Properties

Label 525.4.d.a.274.1
Level $525$
Weight $4$
Character 525.274
Analytic conductor $30.976$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [525,4,Mod(274,525)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(525, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("525.274");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 525 = 3 \cdot 5^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 525.d (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(30.9760027530\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(i)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 105)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 274.1
Root \(-1.00000i\) of defining polynomial
Character \(\chi\) \(=\) 525.274
Dual form 525.4.d.a.274.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-5.00000i q^{2} -3.00000i q^{3} -17.0000 q^{4} -15.0000 q^{6} -7.00000i q^{7} +45.0000i q^{8} -9.00000 q^{9} +O(q^{10})\) \(q-5.00000i q^{2} -3.00000i q^{3} -17.0000 q^{4} -15.0000 q^{6} -7.00000i q^{7} +45.0000i q^{8} -9.00000 q^{9} +12.0000 q^{11} +51.0000i q^{12} +30.0000i q^{13} -35.0000 q^{14} +89.0000 q^{16} +134.000i q^{17} +45.0000i q^{18} +92.0000 q^{19} -21.0000 q^{21} -60.0000i q^{22} +112.000i q^{23} +135.000 q^{24} +150.000 q^{26} +27.0000i q^{27} +119.000i q^{28} +58.0000 q^{29} -224.000 q^{31} -85.0000i q^{32} -36.0000i q^{33} +670.000 q^{34} +153.000 q^{36} +146.000i q^{37} -460.000i q^{38} +90.0000 q^{39} +18.0000 q^{41} +105.000i q^{42} +340.000i q^{43} -204.000 q^{44} +560.000 q^{46} -208.000i q^{47} -267.000i q^{48} -49.0000 q^{49} +402.000 q^{51} -510.000i q^{52} -754.000i q^{53} +135.000 q^{54} +315.000 q^{56} -276.000i q^{57} -290.000i q^{58} -380.000 q^{59} +718.000 q^{61} +1120.00i q^{62} +63.0000i q^{63} +287.000 q^{64} -180.000 q^{66} -412.000i q^{67} -2278.00i q^{68} +336.000 q^{69} -960.000 q^{71} -405.000i q^{72} +1066.00i q^{73} +730.000 q^{74} -1564.00 q^{76} -84.0000i q^{77} -450.000i q^{78} -896.000 q^{79} +81.0000 q^{81} -90.0000i q^{82} +436.000i q^{83} +357.000 q^{84} +1700.00 q^{86} -174.000i q^{87} +540.000i q^{88} +1038.00 q^{89} +210.000 q^{91} -1904.00i q^{92} +672.000i q^{93} -1040.00 q^{94} -255.000 q^{96} +702.000i q^{97} +245.000i q^{98} -108.000 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 34 q^{4} - 30 q^{6} - 18 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 2 q - 34 q^{4} - 30 q^{6} - 18 q^{9} + 24 q^{11} - 70 q^{14} + 178 q^{16} + 184 q^{19} - 42 q^{21} + 270 q^{24} + 300 q^{26} + 116 q^{29} - 448 q^{31} + 1340 q^{34} + 306 q^{36} + 180 q^{39} + 36 q^{41} - 408 q^{44} + 1120 q^{46} - 98 q^{49} + 804 q^{51} + 270 q^{54} + 630 q^{56} - 760 q^{59} + 1436 q^{61} + 574 q^{64} - 360 q^{66} + 672 q^{69} - 1920 q^{71} + 1460 q^{74} - 3128 q^{76} - 1792 q^{79} + 162 q^{81} + 714 q^{84} + 3400 q^{86} + 2076 q^{89} + 420 q^{91} - 2080 q^{94} - 510 q^{96} - 216 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/525\mathbb{Z}\right)^\times\).

\(n\) \(127\) \(176\) \(451\)
\(\chi(n)\) \(-1\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) − 5.00000i − 1.76777i −0.467707 0.883883i \(-0.654920\pi\)
0.467707 0.883883i \(-0.345080\pi\)
\(3\) − 3.00000i − 0.577350i
\(4\) −17.0000 −2.12500
\(5\) 0 0
\(6\) −15.0000 −1.02062
\(7\) − 7.00000i − 0.377964i
\(8\) 45.0000i 1.98874i
\(9\) −9.00000 −0.333333
\(10\) 0 0
\(11\) 12.0000 0.328921 0.164461 0.986384i \(-0.447412\pi\)
0.164461 + 0.986384i \(0.447412\pi\)
\(12\) 51.0000i 1.22687i
\(13\) 30.0000i 0.640039i 0.947411 + 0.320019i \(0.103689\pi\)
−0.947411 + 0.320019i \(0.896311\pi\)
\(14\) −35.0000 −0.668153
\(15\) 0 0
\(16\) 89.0000 1.39062
\(17\) 134.000i 1.91175i 0.293771 + 0.955876i \(0.405090\pi\)
−0.293771 + 0.955876i \(0.594910\pi\)
\(18\) 45.0000i 0.589256i
\(19\) 92.0000 1.11086 0.555428 0.831565i \(-0.312555\pi\)
0.555428 + 0.831565i \(0.312555\pi\)
\(20\) 0 0
\(21\) −21.0000 −0.218218
\(22\) − 60.0000i − 0.581456i
\(23\) 112.000i 1.01537i 0.861541 + 0.507687i \(0.169499\pi\)
−0.861541 + 0.507687i \(0.830501\pi\)
\(24\) 135.000 1.14820
\(25\) 0 0
\(26\) 150.000 1.13144
\(27\) 27.0000i 0.192450i
\(28\) 119.000i 0.803175i
\(29\) 58.0000 0.371391 0.185695 0.982607i \(-0.440546\pi\)
0.185695 + 0.982607i \(0.440546\pi\)
\(30\) 0 0
\(31\) −224.000 −1.29779 −0.648897 0.760877i \(-0.724769\pi\)
−0.648897 + 0.760877i \(0.724769\pi\)
\(32\) − 85.0000i − 0.469563i
\(33\) − 36.0000i − 0.189903i
\(34\) 670.000 3.37953
\(35\) 0 0
\(36\) 153.000 0.708333
\(37\) 146.000i 0.648710i 0.945936 + 0.324355i \(0.105147\pi\)
−0.945936 + 0.324355i \(0.894853\pi\)
\(38\) − 460.000i − 1.96373i
\(39\) 90.0000 0.369527
\(40\) 0 0
\(41\) 18.0000 0.0685641 0.0342820 0.999412i \(-0.489086\pi\)
0.0342820 + 0.999412i \(0.489086\pi\)
\(42\) 105.000i 0.385758i
\(43\) 340.000i 1.20580i 0.797816 + 0.602901i \(0.205989\pi\)
−0.797816 + 0.602901i \(0.794011\pi\)
\(44\) −204.000 −0.698958
\(45\) 0 0
\(46\) 560.000 1.79495
\(47\) − 208.000i − 0.645530i −0.946479 0.322765i \(-0.895388\pi\)
0.946479 0.322765i \(-0.104612\pi\)
