Properties

Label 525.4.a.k.1.2
Level $525$
Weight $4$
Character 525.1
Self dual yes
Analytic conductor $30.976$
Analytic rank $1$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [525,4,Mod(1,525)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(525, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("525.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 525 = 3 \cdot 5^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 525.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(30.9760027530\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{65}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 16 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 105)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(-3.53113\) of defining polynomial
Character \(\chi\) \(=\) 525.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+3.53113 q^{2} -3.00000 q^{3} +4.46887 q^{4} -10.5934 q^{6} +7.00000 q^{7} -12.4689 q^{8} +9.00000 q^{9} +O(q^{10})\) \(q+3.53113 q^{2} -3.00000 q^{3} +4.46887 q^{4} -10.5934 q^{6} +7.00000 q^{7} -12.4689 q^{8} +9.00000 q^{9} -2.93774 q^{11} -13.4066 q^{12} +19.0623 q^{13} +24.7179 q^{14} -79.7802 q^{16} -122.498 q^{17} +31.7802 q^{18} +107.436 q^{19} -21.0000 q^{21} -10.3735 q^{22} -210.623 q^{23} +37.4066 q^{24} +67.3113 q^{26} -27.0000 q^{27} +31.2821 q^{28} +95.4942 q^{29} -94.3074 q^{31} -181.963 q^{32} +8.81323 q^{33} -432.556 q^{34} +40.2198 q^{36} -97.1206 q^{37} +379.370 q^{38} -57.1868 q^{39} -491.113 q^{41} -74.1537 q^{42} +43.0039 q^{43} -13.1284 q^{44} -743.735 q^{46} -473.494 q^{47} +239.340 q^{48} +49.0000 q^{49} +367.494 q^{51} +85.1868 q^{52} +183.677 q^{53} -95.3405 q^{54} -87.2821 q^{56} -322.307 q^{57} +337.202 q^{58} -760.615 q^{59} -198.747 q^{61} -333.012 q^{62} +63.0000 q^{63} -4.29373 q^{64} +31.1206 q^{66} +309.992 q^{67} -547.428 q^{68} +631.868 q^{69} +665.693 q^{71} -112.220 q^{72} -621.288 q^{73} -342.945 q^{74} +480.117 q^{76} -20.5642 q^{77} -201.934 q^{78} -24.7626 q^{79} +81.0000 q^{81} -1734.18 q^{82} +406.724 q^{83} -93.8463 q^{84} +151.852 q^{86} -286.483 q^{87} +36.6303 q^{88} +261.751 q^{89} +133.436 q^{91} -941.245 q^{92} +282.922 q^{93} -1671.97 q^{94} +545.889 q^{96} +1004.77 q^{97} +173.025 q^{98} -26.4397 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - q^{2} - 6 q^{3} + 17 q^{4} + 3 q^{6} + 14 q^{7} - 33 q^{8} + 18 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 2 q - q^{2} - 6 q^{3} + 17 q^{4} + 3 q^{6} + 14 q^{7} - 33 q^{8} + 18 q^{9} - 22 q^{11} - 51 q^{12} + 22 q^{13} - 7 q^{14} - 87 q^{16} - 116 q^{17} - 9 q^{18} + 102 q^{19} - 42 