0i 1.25513i 0.778566 + 0.627563i \(0.215947\pi\)
−0.778566 + 0.627563i \(0.784053\pi\)
\(618\) 0 0
\(619\) −6734.00 −0.437257 −0.218629 0.975808i \(-0.570158\pi\)
−0.218629 + 0.975808i \(0.570158\pi\)
\(620\) 0 0
\(621\) −324.000 −0.0209367
\(622\) 0 0
\(623\) − 7266.00i − 0.467265i
\(624\) 3840.00 0.246351
\(625\) 0 0
\(626\) 0 0
\(627\) 4788.00i 0.304967i
\(628\) 19136.0i 1.21594i
\(629\) −28644.0 −1.81576
\(630\) 0 0
\(631\) 7184.00 0.453234 0.226617 0.973984i \(-0.427233\pi\)
0.226617 + 0.973984i \(0.427233\pi\)
\(632\) 0 0
\(633\) 4044.00i 0.253925i
\(634\) 0 0
\(635\) 0 0
\(636\) 8064.00 0.502765
\(637\) − 980.000i − 0.0609561i
\(638\) 0 0
\(639\) −7290.00 −0.451311
\(640\) 0 0
\(641\) 510.000 0.0314256 0.0157128 0.999877i \(-0.494998\pi\)
0.0157128 + 0.999877i \(0.494998\pi\)
\(642\) 0 0
\(643\) − 20752.0i − 1.27275i −0.771379 0.636376i \(-0.780433\pi\)
0.771379 0.636376i \(-0.219567\pi\)
\(644\) 672.000 0.0411188
\(645\) 0 0
\(646\) 0 0
\(647\) − 21072.0i − 1.28041i −0.768204 0.640205i \(-0.778849\pi\)
0.768204 0.640205i \(-0.221151\pi\)
\(648\) 0 0
\(649\) 15120.0 0.914502
\(650\) 0 0
\(651\) −3066.00 −0.184587
\(652\) 16288.0i 0.978355i
\(653\) 2892.00i 0.173312i 0.996238 + 0.0866560i \(0.0276181\pi\)
−0.996238 + 0.0866560i \(0.972382\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) −18048.0 −1.07417
\(657\) 1116.00i 0.0662699i
\(658\) 0 0
\(659\) −750.000 −0.0443336 −0.0221668 0.999754i \(-0.507056\pi\)
−0.0221668 + 0.999754i \(0.507056\pi\)
\(660\) 0 0
\(661\) 30062.0 1.76895 0.884475 0.466587i \(-0.154517\pi\)
0.884475 + 0.466587i \(0.154517\pi\)
\(662\) 0 0
\(663\) − 3960.00i − 0.231966i
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 3096.00i 0.179727i
\(668\) 31488.0i 1.82381i
\(669\) 9564.00 0.552714
\(670\) 0 0
\(671\) −28644.0 −1.64797
\(672\) 0 0
\(673\) 15446.0i 0.884695i 0.896844 + 0.442347i \(0.145854\pi\)
−0.896844 + 0.442347i \(0.854146\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 14376.0 0.817934
\(677\) 25110.0i 1.42549i 0.701424 + 0.712744i \(0.252548\pi\)
−0.701424 + 0.712744i \(0.747452\pi\)
\(678\) 0 0
\(679\) −8456.00 −0.477926
\(680\) 0 0
\(681\) 10188.0 0.573282
\(682\) 0 0
\(683\) 7968.00i 0.446394i 0.974773 + 0.223197i \(0.0716493\pi\)
−0.974773 + 0.223197i \(0.928351\pi\)
\(684\) 2736.00 0.152944
\(685\) 0 0
\(686\) 0 0
\(687\) 15882.0i 0.882003i
\(688\) 1280.00i 0.0709296i
\(689\) −6720.00 −0.371570
\(690\) 0 0
\(691\) −14398.0 −0.792657 −0.396328 0.918109i \(-0.629716\pi\)
−0.396328 + 0.918109i \(0.629716\pi\)
\(692\) 3024.00i 0.166120i