\(48\) − 267.000i − 0.802878i
\(49\) −49.0000 −0.142857
\(50\) 0 0
\(51\) 402.000 1.10375
\(52\) − 510.000i − 1.36008i
\(53\) − 754.000i − 1.95415i −0.212899 0.977074i \(-0.568291\pi\)
0.212899 0.977074i \(-0.431709\pi\)
\(54\) 135.000 0.340207
\(55\) 0 0
\(56\) 315.000 0.751672
\(57\) − 276.000i − 0.641353i
\(58\) − 290.000i − 0.656532i
\(59\) −380.000 −0.838505 −0.419252 0.907870i \(-0.637708\pi\)
−0.419252 + 0.907870i \(0.637708\pi\)
\(60\) 0 0
\(61\) 718.000 1.50706 0.753529 0.657415i \(-0.228350\pi\)
0.753529 + 0.657415i \(0.228350\pi\)
\(62\) 1120.00i 2.29420i
\(63\) 63.0000i 0.125988i
\(64\) 287.000 0.560547
\(65\) 0 0
\(66\) −180.000 −0.335704
\(67\) − 412.000i − 0.751251i −0.926772 0.375625i \(-0.877428\pi\)
0.926772 0.375625i \(-0.122572\pi\)
\(68\) − 2278.00i − 4.06247i
\(69\) 336.000 0.586227
\(70\) 0 0
\(71\) −960.000 −1.60466 −0.802331 0.596879i \(-0.796407\pi\)
−0.802331 + 0.596879i \(0.796407\pi\)
\(72\) − 405.000i − 0.662913i
\(73\) 1066.00i 1.70912i 0.519352 + 0.854561i \(0.326174\pi\)
−0.519352 + 0.854561i \(0.673826\pi\)
\(74\) 730.000 1.14677
\(75\) 0 0
\(76\) −1564.00 −2.36057
\(77\) − 84.0000i − 0.124321i
\(78\) − 450.000i − 0.653237i
\(79\) −896.000 −1.27605 −0.638025 0.770016i \(-0.720248\pi\)
−0.638025 + 0.770016i \(0.720248\pi\)
\(80\) 0 0
\(81\) 81.0000 0.111111
\(82\) − 90.0000i − 0.121205i
\(83\) 436.000i 0.576593i 0.957541 + 0.288296i \(0.0930889\pi\)
−0.957541 + 0.288296i \(0.906911\pi\)
\(84\) 357.000 0.463713
\(85\) 0 0
\(86\) 1700.00 2.13158
\(87\) − 174.000i − 0.214423i
\(88\) 540.000i 0.654139i
\(89\) 1038.00 1.23627 0.618134 0.786073i \(-0.287889\pi\)
0.618134 + 0.786073i \(0.287889\pi\)
\(90\) 0 0
\(91\) 210.000 0.241912
\(92\) − 1904.00i − 2.15767i
\(93\) 672.000i 0.749281i
\(94\) −1040.00 −1.14115
\(95\) 0 0
\(96\) −255.000 −0.271102
\(97\) 702.000i 0.734818i 0.930060 + 0.367409i \(0.119755\pi\)
−0.930060 + 0.367409i \(0.880245\pi\)
\(98\) 245.000i 0.252538i
\(99\) −108.000 −0.109640
\(100\) 0 0
\(101\) 46.0000 0.0453185 0.0226593 0.999743i \(-0.492787\pi\)
0.0226593 + 0.999743i \(0.492787\pi\)
\(102\) − 2010.00i − 1.95117i
\(103\) 1880.00i 1.79847i 0.437471 + 0.899233i \(0.355874\pi\)
−0.437471 + 0.899233i \(0.644126\pi\)
\(104\) −1350.00 −1.27287
\(105\) 0 0
\(106\) −3770.00 −3.45448
\(107\) − 732.000i − 0.661356i −0.943744 0.330678i \(-0.892723\pi\)
0.943744 0.330678i \(-0.107277\pi\)
\(108\) − 459.000i − 0.408956i
\(109\) 378.000 0.332164 0.166082 0.986112i \(-0.446888\pi\)
0.166082 + 0.986112i \(0.446888\pi\)
\(110\) 0 0
\(111\) 438.000 0.374533
\(112\) − 623.000i − 0.525607i
\(113\) 1458.00i 1.21378i 0.794786 + 0.606890i \(0.207583\pi\)
−0.794786 + 0.606890i \(0.792417\pi\)
\(114\) −1380.00 −1.13376
\(115\) 0 0
\(116\) −986.000 −0.789205
\(117\) − 270.000i − 0.213346i
\(118\) 1900.00i 1.48228i
\(119\) 938.000 0.722574
\(120\) 0 0
\(121\) −1187.00 −0.891811
\(122\) − 3590.00i − 2.66413i
\(123\) − 54.0000i − 0.0395855i
\(124\) 3808.00 2.75781
\(125\) 0 0
\(126\) 315.000 0.222718
\(127\) − 608.000i − 0.424813i −0.977181 0.212407i \(-0.931870\pi\)
0.977181 0.212407i \(-0.0681301\pi\)
\(128\) − 2115.00i − 1.46048i
\(129\) 1020.00 0.696170
\(130\) 0 0
\(131\) −956.000 −0.637604 −0.318802 0.947821i \(-0.603280\pi\)
−0.318802 + 0.947821i \(0.603280\pi\)
\(132\) 612.000i 0.403544i
\(133\) − 644.000i − 0.419864i
\(134\) −2060.00 −1.32804
\(135\) 0 0
\(136\) −6030.00 −3.80197
\(137\) 374.000i 0.233233i 0.993177 + 0.116617i \(0.0372049\pi\)
−0.993177 + 0.116617i \(0.962795\pi\)
\(138\) − 1680.00i − 1.03631i
\(139\) −396.000 −0.241642 −0.120821 0.992674i \(-0.538553\pi\)
−0.120821 + 0.992674i \(0.538553\pi\)
\(140\) 0 0
\(141\) −624.000 −0.372697
\(142\) 4800.00i 2.83667i
\(143\) 360.000i 0.210522i
\(144\) −801.000 −0.463542
\(145\) 0 0
\(146\) 5330.00 3.02133
\(147\) 147.000i 0.0824786i
\(148\) − 2482.00i − 1.37851i
\(149\) 1874.00 1.03036 0.515181 0.857081i \(-0.327725\pi\)
0.515181 + 0.857081i \(0.327725\pi\)
\(150\) 0 0
\(151\) −1096.00 −0.590670 −0.295335 0.955394i \(-0.595431\pi\)
−0.295335 + 0.955394i \(0.595431\pi\)
\(152\) 4140.00i 2.20920i
\(153\) − 1206.00i − 0.637250i
\(154\) −420.000 −0.219770
\(155\) 0 0
\(156\) −1530.00 −0.785244
\(157\) − 1918.00i − 0.974988i −0.873126 0.487494i \(-0.837911\pi\)
0.873126 0.487494i \(-0.162089\pi\)
\(158\) 4480.00i 2.25576i
\(159\) −2262.00 −1.12823
\(160\) 0 0
\(161\) 784.000 0.383776
\(162\) − 405.000i − 0.196419i
\(163\) 2316.00i 1.11290i 0.830880 + 0.556451i \(0.187837\pi\)
−0.830880 + 0.556451i \(0.812163\pi\)
\(164\) −306.000 −0.145699
\(165\) 0 0
\(166\) 2180.00 1.01928
\(167\) 1736.00i 0.804405i 0.915551 + 0.402203i \(0.131755\pi\)
−0.915551 + 0.402203i \(0.868245\pi\)
\(168\) − 945.000i − 0.433978i
\(169\) 1297.00 0.590350
\(170\) 0 0
\(171\) −828.000 −0.370285
\(172\) − 5780.00i − 2.56233i
\(173\) − 2442.00i − 1.07319i −0.843840 0.536595i \(-0.819710\pi\)
0.843840 0.536595i \(-0.180290\pi\)
\(174\) −870.000 −0.379049
\(175\) 0 0
\(176\) 1068.00 0.457406
\(177\) 1140.00i 0.484111i
\(178\) − 5190.00i − 2.18543i