q^{21} + 76 q^{22} - 260 q^{23} + 99 q^{24} + 54 q^{26} - 54 q^{27} + 119 q^{28} - 196 q^{29} + 150 q^{31} + 15 q^{32} + 66 q^{33} - 462 q^{34} + 153 q^{36} + 96 q^{37} + 404 q^{38} - 66 q^{39} - 176 q^{41} + 21 q^{42} + 344 q^{43} - 252 q^{44} - 520 q^{46} - 560 q^{47} + 261 q^{48} + 98 q^{49} + 348 q^{51} + 122 q^{52} - 326 q^{53} + 27 q^{54} - 231 q^{56} - 306 q^{57} + 1658 q^{58} - 844 q^{59} - 204 q^{61} - 1440 q^{62} + 126 q^{63} - 839 q^{64} - 228 q^{66} + 104 q^{67} - 466 q^{68} + 780 q^{69} + 1670 q^{71} - 297 q^{72} + 386 q^{73} - 1218 q^{74} + 412 q^{76} - 154 q^{77} - 162 q^{78} - 888 q^{79} + 162 q^{81} - 3162 q^{82} - 928 q^{83} - 357 q^{84} - 1212 q^{86} + 588 q^{87} + 428 q^{88} + 588 q^{89} + 154 q^{91} - 1560 q^{92} - 450 q^{93} - 1280 q^{94} - 45 q^{96} - 522 q^{97} - 49 q^{98} - 198 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 3.53113 1.24844 0.624221 0.781248i \(-0.285416\pi\)
0.624221 + 0.781248i \(0.285416\pi\)
\(3\) −3.00000 −0.577350
\(4\) 4.46887 0.558609
\(5\) 0 0
\(6\) −10.5934 −0.720789
\(7\) 7.00000 0.377964
\(8\) −12.4689 −0.551051
\(9\) 9.00000 0.333333
\(10\) 0 0
\(11\) −2.93774 −0.0805239 −0.0402619 0.999189i \(-0.512819\pi\)
−0.0402619 + 0.999189i \(0.512819\pi\)
\(12\) −13.4066 −0.322513
\(13\) 19.0623 0.406686 0.203343 0.979108i \(-0.434819\pi\)
0.203343 + 0.979108i \(0.434819\pi\)
\(14\) 24.7179 0.471867
\(15\) 0 0
\(16\) −79.7802 −1.24656
\(17\) −122.498 −1.74766 −0.873828 0.486236i \(-0.838370\pi\)
−0.873828 + 0.486236i \(0.838370\pi\)
\(18\) 31.7802 0.416148
\(19\) 107.436 1.29723 0.648617 0.761115i \(-0.275348\pi\)
0.648617 + 0.761115i \(0.275348\pi\)
\(20\) 0 0
\(21\) −21.0000 −0.218218
\(22\) −10.3735 −0.100529
\(23\) −210.623 −1.90947 −0.954736 0.297455i \(-0.903862\pi\)
−0.954736 + 0.297455i \(0.903862\pi\)
\(24\) 37.4066 0.318150
\(25\) 0 0
\(26\) 67.3113 0.507724
\(27\) −27.0000 −0.192450
\(28\) 31.2821 0.211134
\(29\) 95.4942 0.611477 0.305738 0.952116i \(-0.401097\pi\)
0.305738 + 0.952116i \(0.401097\pi\)
\(30\) 0 0
\(31\) −94.3074 −0.546391 −0.273195 0.961959i \(-0.588081\pi\)
−0.273195 + 0.961959i \(0.588081\pi\)
\(32\) −181.963 −1.00521
\(33\) 8.81323 0.0464905
\(34\) −432.556 −2.18185
\(35\) 0 0
\(36\) 40.2198 0.186203
\(37\) −97.1206 −0.431528 −0.215764 0.976446i \(-0.569224\pi\)
−0.215764 + 0.976446i \(0.569224\pi\)
\(38\) 379.370 1.61952
\(39\) −57.1868 −0.234800
\(40\) 0 0
\(41\) −491.113 −1.87071 −0.935353 0.353716i \(-0.884918\pi\)
−0.935353 + 0.353716i \(0.884918\pi\)
\(42\) −74.1537 −0.272433
\(43\) 43.0039 0.152512 0.0762562 0.997088i \(-0.475703\pi\)