\(693\) 2646.00i 0.145041i
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) 18612.0i 1.01145i
\(698\) 0 0
\(699\) 2556.00 0.138307
\(700\) 0 0
\(701\) −9234.00 −0.497523 −0.248761 0.968565i \(-0.580023\pi\)
−0.248761 + 0.968565i \(0.580023\pi\)
\(702\) 0 0
\(703\) 16492.0i 0.884790i
\(704\) 21504.0 1.15123
\(705\) 0 0
\(706\) 0 0
\(707\) − 3822.00i − 0.203311i
\(708\) − 8640.00i − 0.458631i
\(709\) −8030.00 −0.425350 −0.212675 0.977123i \(-0.568218\pi\)
−0.212675 + 0.977123i \(0.568218\pi\)
\(710\) 0 0
\(711\) 10224.0 0.539283
\(712\) 0 0
\(713\) 1752.00i 0.0920237i
\(714\) 0 0
\(715\) 0 0
\(716\) 1776.00 0.0926987
\(717\) 14598.0i 0.760352i
\(718\) 0 0
\(719\) −27060.0 −1.40357 −0.701786 0.712388i \(-0.747614\pi\)
−0.701786 + 0.712388i \(0.747614\pi\)
\(720\) 0 0
\(721\) −3640.00 −0.188018
\(722\) 0 0
\(723\) 6150.00i 0.316350i
\(724\) −20720.0 −1.06361
\(725\) 0 0
\(726\) 0 0
\(727\) 3724.00i 0.189980i 0.995478 + 0.0949900i \(0.0302819\pi\)
−0.995478 + 0.0949900i \(0.969718\pi\)
\(728\) 0 0
\(729\) −729.000 −0.0370370
\(730\) 0 0
\(731\) 1320.00 0.0667879
\(732\) 16368.0i 0.826474i
\(733\) − 5668.00i − 0.285610i −0.989751 0.142805i \(-0.954388\pi\)
0.989751 0.142805i \(-0.0456122\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) − 34104.0i − 1.70453i
\(738\) 0 0
\(739\) 16072.0 0.800024 0.400012 0.916510i \(-0.369006\pi\)
0.400012 + 0.916510i \(0.369006\pi\)
\(740\) 0 0
\(741\) −2280.00 −0.113034
\(742\) 0 0
\(743\) − 8256.00i − 0.407649i −0.979007 0.203825i \(-0.934663\pi\)
0.979007 0.203825i \(-0.0653372\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) − 1404.00i − 0.0687680i
\(748\) − 22176.0i − 1.08400i
\(749\) −8484.00 −0.413883
\(750\) 0 0
\(751\) −6352.00 −0.308639 −0.154319 0.988021i \(-0.549318\pi\)
−0.154319 + 0.988021i \(0.549318\pi\)
\(752\) 4608.00i 0.223453i
\(753\) 3456.00i 0.167256i
\(754\) 0 0
\(755\) 0 0
\(756\) 1512.00 0.0727393
\(757\) − 11558.0i − 0.554931i −0.960736 0.277465i \(-0.910506\pi\)
0.960736 0.277465i \(-0.0894944\pi\)
\(758\) 0 0
\(759\) 1512.00 0.0723085
\(760\) 0 0
\(761\) 7770.00 0.370121 0.185061 0.982727i \(-0.440752\pi\)
0.185061 + 0.982727i \(0.440752\pi\)
\(762\) 0 0
\(763\) − 7546.00i − 0.358039i
\(764\) 17712.0 0.838740
\(765\) 0 0
\(766\) 0 0
\(767\) 7200.00i 0.338953i
\(768\) − 12288.0i − 0.577350i
\(769\) −22646.0 −1.06194 −0.530972 0.847389i \(-0.678173\pi\)
−0.530972 + 0.847389i \(0.678173\pi\)
\(770\) 0 0
\(771\) 19350.0 0.903856
\(772\) 33424.0i 1.55823i
\(773\) − 35502.0i − 1.65190i −0.563744 0.825950i \(-0.690639\pi\)