\(179\) 4092.00 1.70866 0.854331 0.519730i \(-0.173967\pi\)
0.854331 + 0.519730i \(0.173967\pi\)
\(180\) 0 0
\(181\) 1270.00 0.521538 0.260769 0.965401i \(-0.416024\pi\)
0.260769 + 0.965401i \(0.416024\pi\)
\(182\) − 1050.00i − 0.427644i
\(183\) − 2154.00i − 0.870100i
\(184\) −5040.00 −2.01931
\(185\) 0 0
\(186\) 3360.00 1.32455
\(187\) 1608.00i 0.628816i
\(188\) 3536.00i 1.37175i
\(189\) 189.000 0.0727393
\(190\) 0 0
\(191\) 4904.00 1.85781 0.928903 0.370323i \(-0.120753\pi\)
0.928903 + 0.370323i \(0.120753\pi\)
\(192\) − 861.000i − 0.323632i
\(193\) 2178.00i 0.812310i 0.913804 + 0.406155i \(0.133131\pi\)
−0.913804 + 0.406155i \(0.866869\pi\)
\(194\) 3510.00 1.29899
\(195\) 0 0
\(196\) 833.000 0.303571
\(197\) 2850.00i 1.03073i 0.856970 + 0.515366i \(0.172344\pi\)
−0.856970 + 0.515366i \(0.827656\pi\)
\(198\) 540.000i 0.193819i
\(199\) 1144.00 0.407518 0.203759 0.979021i \(-0.434684\pi\)
0.203759 + 0.979021i \(0.434684\pi\)
\(200\) 0 0
\(201\) −1236.00 −0.433735
\(202\) − 230.000i − 0.0801126i
\(203\) − 406.000i − 0.140372i
\(204\) −6834.00 −2.34547
\(205\) 0 0
\(206\) 9400.00 3.17927
\(207\) − 1008.00i − 0.338458i
\(208\) 2670.00i 0.890054i
\(209\) 1104.00 0.365384
\(210\) 0 0
\(211\) 412.000 0.134423 0.0672115 0.997739i \(-0.478590\pi\)
0.0672115 + 0.997739i \(0.478590\pi\)
\(212\) 12818.0i 4.15257i
\(213\) 2880.00i 0.926452i
\(214\) −3660.00 −1.16912
\(215\) 0 0
\(216\) −1215.00 −0.382733
\(217\) 1568.00i 0.490520i
\(218\) − 1890.00i − 0.587188i
\(219\) 3198.00 0.986762
\(220\) 0 0
\(221\) −4020.00 −1.22359
\(222\) − 2190.00i − 0.662086i
\(223\) − 1632.00i − 0.490075i −0.969514 0.245038i \(-0.921200\pi\)
0.969514 0.245038i \(-0.0788003\pi\)
\(224\) −595.000 −0.177478
\(225\) 0 0
\(226\) 7290.00 2.14568
\(227\) − 4084.00i − 1.19412i −0.802198 0.597059i \(-0.796336\pi\)
0.802198 0.597059i \(-0.203664\pi\)
\(228\) 4692.00i 1.36287i
\(229\) 3386.00 0.977088 0.488544 0.872539i \(-0.337528\pi\)
0.488544 + 0.872539i \(0.337528\pi\)
\(230\) 0 0
\(231\) −252.000 −0.0717765
\(232\) 2610.00i 0.738599i
\(233\) 5322.00i 1.49638i 0.663486 + 0.748188i \(0.269076\pi\)
−0.663486 + 0.748188i \(0.730924\pi\)
\(234\) −1350.00 −0.377146
\(235\) 0 0
\(236\) 6460.00 1.78182
\(237\) 2688.00i 0.736727i
\(238\) − 4690.00i − 1.27734i
\(239\) −3736.00 −1.01114 −0.505569 0.862786i \(-0.668717\pi\)
−0.505569 + 0.862786i \(0.668717\pi\)
\(240\) 0 0
\(241\) 210.000 0.0561298 0.0280649 0.999606i \(-0.491065\pi\)
0.0280649 + 0.999606i \(0.491065\pi\)
\(242\) 5935.00i 1.57651i
\(243\) − 243.000i − 0.0641500i
\(244\) −12206.0 −3.20250
\(245\) 0 0
\(246\) −270.000 −0.0699779
\(247\) 2760.00i 0.710990i
\(248\) − 10080.0i − 2.58097i
\(249\) 1308.00 0.332896
\(250\) 0 0
\(251\) −4212.00 −1.05920 −0.529600 0.848248i \(-0.677658\pi\)
−0.529600 + 0.848248i \(0.677658\pi\)
\(252\) − 1071.00i − 0.267725i
\(253\) 1344.00i 0.333978i
\(254\) −3040.00 −0.750971
\(255\) 0 0
\(256\) −8279.00 −2.02124
\(257\) − 5130.00i − 1.24514i −0.782565 0.622569i \(-0.786089\pi\)
0.782565 0.622569i \(-0.213911\pi\)
\(258\) − 5100.00i − 1.23067i
\(259\) 1022.00 0.245189
\(260\) 0 0
\(261\) −522.000 −0.123797
\(262\) 4780.00i 1.12714i
\(263\) 848.000i 0.198821i 0.995047 + 0.0994105i \(0.0316957\pi\)
−0.995047 + 0.0994105i \(0.968304\pi\)
\(264\) 1620.00 0.377667
\(265\) 0 0
\(266\) −3220.00 −0.742221
\(267\) − 3114.00i − 0.713759i
\(268\) 7004.00i 1.59641i
\(269\) 1274.00 0.288763 0.144381 0.989522i \(-0.453881\pi\)
0.144381 + 0.989522i \(0.453881\pi\)
\(270\) 0 0
\(271\) 864.000 0.193669 0.0968344 0.995301i \(-0.469128\pi\)
0.0968344 + 0.995301i \(0.469128\pi\)
\(272\) 11926.0i 2.65853i
\(273\) − 630.000i − 0.139668i
\(274\) 1870.00 0.412302
\(275\) 0 0
\(276\) −5712.00 −1.24573
\(277\) 8530.00i 1.85025i 0.379668 + 0.925123i \(0.376038\pi\)
−0.379668 + 0.925123i \(0.623962\pi\)
\(278\) 1980.00i 0.427167i
\(279\) 2016.00 0.432598
\(280\) 0 0
\(281\) −5382.00 −1.14257 −0.571287 0.820750i \(-0.693556\pi\)
−0.571287 + 0.820750i \(0.693556\pi\)
\(282\) 3120.00i 0.658841i
\(283\) 6236.00i 1.30986i 0.755687 + 0.654932i \(0.227303\pi\)
−0.755687 + 0.654932i \(0.772697\pi\)
\(284\) 16320.0 3.40991
\(285\) 0 0
\(286\) 1800.00 0.372155
\(287\) − 126.000i − 0.0259148i
\(288\) 765.000i 0.156521i
\(289\) −13043.0 −2.65479
\(290\) 0 0
\(291\) 2106.00 0.424247
\(292\) − 18122.0i − 3.63188i
\(293\) − 818.000i − 0.163099i −0.996669 0.0815496i \(-0.974013\pi\)
0.996669 0.0815496i \(-0.0259869\pi\)
\(294\) 735.000 0.145803
\(295\) 0 0
\(296\) −6570.00 −1.29011
\(297\) 324.000i 0.0633010i
\(298\) − 9370.00i − 1.82144i
\(299\) −3360.00 −0.649879
\(300\) 0 0
\(301\) 2380.00 0.455751
\(302\) 5480.00i 1.04417i
\(303\) − 138.000i − 0.0261647i
\(304\) 8188.00 1.54478
\(305\) 0 0
\(306\) −6030.00 −1.12651
\(307\) 2268.00i 0.421634i 0.977526 + 0.210817i \(0.0676124\pi\)
−0.977526 + 0.210817i \(0.932388\pi\)
\(308\) 1428.00i 0.264181i
\(309\) 5640.00 1.03834
\(310\) 0 0
\(311\) 6648.00 1.21213 0.606067 0.795414i \(-0.292746\pi\)
0.606067 + 0.795414i \(0.292746\pi\)
\(312\) 4050.00i 0.734891i