0.0762562 + 0.997088i \(0.475703\pi\)
\(44\) −13.1284 −0.0449814
\(45\) 0 0
\(46\) −743.735 −2.38387
\(47\) −473.494 −1.46949 −0.734747 0.678341i \(-0.762699\pi\)
−0.734747 + 0.678341i \(0.762699\pi\)
\(48\) 239.340 0.719705
\(49\) 49.0000 0.142857
\(50\) 0 0
\(51\) 367.494 1.00901
\(52\) 85.1868 0.227178
\(53\) 183.677 0.476038 0.238019 0.971261i \(-0.423502\pi\)
0.238019 + 0.971261i \(0.423502\pi\)
\(54\) −95.3405 −0.240263
\(55\) 0 0
\(56\) −87.2821 −0.208278
\(57\) −322.307 −0.748959
\(58\) 337.202 0.763394
\(59\) −760.615 −1.67837 −0.839183 0.543849i \(-0.816966\pi\)
−0.839183 + 0.543849i \(0.816966\pi\)
\(60\) 0 0
\(61\) −198.747 −0.417163 −0.208582 0.978005i \(-0.566885\pi\)
−0.208582 + 0.978005i \(0.566885\pi\)
\(62\) −333.012 −0.682137
\(63\) 63.0000 0.125988
\(64\) −4.29373 −0.00838618
\(65\) 0 0
\(66\) 31.1206 0.0580407
\(67\) 309.992 0.565247 0.282624 0.959231i \(-0.408795\pi\)
0.282624 + 0.959231i \(0.408795\pi\)
\(68\) −547.428 −0.976256
\(69\) 631.868 1.10243
\(70\) 0 0
\(71\) 665.693 1.11272 0.556360 0.830941i \(-0.312197\pi\)
0.556360 + 0.830941i \(0.312197\pi\)
\(72\) −112.220 −0.183684
\(73\) −621.288 −0.996113 −0.498057 0.867145i \(-0.665953\pi\)
−0.498057 + 0.867145i \(0.665953\pi\)
\(74\) −342.945 −0.538738
\(75\) 0 0
\(76\) 480.117 0.724647
\(77\) −20.5642 −0.0304352
\(78\) −201.934 −0.293135
\(79\) −24.7626 −0.0352659 −0.0176330 0.999845i \(-0.505613\pi\)
−0.0176330 + 0.999845i \(0.505613\pi\)
\(80\) 0 0
\(81\) 81.0000 0.111111
\(82\) −1734.18 −2.33547
\(83\) 406.724 0.537876 0.268938 0.963157i \(-0.413327\pi\)
0.268938 + 0.963157i \(0.413327\pi\)
\(84\) −93.8463 −0.121898
\(85\) 0 0
\(86\) 151.852 0.190403
\(87\) −286.483 −0.353036
\(88\) 36.6303 0.0443728
\(89\) 261.751 0.311748 0.155874 0.987777i \(-0.450181\pi\)
0.155874 + 0.987777i \(0.450181\pi\)
\(90\) 0 0
\(91\) 133.436 0.153713
\(92\) −941.245 −1.06665
\(93\) 282.922 0.315459
\(94\) −1671.97 −1.83458
\(95\) 0 0
\(96\) 545.889 0.580360
\(97\) 1004.77 1.05175 0.525873 0.850563i \(-0.323739\pi\)
0.525873 + 0.850563i \(0.323739\pi\)
\(98\) 173.025 0.178349
\(99\) −26.4397 −0.0268413
\(100\) 0 0
\(101\) −128.872 −0.126962 −0.0634812 0.997983i \(-0.520220\pi\)
−0.0634812 + 0.997983i \(0.520220\pi\)
\(102\) 1297.67 1.25969
\(103\) −806.008 −0.771051 −0.385526 0.922697i \(-0.625980\pi\)
−0.385526 + 0.922697i \(0.625980\pi\)
\(104\) −237.685 −0.224105
\(105\) 0 0
\(106\) 648.587 0.594305
\(107\) 769.712 0.695429 0.347714 0.937600i \(-0.386958\pi\)
0.347714 + 0.937600i \(0.386958\pi\)
\(108\) −120.660 −0.107504
\(109\) −780.856 −0.686169 −0.343085 0.939304i \(-0.611472\pi\)