0.563744 0.825950i \(-0.309361\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) 9114.00i 0.420802i
\(778\) 0 0
\(779\) 10716.0 0.492863
\(780\) 0 0
\(781\) 34020.0 1.55868
\(782\) 0 0
\(783\) 6966.00i 0.317937i
\(784\) −3136.00 −0.142857
\(785\) 0 0
\(786\) 0 0
\(787\) 17080.0i 0.773617i 0.922160 + 0.386808i \(0.126422\pi\)
−0.922160 + 0.386808i \(0.873578\pi\)
\(788\) 24480.0i 1.10668i
\(789\) 5904.00 0.266398
\(790\) 0 0
\(791\) −10164.0 −0.456878
\(792\) 0 0
\(793\) − 13640.0i − 0.610808i
\(794\) 0 0
\(795\) 0 0
\(796\) −21328.0 −0.949687
\(797\) − 5730.00i − 0.254664i −0.991860 0.127332i \(-0.959359\pi\)
0.991860 0.127332i \(-0.0406413\pi\)
\(798\) 0 0
\(799\) 4752.00 0.210405
\(800\) 0 0
\(801\) −9342.00 −0.412089
\(802\) 0 0
\(803\) − 5208.00i − 0.228875i
\(804\) −19488.0 −0.854837
\(805\) 0 0
\(806\) 0 0
\(807\) − 11682.0i − 0.509574i
\(808\) 0 0
\(809\) −2550.00 −0.110820 −0.0554099 0.998464i \(-0.517647\pi\)
−0.0554099 + 0.998464i \(0.517647\pi\)
\(810\) 0 0
\(811\) −27538.0 −1.19234 −0.596171 0.802857i \(-0.703312\pi\)
−0.596171 + 0.802857i \(0.703312\pi\)
\(812\) − 14448.0i − 0.624416i
\(813\) − 21282.0i − 0.918072i
\(814\) 0 0
\(815\) 0 0
\(816\) −12672.0 −0.543638
\(817\) − 760.000i − 0.0325447i
\(818\) 0 0
\(819\) −1260.00 −0.0537582
\(820\) 0 0
\(821\) −19242.0 −0.817966 −0.408983 0.912542i \(-0.634117\pi\)
−0.408983 + 0.912542i \(0.634117\pi\)
\(822\) 0 0
\(823\) − 11752.0i − 0.497751i −0.968536 0.248875i \(-0.919939\pi\)
0.968536 0.248875i \(-0.0800610\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 28692.0i 1.20643i 0.797578 + 0.603216i \(0.206114\pi\)
−0.797578 + 0.603216i \(0.793886\pi\)
\(828\) − 864.000i − 0.0362634i
\(829\) −28442.0 −1.19159 −0.595797 0.803135i \(-0.703164\pi\)
−0.595797 + 0.803135i \(0.703164\pi\)
\(830\) 0 0
\(831\) 9930.00 0.414522
\(832\) 10240.0i 0.426692i
\(833\) 3234.00i 0.134516i
\(834\) 0 0
\(835\) 0 0
\(836\) −12768.0 −0.528218
\(837\) 3942.00i 0.162790i
\(838\) 0 0
\(839\) −20172.0 −0.830053 −0.415027 0.909809i \(-0.636228\pi\)
−0.415027 + 0.909809i \(0.636228\pi\)
\(840\) 0 0
\(841\) 42175.0 1.72926
\(842\) 0 0
\(843\) − 21474.0i − 0.877347i
\(844\) −10784.0 −0.439811
\(845\) 0 0
\(846\) 0 0
\(847\) − 3031.00i − 0.122959i
\(848\) 21504.0i 0.870814i
\(849\) −15492.0 −0.626247
\(850\) 0 0
\(851\) 5208.00 0.209786
\(852\) − 19440.0i − 0.781694i
\(853\) 19820.0i 0.795573i 0.917478 + 0.397787i \(0.130222\pi\)
−0.917478 + 0.397787i \(0.869778\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 10290.0i 0.410151i 0.978746 + 0.205076i \(0.0657440\pi\)