\(313\) 9818.00i 1.77299i 0.462737 + 0.886495i \(0.346867\pi\)
−0.462737 + 0.886495i \(0.653133\pi\)
\(314\) −9590.00 −1.72355
\(315\) 0 0
\(316\) 15232.0 2.71160
\(317\) − 934.000i − 0.165485i −0.996571 0.0827424i \(-0.973632\pi\)
0.996571 0.0827424i \(-0.0263679\pi\)
\(318\) 11310.0i 1.99444i
\(319\) 696.000 0.122158
\(320\) 0 0
\(321\) −2196.00 −0.381834
\(322\) − 3920.00i − 0.678426i
\(323\) 12328.0i 2.12368i
\(324\) −1377.00 −0.236111
\(325\) 0 0
\(326\) 11580.0 1.96735
\(327\) − 1134.00i − 0.191775i
\(328\) 810.000i 0.136356i
\(329\) −1456.00 −0.243987
\(330\) 0 0
\(331\) 2292.00 0.380603 0.190302 0.981726i \(-0.439053\pi\)
0.190302 + 0.981726i \(0.439053\pi\)
\(332\) − 7412.00i − 1.22526i
\(333\) − 1314.00i − 0.216237i
\(334\) 8680.00 1.42200
\(335\) 0 0
\(336\) −1869.00 −0.303459
\(337\) 6062.00i 0.979876i 0.871757 + 0.489938i \(0.162981\pi\)
−0.871757 + 0.489938i \(0.837019\pi\)
\(338\) − 6485.00i − 1.04360i
\(339\) 4374.00 0.700776
\(340\) 0 0
\(341\) −2688.00 −0.426872
\(342\) 4140.00i 0.654578i
\(343\) 343.000i 0.0539949i
\(344\) −15300.0 −2.39803
\(345\) 0 0
\(346\) −12210.0 −1.89715
\(347\) − 1484.00i − 0.229583i −0.993390 0.114791i \(-0.963380\pi\)
0.993390 0.114791i \(-0.0366200\pi\)
\(348\) 2958.00i 0.455648i
\(349\) −254.000 −0.0389579 −0.0194790 0.999810i \(-0.506201\pi\)
−0.0194790 + 0.999810i \(0.506201\pi\)
\(350\) 0 0
\(351\) −810.000 −0.123176
\(352\) − 1020.00i − 0.154449i
\(353\) − 10950.0i − 1.65102i −0.564388 0.825509i \(-0.690888\pi\)
0.564388 0.825509i \(-0.309112\pi\)
\(354\) 5700.00 0.855795
\(355\) 0 0
\(356\) −17646.0 −2.62707
\(357\) − 2814.00i − 0.417178i
\(358\) − 20460.0i − 3.02052i
\(359\) −11376.0 −1.67243 −0.836215 0.548402i \(-0.815236\pi\)
−0.836215 + 0.548402i \(0.815236\pi\)
\(360\) 0 0
\(361\) 1605.00 0.233999
\(362\) − 6350.00i − 0.921957i
\(363\) 3561.00i 0.514887i
\(364\) −3570.00 −0.514063
\(365\) 0 0
\(366\) −10770.0 −1.53813
\(367\) 1136.00i 0.161577i 0.996731 + 0.0807884i \(0.0257438\pi\)
−0.996731 + 0.0807884i \(0.974256\pi\)
\(368\) 9968.00i 1.41201i
\(369\) −162.000 −0.0228547
\(370\) 0 0
\(371\) −5278.00 −0.738599
\(372\) − 11424.0i − 1.59222i
\(373\) − 8242.00i − 1.14411i −0.820214 0.572057i \(-0.806146\pi\)
0.820214 0.572057i \(-0.193854\pi\)
\(374\) 8040.00 1.11160
\(375\) 0 0
\(376\) 9360.00 1.28379
\(377\) 1740.00i 0.237704i
\(378\) − 945.000i − 0.128586i
\(379\) −3620.00 −0.490625 −0.245313 0.969444i \(-0.578891\pi\)
−0.245313 + 0.969444i \(0.578891\pi\)
\(380\) 0 0
\(381\) −1824.00 −0.245266
\(382\) − 24520.0i − 3.28417i
\(383\) − 8464.00i − 1.12922i −0.825359 0.564609i \(-0.809027\pi\)
0.825359 0.564609i \(-0.190973\pi\)
\(384\) −6345.00 −0.843208
\(385\) 0 0
\(386\) 10890.0 1.43598
\(387\) − 3060.00i − 0.401934i
\(388\) − 11934.0i − 1.56149i
\(389\) −3678.00 −0.479388 −0.239694 0.970848i \(-0.577047\pi\)
−0.239694 + 0.970848i \(0.577047\pi\)
\(390\) 0 0
\(391\) −15008.0 −1.94114
\(392\) − 2205.00i − 0.284105i
\(393\) 2868.00i 0.368121i
\(394\) 14250.0 1.82209
\(395\) 0 0
\(396\) 1836.00 0.232986
\(397\) − 12590.0i − 1.59162i −0.605545 0.795811i \(-0.707045\pi\)
0.605545 0.795811i \(-0.292955\pi\)
\(398\) − 5720.00i − 0.720396i
\(399\) −1932.00 −0.242408
\(400\) 0 0
\(401\) 2850.00 0.354918 0.177459 0.984128i \(-0.443212\pi\)
0.177459 + 0.984128i \(0.443212\pi\)
\(402\) 6180.00i 0.766742i
\(403\) − 6720.00i − 0.830638i
\(404\) −782.000 −0.0963019
\(405\) 0 0
\(406\) −2030.00 −0.248146
\(407\) 1752.00i 0.213374i
\(408\) 18090.0i 2.19507i
\(409\) −1226.00 −0.148220 −0.0741098 0.997250i \(-0.523612\pi\)
−0.0741098 + 0.997250i \(0.523612\pi\)
\(410\) 0 0
\(411\) 1122.00 0.134657
\(412\) − 31960.0i − 3.82174i
\(413\) 2660.00i 0.316925i
\(414\) −5040.00 −0.598315
\(415\) 0 0
\(416\) 2550.00 0.300539
\(417\) 1188.00i 0.139512i
\(418\) − 5520.00i − 0.645914i
\(419\) −612.000 −0.0713560 −0.0356780 0.999363i \(-0.511359\pi\)
−0.0356780 + 0.999363i \(0.511359\pi\)
\(420\) 0 0
\(421\) 5182.00 0.599894 0.299947 0.953956i \(-0.403031\pi\)
0.299947 + 0.953956i \(0.403031\pi\)
\(422\) − 2060.00i − 0.237629i
\(423\) 1872.00i 0.215177i
\(424\) 33930.0 3.88629
\(425\) 0 0
\(426\) 14400.0 1.63775
\(427\) − 5026.00i − 0.569614i
\(428\) 12444.0i 1.40538i
\(429\) 1080.00 0.121545
\(430\) 0 0
\(431\) −4984.00 −0.557009 −0.278504 0.960435i \(-0.589839\pi\)
−0.278504 + 0.960435i \(0.589839\pi\)
\(432\) 2403.00i 0.267626i
\(433\) − 1694.00i − 0.188010i −0.995572 0.0940051i \(-0.970033\pi\)
0.995572 0.0940051i \(-0.0299670\pi\)
\(434\) 7840.00 0.867125
\(435\) 0 0
\(436\) −6426.00 −0.705848
\(437\) 10304.0i 1.12793i
\(438\) − 15990.0i − 1.74436i
\(439\) −13864.0 −1.50727 −0.753636 0.657292i \(-0.771702\pi\)
−0.753636 + 0.657292i \(0.771702\pi\)
\(440\) 0 0
\(441\) 441.000 0.0476190
\(442\) 20100.0i 2.16303i
\(443\) − 4644.00i − 0.498066i −0.968495 0.249033i \(-0.919887\pi\)
0.968495 0.249033i \(-0.0801127\pi\)
\(444\) −7446.00 −0.795882
\(445\) 0 0
\(446\) −8160.00 −0.866339
\(447\) − 5622.00i − 0.594880i
\(448\) − 2009.00i − 0.211867i
\(449\) 4926.00 0.517756 0.258878 0.965910i \(-0.416647\pi\)