−0.343085 + 0.939304i \(0.611472\pi\)
\(110\) 0 0
\(111\) 291.362 0.249143
\(112\) −558.461 −0.471157
\(113\) 1115.65 0.928771 0.464386 0.885633i \(-0.346275\pi\)
0.464386 + 0.885633i \(0.346275\pi\)
\(114\) −1138.11 −0.935032
\(115\) 0 0
\(116\) 426.751 0.341576
\(117\) 171.560 0.135562
\(118\) −2685.83 −2.09534
\(119\) −857.486 −0.660552
\(120\) 0 0
\(121\) −1322.37 −0.993516
\(122\) −701.802 −0.520804
\(123\) 1473.34 1.08005
\(124\) −421.448 −0.305219
\(125\) 0 0
\(126\) 222.461 0.157289
\(127\) 1875.98 1.31076 0.655381 0.755299i \(-0.272508\pi\)
0.655381 + 0.755299i \(0.272508\pi\)
\(128\) 1440.54 0.994744
\(129\) −129.012 −0.0880530
\(130\) 0 0
\(131\) 364.203 0.242905 0.121452 0.992597i \(-0.461245\pi\)
0.121452 + 0.992597i \(0.461245\pi\)
\(132\) 39.3852 0.0259700
\(133\) 752.051 0.490309
\(134\) 1094.62 0.705679
\(135\) 0 0
\(136\) 1527.41 0.963048
\(137\) −1603.13 −0.999743 −0.499872 0.866099i \(-0.666620\pi\)
−0.499872 + 0.866099i \(0.666620\pi\)
\(138\) 2231.21 1.37633
\(139\) 2431.12 1.48349 0.741746 0.670681i \(-0.233998\pi\)
0.741746 + 0.670681i \(0.233998\pi\)
\(140\) 0 0
\(141\) 1420.48 0.848413
\(142\) 2350.65 1.38917
\(143\) −56.0000 −0.0327479
\(144\) −718.021 −0.415522
\(145\) 0 0
\(146\) −2193.85 −1.24359
\(147\) −147.000 −0.0824786
\(148\) −434.020 −0.241055
\(149\) 2341.57 1.28744 0.643722 0.765260i \(-0.277389\pi\)
0.643722 + 0.765260i \(0.277389\pi\)
\(150\) 0 0
\(151\) −2104.07 −1.13395 −0.566976 0.823734i \(-0.691887\pi\)
−0.566976 + 0.823734i \(0.691887\pi\)
\(152\) −1339.60 −0.714843
\(153\) −1102.48 −0.582552
\(154\) −72.6148 −0.0379966
\(155\) 0 0
\(156\) −255.560 −0.131162
\(157\) 593.467 0.301680 0.150840 0.988558i \(-0.451802\pi\)
0.150840 + 0.988558i \(0.451802\pi\)
\(158\) −87.4399 −0.0440275
\(159\) −551.031 −0.274840
\(160\) 0 0
\(161\) −1474.36 −0.721712
\(162\) 286.021 0.138716
\(163\) −2178.71 −1.04693 −0.523465 0.852047i \(-0.675361\pi\)
−0.523465 + 0.852047i \(0.675361\pi\)
\(164\) −2194.72 −1.04499
\(165\) 0 0
\(166\) 1436.19 0.671508
\(167\) −799.502 −0.370463 −0.185231 0.982695i \(-0.559303\pi\)
−0.185231 + 0.982695i \(0.559303\pi\)
\(168\) 261.846 0.120249
\(169\) −1833.63 −0.834606
\(170\) 0 0
\(171\) 966.922 0.432412
\(172\) 192.179 0.0851947
\(173\) 1444.36 0.634754 0.317377 0.948299i \(-0.397198\pi\)
0.317377 + 0.948299i \(0.397198\pi\)
\(174\) −1011.61 −0.440745
\(175\) 0 0
\(176\) 234.374 0.100378
\(177\) 2281.84 0.969005
\(178\) 924.276 0.389199
\(179\) 3343.49 1.39611 0.698056 0.716043i \(-0.254048\pi\)
0.698056 + 0.716043i \(0.254048\pi\)
\(180\) 0 0