−0.978746 + 0.205076i \(0.934256\pi\)
\(858\) 0 0
\(859\) 31606.0 1.25539 0.627697 0.778458i \(-0.283998\pi\)
0.627697 + 0.778458i \(0.283998\pi\)
\(860\) 0 0
\(861\) 5922.00 0.234403
\(862\) 0 0
\(863\) 23172.0i 0.914002i 0.889466 + 0.457001i \(0.151076\pi\)
−0.889466 + 0.457001i \(0.848924\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) − 1671.00i − 0.0654558i
\(868\) − 8176.00i − 0.319714i
\(869\) −47712.0 −1.86251
\(870\) 0 0
\(871\) 16240.0 0.631770
\(872\) 0 0
\(873\) 10872.0i 0.421491i
\(874\) 0 0
\(875\) 0 0
\(876\) −2976.00 −0.114783
\(877\) 15550.0i 0.598730i 0.954139 + 0.299365i \(0.0967748\pi\)
−0.954139 + 0.299365i \(0.903225\pi\)
\(878\) 0 0
\(879\) −25794.0 −0.989772
\(880\) 0 0
\(881\) 28530.0 1.09103 0.545517 0.838100i \(-0.316334\pi\)
0.545517 + 0.838100i \(0.316334\pi\)
\(882\) 0 0
\(883\) − 28780.0i − 1.09686i −0.836198 0.548428i \(-0.815226\pi\)
0.836198 0.548428i \(-0.184774\pi\)
\(884\) 10560.0 0.401777
\(885\) 0 0
\(886\) 0 0
\(887\) − 22872.0i − 0.865802i −0.901441 0.432901i \(-0.857490\pi\)
0.901441 0.432901i \(-0.142510\pi\)
\(888\) 0 0
\(889\) 9184.00 0.346481
\(890\) 0 0
\(891\) 3402.00 0.127914
\(892\) 25504.0i 0.957329i
\(893\) − 2736.00i − 0.102527i
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 720.000i 0.0268006i
\(898\) 0 0
\(899\) 37668.0 1.39744
\(900\) 0 0
\(901\) 22176.0 0.819966
\(902\) 0 0
\(903\) − 420.000i − 0.0154781i
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) 10708.0i 0.392010i 0.980603 + 0.196005i \(0.0627969\pi\)
−0.980603 + 0.196005i \(0.937203\pi\)
\(908\) 27168.0i 0.992953i
\(909\) −4914.00 −0.179304
\(910\) 0 0
\(911\) 1326.00 0.0482243 0.0241122 0.999709i \(-0.492324\pi\)
0.0241122 + 0.999709i \(0.492324\pi\)
\(912\) 7296.00i 0.264906i
\(913\) 6552.00i 0.237502i
\(914\) 0 0
\(915\) 0 0
\(916\) −42352.0 −1.52767
\(917\) 9492.00i 0.341825i
\(918\) 0 0
\(919\) 13696.0 0.491610 0.245805 0.969319i \(-0.420948\pi\)
0.245805 + 0.969319i \(0.420948\pi\)
\(920\) 0 0
\(921\) 1344.00 0.0480850
\(922\) 0 0
\(923\) 16200.0i 0.577713i
\(924\) −7056.00 −0.251218
\(925\) 0 0
\(926\) 0 0
\(927\) 4680.00i 0.165816i
\(928\) 0 0
\(929\) −42354.0 −1.49579 −0.747895 0.663817i \(-0.768936\pi\)
−0.747895 + 0.663817i \(0.768936\pi\)
\(930\) 0 0
\(931\) 1862.00 0.0655474
\(932\) 6816.00i 0.239555i
\(933\) 17496.0i 0.613926i
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) − 6644.00i − 0.231644i −0.993270 0.115822i \(-0.963050\pi\)
0.993270 0.115822i \(-0.0369501\pi\)
\(938\) 0 0
\(939\) 29544.0 1.02676