0.258878 + 0.965910i \(0.416647\pi\)
\(450\) 0 0
\(451\) 216.000 0.0225522
\(452\) − 24786.0i − 2.57928i
\(453\) 3288.00i 0.341024i
\(454\) −20420.0 −2.11092
\(455\) 0 0
\(456\) 12420.0 1.27548
\(457\) 14694.0i 1.50406i 0.659128 + 0.752031i \(0.270926\pi\)
−0.659128 + 0.752031i \(0.729074\pi\)
\(458\) − 16930.0i − 1.72726i
\(459\) −3618.00 −0.367917
\(460\) 0 0
\(461\) 2006.00 0.202665 0.101333 0.994853i \(-0.467689\pi\)
0.101333 + 0.994853i \(0.467689\pi\)
\(462\) 1260.00i 0.126884i
\(463\) 4896.00i 0.491439i 0.969341 + 0.245720i \(0.0790243\pi\)
−0.969341 + 0.245720i \(0.920976\pi\)
\(464\) 5162.00 0.516465
\(465\) 0 0
\(466\) 26610.0 2.64525
\(467\) − 2660.00i − 0.263576i −0.991278 0.131788i \(-0.957928\pi\)
0.991278 0.131788i \(-0.0420719\pi\)
\(468\) 4590.00i 0.453361i
\(469\) −2884.00 −0.283946
\(470\) 0 0
\(471\) −5754.00 −0.562909
\(472\) − 17100.0i − 1.66757i
\(473\) 4080.00i 0.396614i
\(474\) 13440.0 1.30236
\(475\) 0 0
\(476\) −15946.0 −1.53547
\(477\) 6786.00i 0.651383i
\(478\) 18680.0i 1.78745i
\(479\) 5600.00 0.534176 0.267088 0.963672i \(-0.413938\pi\)
0.267088 + 0.963672i \(0.413938\pi\)
\(480\) 0 0
\(481\) −4380.00 −0.415199
\(482\) − 1050.00i − 0.0992245i
\(483\) − 2352.00i − 0.221573i
\(484\) 20179.0 1.89510
\(485\) 0 0
\(486\) −1215.00 −0.113402
\(487\) 6424.00i 0.597740i 0.954294 + 0.298870i \(0.0966096\pi\)
−0.954294 + 0.298870i \(0.903390\pi\)
\(488\) 32310.0i 2.99714i
\(489\) 6948.00 0.642535
\(490\) 0 0
\(491\) −18900.0 −1.73716 −0.868579 0.495550i \(-0.834967\pi\)
−0.868579 + 0.495550i \(0.834967\pi\)
\(492\) 918.000i 0.0841192i
\(493\) 7772.00i 0.710007i
\(494\) 13800.0 1.25687
\(495\) 0 0
\(496\) −19936.0 −1.80474
\(497\) 6720.00i 0.606505i
\(498\) − 6540.00i − 0.588483i
\(499\) 15364.0 1.37833 0.689165 0.724604i \(-0.257977\pi\)
0.689165 + 0.724604i \(0.257977\pi\)
\(500\) 0 0
\(501\) 5208.00 0.464424
\(502\) 21060.0i 1.87242i
\(503\) 2216.00i 0.196435i 0.995165 + 0.0982173i \(0.0313140\pi\)
−0.995165 + 0.0982173i \(0.968686\pi\)
\(504\) −2835.00 −0.250557
\(505\) 0 0
\(506\) 6720.00 0.590396
\(507\) − 3891.00i − 0.340839i
\(508\) 10336.0i 0.902728i
\(509\) 3754.00 0.326902 0.163451 0.986551i \(-0.447737\pi\)
0.163451 + 0.986551i \(0.447737\pi\)
\(510\) 0 0
\(511\) 7462.00 0.645987
\(512\) 24475.0i 2.11260i
\(513\) 2484.00i 0.213784i
\(514\) −25650.0 −2.20111
\(515\) 0 0
\(516\) −17340.0 −1.47936
\(517\) − 2496.00i − 0.212329i
\(518\) − 5110.00i − 0.433437i
\(519\) −7326.00 −0.619606
\(520\) 0 0
\(521\) −4702.00 −0.395390 −0.197695 0.980264i \(-0.563346\pi\)
−0.197695 + 0.980264i \(0.563346\pi\)
\(522\) 2610.00i 0.218844i
\(523\) − 22660.0i − 1.89456i −0.320413 0.947278i \(-0.603822\pi\)
0.320413 0.947278i \(-0.396178\pi\)
\(524\) 16252.0 1.35491
\(525\) 0 0
\(526\) 4240.00 0.351469
\(527\) − 30016.0i − 2.48106i
\(528\) − 3204.00i − 0.264084i
\(529\) −377.000 −0.0309855
\(530\) 0 0
\(531\) 3420.00 0.279502
\(532\) 10948.0i 0.892211i
\(533\) 540.000i 0.0438837i
\(534\) −15570.0 −1.26176
\(535\) 0 0
\(536\) 18540.0 1.49404
\(537\) − 12276.0i − 0.986496i
\(538\) − 6370.00i − 0.510465i
\(539\) −588.000 −0.0469888
\(540\) 0 0
\(541\) −8634.00 −0.686145 −0.343073 0.939309i \(-0.611468\pi\)
−0.343073 + 0.939309i \(0.611468\pi\)
\(542\) − 4320.00i − 0.342361i
\(543\) − 3810.00i − 0.301110i
\(544\) 11390.0 0.897688
\(545\) 0 0
\(546\) −3150.00 −0.246900
\(547\) 19284.0i 1.50736i 0.657243 + 0.753679i \(0.271722\pi\)
−0.657243 + 0.753679i \(0.728278\pi\)
\(548\) − 6358.00i − 0.495621i
\(549\) −6462.00 −0.502352
\(550\) 0 0
\(551\) 5336.00 0.412561
\(552\) 15120.0i 1.16585i
\(553\) 6272.00i 0.482301i
\(554\) 42650.0 3.27080
\(555\) 0 0
\(556\) 6732.00 0.513490
\(557\) 19658.0i 1.49540i 0.664038 + 0.747699i \(0.268841\pi\)
−0.664038 + 0.747699i \(0.731159\pi\)
\(558\) − 10080.0i − 0.764732i
\(559\) −10200.0 −0.771760
\(560\) 0 0
\(561\) 4824.00 0.363047
\(562\) 26910.0i 2.01980i
\(563\) − 25612.0i − 1.91726i −0.284656 0.958630i \(-0.591879\pi\)
0.284656 0.958630i \(-0.408121\pi\)
\(564\) 10608.0 0.791981
\(565\) 0 0
\(566\) 31180.0 2.31554
\(567\) − 567.000i − 0.0419961i
\(568\) − 43200.0i − 3.19125i
\(569\) −7002.00 −0.515886 −0.257943 0.966160i \(-0.583045\pi\)
−0.257943 + 0.966160i \(0.583045\pi\)
\(570\) 0 0
\(571\) −4524.00 −0.331565 −0.165782 0.986162i \(-0.553015\pi\)
−0.165782 + 0.986162i \(0.553015\pi\)
\(572\) − 6120.00i − 0.447360i
\(573\) − 14712.0i − 1.07260i
\(574\) −630.000 −0.0458113
\(575\) 0 0
\(576\) −2583.00 −0.186849
\(577\) 6014.00i 0.433910i 0.976182 + 0.216955i \(0.0696125\pi\)
−0.976182 + 0.216955i \(0.930388\pi\)
\(578\) 65215.0i 4.69306i
\(579\) 6534.00 0.468988
\(580\) 0 0
\(581\) 3052.00 0.217932
\(582\) − 10530.0i − 0.749970i
\(583\) − 9048.00i − 0.642761i
\(584\) −47970.0 −3.39899
\(585\) 0 0
\(586\) −4090.00 −0.288321
\(587\) 11748.0i 0.826051i 0.910719 + 0.413025i \(0.135528\pi\)
−0.910719 + 0.413025i \(0.864472\pi\)
\(588\) − 2499.00i − 0.175267i
\(589\) −20608.0 −1.44166
\(590\) 0 0
\(591\) 8550.00 0.595093
\(592\) 12994.0i 0.902112i