\(181\) 2251.81 0.924729 0.462365 0.886690i \(-0.347001\pi\)
0.462365 + 0.886690i \(0.347001\pi\)
\(182\) 471.179 0.191902
\(183\) 596.241 0.240849
\(184\) 2626.23 1.05222
\(185\) 0 0
\(186\) 999.035 0.393832
\(187\) 359.868 0.140728
\(188\) −2115.98 −0.820873
\(189\) −189.000 −0.0727393
\(190\) 0 0
\(191\) −1001.93 −0.379565 −0.189782 0.981826i \(-0.560778\pi\)
−0.189782 + 0.981826i \(0.560778\pi\)
\(192\) 12.8812 0.00484177
\(193\) 4054.97 1.51235 0.756173 0.654372i \(-0.227067\pi\)
0.756173 + 0.654372i \(0.227067\pi\)
\(194\) 3547.99 1.31304
\(195\) 0 0
\(196\) 218.975 0.0798013
\(197\) 5140.23 1.85902 0.929508 0.368802i \(-0.120232\pi\)
0.929508 + 0.368802i \(0.120232\pi\)
\(198\) −93.3619 −0.0335098
\(199\) 585.631 0.208614 0.104307 0.994545i \(-0.466737\pi\)
0.104307 + 0.994545i \(0.466737\pi\)
\(200\) 0 0
\(201\) −929.977 −0.326346
\(202\) −455.062 −0.158505
\(203\) 668.459 0.231116
\(204\) 1642.28 0.563642
\(205\) 0 0
\(206\) −2846.12 −0.962614
\(207\) −1895.60 −0.636490
\(208\) −1520.79 −0.506961
\(209\) −315.619 −0.104458
\(210\) 0 0
\(211\) −1055.16 −0.344266 −0.172133 0.985074i \(-0.555066\pi\)
−0.172133 + 0.985074i \(0.555066\pi\)
\(212\) 820.829 0.265919
\(213\) −1997.08 −0.642430
\(214\) 2717.95 0.868203
\(215\) 0 0
\(216\) 336.660 0.106050
\(217\) −660.152 −0.206516
\(218\) −2757.30 −0.856643
\(219\) 1863.86 0.575106
\(220\) 0 0
\(221\) −2335.09 −0.710747
\(222\) 1028.84 0.311040
\(223\) −4675.85 −1.40412 −0.702059 0.712119i \(-0.747736\pi\)
−0.702059 + 0.712119i \(0.747736\pi\)
\(224\) −1273.74 −0.379935
\(225\) 0 0
\(226\) 3939.49 1.15952
\(227\) −5443.11 −1.59151 −0.795754 0.605621i \(-0.792925\pi\)
−0.795754 + 0.605621i \(0.792925\pi\)
\(228\) −1440.35 −0.418375
\(229\) −536.303 −0.154759 −0.0773797 0.997002i \(-0.524655\pi\)
−0.0773797 + 0.997002i \(0.524655\pi\)
\(230\) 0 0
\(231\) 61.6926 0.0175717
\(232\) −1190.70 −0.336955
\(233\) 183.490 0.0515916 0.0257958 0.999667i \(-0.491788\pi\)
0.0257958 + 0.999667i \(0.491788\pi\)
\(234\) 605.802 0.169241
\(235\) 0 0
\(236\) −3399.09 −0.937550
\(237\) 74.2878 0.0203608
\(238\) −3027.90 −0.824661
\(239\) 643.218 0.174085 0.0870425 0.996205i \(-0.472258\pi\)
0.0870425 + 0.996205i \(0.472258\pi\)
\(240\) 0 0
\(241\) −5755.61 −1.53839 −0.769194 0.639015i \(-0.779342\pi\)
−0.769194 + 0.639015i \(0.779342\pi\)
\(242\) −4669.46 −1.24035
\(243\) −243.000 −0.0641500
\(244\) −888.175 −0.233031
\(245\) 0 0
\(246\) 5202.55 1.34838
\(247\) 2047.97 0.527567
\(248\) 1175.91 0.301089
\(249\) −1220.17 −0.310543
\(250\) 0 0
\(251\) −5132.27 −1.29062 −0.645311 0.763920i \(-0.723272\pi\)