\(940\) 0 0
\(941\) 1350.00 0.0467681 0.0233840 0.999727i \(-0.492556\pi\)
0.0233840 + 0.999727i \(0.492556\pi\)
\(942\) 0 0
\(943\) − 3384.00i − 0.116859i
\(944\) 23040.0 0.794373
\(945\) 0 0
\(946\) 0 0
\(947\) − 49320.0i − 1.69238i −0.532881 0.846190i \(-0.678891\pi\)
0.532881 0.846190i \(-0.321109\pi\)
\(948\) 27264.0i 0.934065i
\(949\) 2480.00 0.0848306
\(950\) 0 0
\(951\) 16848.0 0.574484
\(952\) 0 0
\(953\) 5940.00i 0.201905i 0.994891 + 0.100953i \(0.0321890\pi\)
−0.994891 + 0.100953i \(0.967811\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) −38928.0 −1.31697
\(957\) − 32508.0i − 1.09805i
\(958\) 0 0
\(959\) 6888.00 0.231934
\(960\) 0 0
\(961\) −8475.00 −0.284482
\(962\) 0 0
\(963\) 10908.0i 0.365011i
\(964\) −16400.0 −0.547934
\(965\) 0 0
\(966\) 0 0
\(967\) − 47216.0i − 1.57018i −0.619382 0.785090i \(-0.712617\pi\)
0.619382 0.785090i \(-0.287383\pi\)
\(968\) 0 0
\(969\) 7524.00 0.249438
\(970\) 0 0
\(971\) 12552.0 0.414843 0.207422 0.978252i \(-0.433493\pi\)
0.207422 + 0.978252i \(0.433493\pi\)
\(972\) − 1944.00i − 0.0641500i
\(973\) − 2758.00i − 0.0908709i
\(974\) 0 0
\(975\) 0 0
\(976\) −43648.0 −1.43149
\(977\) − 46908.0i − 1.53605i −0.640420 0.768025i \(-0.721240\pi\)
0.640420 0.768025i \(-0.278760\pi\)
\(978\) 0 0
\(979\) 43596.0 1.42322
\(980\) 0 0
\(981\) −9702.00 −0.315760
\(982\) 0 0
\(983\) − 46128.0i − 1.49670i −0.663305 0.748349i \(-0.730847\pi\)
0.663305 0.748349i \(-0.269153\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) − 1512.00i − 0.0487614i
\(988\) − 6080.00i − 0.195780i
\(989\) −240.000 −0.00771644
\(990\) 0 0
\(991\) −12184.0 −0.390552 −0.195276 0.980748i \(-0.562560\pi\)
−0.195276 + 0.980748i \(0.562560\pi\)
\(992\) 0 0
\(993\) − 1356.00i − 0.0433347i
\(994\) 0 0
\(995\) 0 0
\(996\) 3744.00 0.119110
\(997\) 5164.00i 0.164038i 0.996631 + 0.0820188i \(0.0261368\pi\)
−0.996631 + 0.0820188i \(0.973863\pi\)
\(998\) 0 0
\(999\) 11718.0 0.371112
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 525.4.d.f.274.1 2
5.2 odd 4 105.4.a.a.1.1 1
5.3 odd 4 525.4.a.e.1.1 1
5.4 even 2 inner 525.4.d.f.274.2 2
15.2 even 4 315.4.a.d.1.1 1
15.8 even 4 1575.4.a.f.1.1 1
20.7 even 4 1680.4.a.s.1.1 1
35.27 even 4 735.4.a.c.1.1 1
105.62 odd 4 2205.4.a.o.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
105.4.a.a.1.1 1 5.2 odd 4
315.4.a.d.1.1 1 15.2 even 4
525.4.a.e.1.1 1 5.3 odd 4
525.4.d.f.274.1 2 1.1 even 1 trivial
525.4.d.f.274.2 2 5.4 even 2 inner
735.4.a.c.1.1 1 35.27 even 4
1575.4.a.f.1.1 1 15.8 even 4
1680.4.a.s.1.1 1 20.7 even 4
2205.4.a.o.1.1 1 105.62 odd 4