\(593\) − 9462.00i − 0.655241i −0.944809 0.327620i \(-0.893753\pi\)
0.944809 0.327620i \(-0.106247\pi\)
\(594\) 1620.00 0.111901
\(595\) 0 0
\(596\) −31858.0 −2.18952
\(597\) − 3432.00i − 0.235280i
\(598\) 16800.0i 1.14883i
\(599\) −2320.00 −0.158251 −0.0791257 0.996865i \(-0.525213\pi\)
−0.0791257 + 0.996865i \(0.525213\pi\)
\(600\) 0 0
\(601\) 4650.00 0.315603 0.157802 0.987471i \(-0.449559\pi\)
0.157802 + 0.987471i \(0.449559\pi\)
\(602\) − 11900.0i − 0.805661i
\(603\) 3708.00i 0.250417i
\(604\) 18632.0 1.25517
\(605\) 0 0
\(606\) −690.000 −0.0462530
\(607\) 14656.0i 0.980014i 0.871718 + 0.490007i \(0.163006\pi\)
−0.871718 + 0.490007i \(0.836994\pi\)
\(608\) − 7820.00i − 0.521617i
\(609\) −1218.00 −0.0810441
\(610\) 0 0
\(611\) 6240.00 0.413164
\(612\) 20502.0i 1.35416i
\(613\) 29166.0i 1.92170i 0.277065 + 0.960851i \(0.410638\pi\)
−0.277065 + 0.960851i \(0.589362\pi\)
\(614\) 11340.0 0.745350
\(615\) 0 0
\(616\) 3780.00 0.247241
\(617\) − 28554.0i − 1.86311i −0.363597 0.931557i \(-0.618451\pi\)
0.363597 0.931557i \(-0.381549\pi\)
\(618\) − 28200.0i − 1.83555i
\(619\) 3876.00 0.251679 0.125840 0.992051i \(-0.459837\pi\)
0.125840 + 0.992051i \(0.459837\pi\)
\(620\) 0 0
\(621\) −3024.00 −0.195409
\(622\) − 33240.0i − 2.14277i
\(623\) − 7266.00i − 0.467265i
\(624\) 8010.00 0.513873
\(625\) 0 0
\(626\) 49090.0 3.13423
\(627\) − 3312.00i − 0.210955i
\(628\) 32606.0i 2.07185i
\(629\) −19564.0 −1.24017
\(630\) 0 0
\(631\) 2904.00 0.183211 0.0916057 0.995795i \(-0.470800\pi\)
0.0916057 + 0.995795i \(0.470800\pi\)
\(632\) − 40320.0i − 2.53773i
\(633\) − 1236.00i − 0.0776091i
\(634\) −4670.00 −0.292538
\(635\) 0 0
\(636\) 38454.0 2.39748
\(637\) − 1470.00i − 0.0914341i
\(638\) − 3480.00i − 0.215948i
\(639\) 8640.00 0.534888
\(640\) 0 0
\(641\) 9330.00 0.574903 0.287452 0.957795i \(-0.407192\pi\)
0.287452 + 0.957795i \(0.407192\pi\)
\(642\) 10980.0i 0.674994i
\(643\) − 18332.0i − 1.12433i −0.827025 0.562164i \(-0.809969\pi\)
0.827025 0.562164i \(-0.190031\pi\)
\(644\) −13328.0 −0.815523
\(645\) 0 0
\(646\) 61640.0 3.75417
\(647\) 2088.00i 0.126874i 0.997986 + 0.0634372i \(0.0202063\pi\)
−0.997986 + 0.0634372i \(0.979794\pi\)
\(648\) 3645.00i 0.220971i
\(649\) −4560.00 −0.275802
\(650\) 0 0
\(651\) 4704.00 0.283202
\(652\) − 39372.0i − 2.36492i
\(653\) 22.0000i 0.00131842i 1.00000 0.000659209i \(0.000209833\pi\)
−1.00000 0.000659209i \(0.999790\pi\)
\(654\) −5670.00 −0.339013
\(655\) 0 0
\(656\) 1602.00 0.0953469
\(657\) − 9594.00i − 0.569707i
\(658\) 7280.00i 0.431313i
\(659\) −16260.0 −0.961153 −0.480576 0.876953i \(-0.659573\pi\)
−0.480576 + 0.876953i \(0.659573\pi\)
\(660\) 0 0
\(661\) −23818.0 −1.40153 −0.700766 0.713391i \(-0.747158\pi\)
−0.700766 + 0.713391i \(0.747158\pi\)
\(662\) − 11460.0i − 0.672818i
\(663\) 12060.0i 0.706443i
\(664\) −19620.0 −1.14669
\(665\) 0 0
\(666\) −6570.00 −0.382256
\(667\) 6496.00i 0.377101i
\(668\) − 29512.0i − 1.70936i
\(669\) −4896.00 −0.282945
\(670\) 0 0
\(671\) 8616.00 0.495703
\(672\) 1785.00i 0.102467i
\(673\) 31106.0i 1.78165i 0.454350 + 0.890823i \(0.349872\pi\)
−0.454350 + 0.890823i \(0.650128\pi\)
\(674\) 30310.0 1.73219
\(675\) 0 0
\(676\) −22049.0 −1.25449
\(677\) 1090.00i 0.0618790i 0.999521 + 0.0309395i \(0.00984993\pi\)
−0.999521 + 0.0309395i \(0.990150\pi\)
\(678\) − 21870.0i − 1.23881i
\(679\) 4914.00 0.277735
\(680\) 0 0
\(681\) −12252.0 −0.689424
\(682\) 13440.0i 0.754610i
\(683\) − 12372.0i − 0.693121i −0.938028 0.346560i \(-0.887350\pi\)
0.938028 0.346560i \(-0.112650\pi\)
\(684\) 14076.0 0.786856
\(685\) 0 0
\(686\) 1715.00 0.0954504
\(687\) − 10158.0i − 0.564122i
\(688\) 30260.0i 1.67682i
\(689\) 22620.0 1.25073
\(690\) 0 0
\(691\) 3252.00 0.179033 0.0895166 0.995985i \(-0.471468\pi\)
0.0895166 + 0.995985i \(0.471468\pi\)
\(692\) 41514.0i 2.28053i
\(693\) 756.000i 0.0414402i
\(694\) −7420.00 −0.405849
\(695\) 0 0
\(696\) 7830.00 0.426430
\(697\) 2412.00i 0.131077i
\(698\) 1270.00i 0.0688685i
\(699\) 15966.0 0.863934
\(700\) 0 0
\(701\) −5434.00 −0.292781 −0.146390 0.989227i \(-0.546766\pi\)
−0.146390 + 0.989227i \(0.546766\pi\)
\(702\) 4050.00i 0.217746i
\(703\) 13432.0i 0.720622i
\(704\) 3444.00 0.184376
\(705\) 0 0
\(706\) −54750.0 −2.91862
\(707\) − 322.000i − 0.0171288i
\(708\) − 19380.0i − 1.02874i
\(709\) 5330.00 0.282331 0.141165 0.989986i \(-0.454915\pi\)
0.141165 + 0.989986i \(0.454915\pi\)
\(710\) 0 0
\(711\) 8064.00 0.425350
\(712\) 46710.0i 2.45861i
\(713\) − 25088.0i − 1.31775i
\(714\) −14070.0 −0.737474
\(715\) 0 0
\(716\) −69564.0 −3.63091
\(717\) 11208.0i 0.583780i
\(718\) 56880.0i 2.95647i
\(719\) 7520.00 0.390054 0.195027 0.980798i \(-0.437521\pi\)
0.195027 + 0.980798i \(0.437521\pi\)
\(720\) 0 0
\(721\) 13160.0 0.679756
\(722\) − 8025.00i − 0.413656i
\(723\) − 630.000i − 0.0324066i
\(724\) −21590.0 −1.10827
\(725\) 0 0
\(726\) 17805.0 0.910200
\(727\) − 19336.0i − 0.986427i −0.869908 0.493214i \(-0.835822\pi\)
0.869908 0.493214i \(-0.164178\pi\)
\(728\) 9450.00i 0.481099i
\(729\) −729.000 −0.0370370
\(730\) 0 0
\(731\) −45560.0 −2.30519
\(732\) 36618.0i 1.84896i