−0.645311 + 0.763920i \(0.723272\pi\)
\(252\) 281.539 0.0703781
\(253\) 618.755 0.153758
\(254\) 6624.34 1.63641
\(255\) 0 0
\(256\) 5121.09 1.25027
\(257\) −5041.74 −1.22372 −0.611859 0.790967i \(-0.709578\pi\)
−0.611859 + 0.790967i \(0.709578\pi\)
\(258\) −455.557 −0.109929
\(259\) −679.844 −0.163102
\(260\) 0 0
\(261\) 859.448 0.203826
\(262\) 1286.05 0.303253
\(263\) −7577.00 −1.77649 −0.888246 0.459367i \(-0.848076\pi\)
−0.888246 + 0.459367i \(0.848076\pi\)
\(264\) −109.891 −0.0256186
\(265\) 0 0
\(266\) 2655.59 0.612122
\(267\) −785.253 −0.179988
\(268\) 1385.32 0.315752
\(269\) 1023.10 0.231893 0.115947 0.993255i \(-0.463010\pi\)
0.115947 + 0.993255i \(0.463010\pi\)
\(270\) 0 0
\(271\) −2251.98 −0.504790 −0.252395 0.967624i \(-0.581218\pi\)
−0.252395 + 0.967624i \(0.581218\pi\)
\(272\) 9772.91 2.17857
\(273\) −400.307 −0.0887462
\(274\) −5660.87 −1.24812
\(275\) 0 0
\(276\) 2823.74 0.615829
\(277\) 8630.72 1.87209 0.936047 0.351875i \(-0.114456\pi\)
0.936047 + 0.351875i \(0.114456\pi\)
\(278\) 8584.61 1.85205
\(279\) −848.767 −0.182130
\(280\) 0 0
\(281\) −7521.62 −1.59680 −0.798402 0.602124i \(-0.794321\pi\)
−0.798402 + 0.602124i \(0.794321\pi\)
\(282\) 5015.91 1.05919
\(283\) −14.8169 −0.00311226 −0.00155613 0.999999i \(-0.500495\pi\)
−0.00155613 + 0.999999i \(0.500495\pi\)
\(284\) 2974.89 0.621576
\(285\) 0 0
\(286\) −197.743 −0.0408839
\(287\) −3437.79 −0.707060
\(288\) −1637.67 −0.335071
\(289\) 10092.8 2.05430
\(290\) 0 0
\(291\) −3014.32 −0.607226
\(292\) −2776.46 −0.556438
\(293\) −6913.39 −1.37844 −0.689222 0.724550i \(-0.742048\pi\)
−0.689222 + 0.724550i \(0.742048\pi\)
\(294\) −519.076 −0.102970
\(295\) 0 0
\(296\) 1210.98 0.237794
\(297\) 79.3190 0.0154968
\(298\) 8268.39 1.60730
\(299\) −4014.94 −0.776555
\(300\) 0 0
\(301\) 301.027 0.0576442
\(302\) −7429.74 −1.41567
\(303\) 386.615 0.0733018
\(304\) −8571.25 −1.61709
\(305\) 0 0
\(306\) −3893.01 −0.727283
\(307\) 7644.12 1.42108 0.710542 0.703655i \(-0.248450\pi\)
0.710542 + 0.703655i \(0.248450\pi\)
\(308\) −91.8987 −0.0170014
\(309\) 2418.02 0.445167
\(310\) 0 0
\(311\) 7593.99 1.38462 0.692308 0.721602i \(-0.256594\pi\)
0.692308 + 0.721602i \(0.256594\pi\)
\(312\) 713.055 0.129387
\(313\) 9127.84 1.64836 0.824179 0.566329i \(-0.191637\pi\)
0.824179 + 0.566329i \(0.191637\pi\)
\(314\) 2095.61 0.376631
\(315\) 0 0
\(316\) −110.661 −0.0196999
\(317\) 4929.81 0.873456 0.436728 0.899593i \(-0.356137\pi\)
0.436728 + 0.899593i \(0.356137\pi\)
\(318\) −1945.76 −0.343122
\(319\) −280.537 −0.0492385
\(320\) 0 0
\(321\) −2309.14 −0.401506
\(322\) −5206.15 −0.901016
\(323\) −13160.7 −2.26712