\(733\) − 22498.0i − 1.13367i −0.823830 0.566837i \(-0.808167\pi\)
0.823830 0.566837i \(-0.191833\pi\)
\(734\) 5680.00 0.285630
\(735\) 0 0
\(736\) 9520.00 0.476782
\(737\) − 4944.00i − 0.247103i
\(738\) 810.000i 0.0404018i
\(739\) 18292.0 0.910531 0.455265 0.890356i \(-0.349544\pi\)
0.455265 + 0.890356i \(0.349544\pi\)
\(740\) 0 0
\(741\) 8280.00 0.410490
\(742\) 26390.0i 1.30567i
\(743\) 17904.0i 0.884030i 0.897008 + 0.442015i \(0.145736\pi\)
−0.897008 + 0.442015i \(0.854264\pi\)
\(744\) −30240.0 −1.49012
\(745\) 0 0
\(746\) −41210.0 −2.02253
\(747\) − 3924.00i − 0.192198i
\(748\) − 27336.0i − 1.33623i
\(749\) −5124.00 −0.249969
\(750\) 0 0
\(751\) 5408.00 0.262771 0.131385 0.991331i \(-0.458057\pi\)
0.131385 + 0.991331i \(0.458057\pi\)
\(752\) − 18512.0i − 0.897690i
\(753\) 12636.0i 0.611529i
\(754\) 8700.00 0.420206
\(755\) 0 0
\(756\) −3213.00 −0.154571
\(757\) − 8318.00i − 0.399370i −0.979860 0.199685i \(-0.936008\pi\)
0.979860 0.199685i \(-0.0639918\pi\)
\(758\) 18100.0i 0.867311i
\(759\) 4032.00 0.192823
\(760\) 0 0
\(761\) 6690.00 0.318676 0.159338 0.987224i \(-0.449064\pi\)
0.159338 + 0.987224i \(0.449064\pi\)
\(762\) 9120.00i 0.433573i
\(763\) − 2646.00i − 0.125546i
\(764\) −83368.0 −3.94784
\(765\) 0 0
\(766\) −42320.0 −1.99619
\(767\) − 11400.0i − 0.536676i
\(768\) 24837.0i 1.16696i
\(769\) −9266.00 −0.434513 −0.217257 0.976115i \(-0.569711\pi\)
−0.217257 + 0.976115i \(0.569711\pi\)
\(770\) 0 0
\(771\) −15390.0 −0.718881
\(772\) − 37026.0i − 1.72616i
\(773\) 9678.00i 0.450315i 0.974322 + 0.225157i \(0.0722897\pi\)
−0.974322 + 0.225157i \(0.927710\pi\)
\(774\) −15300.0 −0.710526
\(775\) 0 0
\(776\) −31590.0 −1.46136
\(777\) − 3066.00i − 0.141560i
\(778\) 18390.0i 0.847447i
\(779\) 1656.00 0.0761648
\(780\) 0 0
\(781\) −11520.0 −0.527808
\(782\) 75040.0i 3.43149i
\(783\) 1566.00i 0.0714742i
\(784\) −4361.00 −0.198661
\(785\) 0 0
\(786\) 14340.0 0.650752
\(787\) 6860.00i 0.310715i 0.987858 + 0.155357i \(0.0496529\pi\)
−0.987858 + 0.155357i \(0.950347\pi\)
\(788\) − 48450.0i − 2.19030i
\(789\) 2544.00 0.114789
\(790\) 0 0
\(791\) 10206.0 0.458766
\(792\) − 4860.00i − 0.218046i
\(793\) 21540.0i 0.964575i
\(794\) −62950.0 −2.81362
\(795\) 0 0
\(796\) −19448.0 −0.865975
\(797\) − 10950.0i − 0.486661i −0.969943 0.243331i \(-0.921760\pi\)
0.969943 0.243331i \(-0.0782400\pi\)
\(798\) 9660.00i 0.428522i
\(799\) 27872.0 1.23409
\(800\) 0 0
\(801\) −9342.00 −0.412089
\(802\) − 14250.0i − 0.627413i
\(803\) 12792.0i 0.562167i
\(804\) 21012.0 0.921687
\(805\) 0 0
\(806\) −33600.0 −1.46837
\(807\) − 3822.00i − 0.166717i
\(808\) 2070.00i 0.0901267i
\(809\) −26010.0 −1.13036 −0.565181 0.824967i \(-0.691194\pi\)
−0.565181 + 0.824967i \(0.691194\pi\)
\(810\) 0 0
\(811\) −14628.0 −0.633364 −0.316682 0.948532i \(-0.602569\pi\)
−0.316682 + 0.948532i \(0.602569\pi\)
\(812\) 6902.00i 0.298292i
\(813\) − 2592.00i − 0.111815i
\(814\) 8760.00 0.377196
\(815\) 0 0
\(816\) 35778.0 1.53490
\(817\) 31280.0i 1.33947i
\(818\) 6130.00i 0.262018i
\(819\) −1890.00 −0.0806373
\(820\) 0 0
\(821\) 8718.00 0.370597 0.185299 0.982682i \(-0.440675\pi\)
0.185299 + 0.982682i \(0.440675\pi\)
\(822\) − 5610.00i − 0.238043i
\(823\) − 7432.00i − 0.314779i −0.987537 0.157390i \(-0.949692\pi\)
0.987537 0.157390i \(-0.0503078\pi\)
\(824\) −84600.0 −3.57668
\(825\) 0 0
\(826\) 13300.0 0.560250
\(827\) − 17388.0i − 0.731125i −0.930787 0.365562i \(-0.880877\pi\)
0.930787 0.365562i \(-0.119123\pi\)
\(828\) 17136.0i 0.719224i
\(829\) −7902.00 −0.331059 −0.165529 0.986205i \(-0.552933\pi\)
−0.165529 + 0.986205i \(0.552933\pi\)
\(830\) 0 0
\(831\) 25590.0 1.06824
\(832\) 8610.00i 0.358772i
\(833\) − 6566.00i − 0.273107i
\(834\) 5940.00 0.246625
\(835\) 0 0
\(836\) −18768.0 −0.776441
\(837\) − 6048.00i − 0.249760i
\(838\) 3060.00i 0.126141i
\(839\) 31848.0 1.31051 0.655253 0.755409i \(-0.272562\pi\)
0.655253 + 0.755409i \(0.272562\pi\)
\(840\) 0 0
\(841\) −21025.0 −0.862069
\(842\) − 25910.0i − 1.06047i
\(843\) 16146.0i 0.659665i
\(844\) −7004.00 −0.285649
\(845\) 0 0
\(846\) 9360.00 0.380382
\(847\) 8309.00i 0.337073i
\(848\) − 67106.0i − 2.71749i
\(849\) 18708.0 0.756251
\(850\) 0 0
\(851\) −16352.0 −0.658683
\(852\) − 48960.0i − 1.96871i
\(853\) 30150.0i 1.21022i 0.796142 + 0.605109i \(0.206871\pi\)
−0.796142 + 0.605109i \(0.793129\pi\)
\(854\) −25130.0 −1.00694
\(855\) 0 0
\(856\) 32940.0 1.31526
\(857\) 4350.00i 0.173388i 0.996235 + 0.0866938i \(0.0276302\pi\)
−0.996235 + 0.0866938i \(0.972370\pi\)
\(858\) − 5400.00i − 0.214864i
\(859\) 30676.0 1.21845 0.609227 0.792996i \(-0.291480\pi\)
0.609227 + 0.792996i \(0.291480\pi\)
\(860\) 0 0
\(861\) −378.000 −0.0149619
\(862\) 24920.0i 0.984662i
\(863\) − 23688.0i − 0.934356i −0.884163 0.467178i \(-0.845271\pi\)
0.884163 0.467178i \(-0.154729\pi\)
\(864\) 2295.00 0.0903675
\(865\) 0 0
\(866\) −8470.00 −0.332358
\(867\) 39129.0i 1.53275i
\(868\) − 26656.0i − 1.04235i
\(869\) −10752.0 −0.419720
\(870\) 0 0
\(871\) 12360.0 0.480830
\(872\) 17010.0i 0.660586i
\(873\) − 6318.00i − 0.244939i
\(874\) 51520.0 1.99392
\(875\) 0 0
\(876\) −54366.0 −2.09687
\(877\) − 31910.0i − 1.22865i −0.789054 0.614324i \(-0.789429\pi\)
0.789054 0.614324i \(-0.210571\pi\)
\(878\) 69320.0i 2.66451i
\(879\) −2454.00 −0.0941654
\(880\) 0 0
\(881\) 50250.0 1.92164 0.960820 0.277172i \(-0.0893971\pi\)
0.960820 + 0.277172i \(0.0893971\pi\)
\(882\) − 2205.00i − 0.0841794i
\(883\) 5980.00i 0.227908i 0.993486 + 0.113954i \(0.0363517\pi\)
−0.993486 + 0.113954i \(0.963648\pi\)
\(884\) 68340.0 2.60014
\(885\) 0 0
\(886\) −23220.0 −0.880464
\(887\) 24568.0i 0.930003i 0.885310 + 0.465002i \(0.153946\pi\)
−0.885310 + 0.465002i \(0.846054\pi\)
\(888\) 19710.0i 0.744847i
\(889\) −4256.00 −0.160564
\(890\) 0 0
\(891\) 972.000 0.0365468
\(892\) 27744.0i 1.04141i
\(893\) − 19136.0i − 0.717091i
\(894\) −28110.0 −1.05161
\(895\) 0 0
\(896\) −14805.0 −0.552009
\(897\) 10080.0i 0.375208i
\(898\) − 24630.0i − 0.915271i
\(899\) −12992.0 −0.481988
\(900\) 0 0
\(901\) 101036. 3.73585
\(902\) − 1080.00i − 0.0398670i
\(903\) − 7140.00i − 0.263128i
\(904\) −65610.0 −2.41389
\(905\) 0 0
\(906\) 16440.0 0.602850
\(907\) − 13252.0i − 0.485144i −0.970133 0.242572i \(-0.922009\pi\)
0.970133 0.242572i \(-0.0779910\pi\)
\(908\) 69428.0i 2.53750i
\(909\) −414.000 −0.0151062
\(910\) 0 0
\(911\) −6744.00 −0.245267 −0.122634 0.992452i \(-0.539134\pi\)
−0.122634 + 0.992452i \(0.539134\pi\)
\(912\) − 24564.0i − 0.891881i
\(913\) 5232.00i 0.189654i
\(914\) 73470.0 2.65883
\(915\) 0 0
\(916\) −57562.0 −2.07631
\(917\) 6692.00i 0.240992i
\(918\) 18090.0i 0.650391i
\(919\) 45336.0 1.62731 0.813654 0.581349i \(-0.197475\pi\)
0.813654 + 0.581349i \(0.197475\pi\)
\(920\) 0 0
\(921\) 6804.00 0.243430
\(922\) − 10030.0i − 0.358265i
\(923\) − 28800.0i − 1.02705i
\(924\) 4284.00 0.152525
\(925\) 0 0
\(926\) 24480.0 0.868750
\(927\) − 16920.0i − 0.599488i
\(928\) − 4930.00i − 0.174391i
\(929\) −30074.0 −1.06211 −0.531053 0.847339i \(-0.678203\pi\)
−0.531053 + 0.847339i \(0.678203\pi\)
\(930\) 0 0
\(931\) −4508.00 −0.158694
\(932\) − 90474.0i − 3.17980i
\(933\) − 19944.0i − 0.699826i
\(934\) −13300.0 −0.465941
\(935\) 0 0
\(936\) 12150.0 0.424290
\(937\) − 21754.0i − 0.758455i −0.925303 0.379227i \(-0.876190\pi\)
0.925303 0.379227i \(-0.123810\pi\)
\(938\) 14420.0i 0.501951i
\(939\) 29454.0 1.02364
\(940\) 0 0
\(941\) 14550.0 0.504056 0.252028 0.967720i \(-0.418903\pi\)
0.252028 + 0.967720i \(0.418903\pi\)
\(942\) 28770.0i 0.995093i
\(943\) 2016.00i 0.0696182i
\(944\) −33820.0 −1.16605
\(945\) 0 0
\(946\) 20400.0 0.701122
\(947\) − 46660.0i − 1.60110i −0.599263 0.800552i \(-0.704540\pi\)
0.599263 0.800552i \(-0.295460\pi\)
\(948\) − 45696.0i − 1.56555i
\(949\) −31980.0 −1.09390
\(950\) 0 0
\(951\) −2802.00 −0.0955427
\(952\) 42210.0i 1.43701i
\(953\) 20810.0i 0.707347i 0.935369 + 0.353674i \(0.115068\pi\)
−0.935369 + 0.353674i \(0.884932\pi\)
\(954\) 33930.0 1.15149
\(955\) 0 0
\(956\) 63512.0 2.14867
\(957\) − 2088.00i − 0.0705282i
\(958\) − 28000.0i − 0.944300i
\(959\) 2618.00 0.0881539
\(960\) 0 0
\(961\) 20385.0 0.684267
\(962\) 21900.0i 0.733975i
\(963\) 6588.00i 0.220452i
\(964\) −3570.00 −0.119276
\(965\) 0 0
\(966\) −11760.0 −0.391689
\(967\) − 2776.00i − 0.0923166i −0.998934 0.0461583i \(-0.985302\pi\)
0.998934 0.0461583i \(-0.0146979\pi\)
\(968\) − 53415.0i − 1.77358i
\(969\) 36984.0 1.22611
\(970\) 0 0
\(971\) 27292.0 0.902000 0.451000 0.892524i \(-0.351067\pi\)
0.451000 + 0.892524i \(0.351067\pi\)
\(972\) 4131.00i 0.136319i
\(973\) 2772.00i 0.0913322i
\(974\) 32120.0 1.05666
\(975\) 0 0
\(976\) 63902.0 2.09575
\(977\) 62.0000i 0.00203025i 0.999999 + 0.00101513i \(0.000323125\pi\)
−0.999999 + 0.00101513i \(0.999677\pi\)
\(978\) − 34740.0i − 1.13585i
\(979\) 12456.0 0.406635
\(980\) 0 0
\(981\) −3402.00 −0.110721
\(982\) 94500.0i 3.07089i
\(983\) 37912.0i 1.23012i 0.788481 + 0.615058i \(0.210868\pi\)
−0.788481 + 0.615058i \(0.789132\pi\)
\(984\) 2430.00 0.0787252
\(985\) 0 0
\(986\) 38860.0 1.25513
\(987\) 4368.00i 0.140866i
\(988\) − 46920.0i − 1.51085i
\(989\) −38080.0 −1.22434
\(990\) 0 0
\(991\) 10656.0 0.341573 0.170787 0.985308i \(-0.445369\pi\)
0.170787 + 0.985308i \(0.445369\pi\)
\(992\) 19040.0i 0.609396i
\(993\) − 6876.00i − 0.219741i
\(994\) 33600.0 1.07216
\(995\) 0 0
\(996\) −22236.0 −0.707404
\(997\) 29434.0i 0.934989i 0.883996 + 0.467495i \(0.154843\pi\)
−0.883996 + 0.467495i \(0.845157\pi\)
\(998\) − 76820.0i − 2.43657i
\(999\) −3942.00 −0.124844
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 525.4.d.a.274.1 2
5.2 odd 4 105.4.a.b.1.1 1
5.3 odd 4 525.4.a.a.1.1 1
5.4 even 2 inner 525.4.d.a.274.2 2
15.2 even 4 315.4.a.a.1.1 1
15.8 even 4 1575.4.a.l.1.1 1
20.7 even 4 1680.4.a.u.1.1 1
35.27 even 4 735.4.a.j.1.1 1
105.62 odd 4 2205.4.a.b.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
105.4.a.b.1.1 1 5.2 odd 4
315.4.a.a.1.1 1 15.2 even 4
525.4.a.a.1.1 1 5.3 odd 4
525.4.d.a.274.1 2 1.1 even 1 trivial
525.4.d.a.274.2 2 5.4 even 2 inner
735.4.a.j.1.1 1 35.27 even 4
1575.4.a.l.1.1 1 15.8 even 4
1680.4.a.u.1.1 1 20.7 even 4
2205.4.a.b.1.1 1 105.62 odd 4