\(324\) 361.979 0.0620677
\(325\) 0 0
\(326\) −7693.30 −1.30703
\(327\) 2342.57 0.396160
\(328\) 6123.62 1.03086
\(329\) −3314.46 −0.555417
\(330\) 0 0
\(331\) 1221.67 0.202867 0.101433 0.994842i \(-0.467657\pi\)
0.101433 + 0.994842i \(0.467657\pi\)
\(332\) 1817.60 0.300463
\(333\) −874.086 −0.143843
\(334\) −2823.14 −0.462502
\(335\) 0 0
\(336\) 1675.38 0.272023
\(337\) 8744.83 1.41354 0.706768 0.707446i \(-0.250153\pi\)
0.706768 + 0.707446i \(0.250153\pi\)
\(338\) −6474.79 −1.04196
\(339\) −3346.94 −0.536226
\(340\) 0 0
\(341\) 277.051 0.0439975
\(342\) 3414.33 0.539841
\(343\) 343.000 0.0539949
\(344\) −536.210 −0.0840421
\(345\) 0 0
\(346\) 5100.21 0.792454
\(347\) −4589.56 −0.710031 −0.355015 0.934860i \(-0.615524\pi\)
−0.355015 + 0.934860i \(0.615524\pi\)
\(348\) −1280.25 −0.197209
\(349\) −3989.89 −0.611960 −0.305980 0.952038i \(-0.598984\pi\)
−0.305980 + 0.952038i \(0.598984\pi\)
\(350\) 0 0
\(351\) −514.681 −0.0782668
\(352\) 534.561 0.0809437
\(353\) −2416.35 −0.364333 −0.182166 0.983268i \(-0.558311\pi\)
−0.182166 + 0.983268i \(0.558311\pi\)
\(354\) 8057.49 1.20975
\(355\) 0 0
\(356\) 1169.73 0.174145
\(357\) 2572.46 0.381370
\(358\) 11806.3 1.74297
\(359\) −2756.24 −0.405206 −0.202603 0.979261i \(-0.564940\pi\)
−0.202603 + 0.979261i \(0.564940\pi\)
\(360\) 0 0
\(361\) 4683.45 0.682818
\(362\) 7951.44 1.15447
\(363\) 3967.11 0.573607
\(364\) 596.307 0.0858654
\(365\) 0 0
\(366\) 2105.40 0.300687
\(367\) −11112.8 −1.58061 −0.790307 0.612711i \(-0.790079\pi\)
−0.790307 + 0.612711i \(0.790079\pi\)
\(368\) 16803.5 2.38028
\(369\) −4420.02 −0.623569
\(370\) 0 0
\(371\) 1285.74 0.179925
\(372\) 1264.34 0.176218
\(373\) −6091.09 −0.845535 −0.422768 0.906238i \(-0.638941\pi\)
−0.422768 + 0.906238i \(0.638941\pi\)
\(374\) 1270.74 0.175691
\(375\) 0 0
\(376\) 5903.94 0.809767
\(377\) 1820.33 0.248679
\(378\) −667.383 −0.0908108
\(379\) 3984.29 0.539998 0.269999 0.962861i \(-0.412977\pi\)
0.269999 + 0.962861i \(0.412977\pi\)
\(380\) 0 0
\(381\) −5627.95 −0.756768
\(382\) −3537.93 −0.473865
\(383\) −318.475 −0.0424890 −0.0212445 0.999774i \(-0.506763\pi\)
−0.0212445 + 0.999774i \(0.506763\pi\)
\(384\) −4321.63 −0.574316
\(385\) 0 0
\(386\) 14318.6 1.88808
\(387\) 387.035 0.0508374
\(388\) 4490.21 0.587515
\(389\) 3885.46 0.506429 0.253214 0.967410i \(-0.418512\pi\)
0.253214 + 0.967410i \(0.418512\pi\)
\(390\) 0 0
\(391\) 25800.9 3.33710
\(392\) −610.975 −0.0787216
\(393\) −1092.61 −0.140241
\(394\) 18150.8 2.32088
\(395\) 0 0
\(396\) −118.156 −0.0149938
\(397\) −4806.04 −0.607578 −0.303789 0.952739i \(-0.598252\pi\)
−0.303789 + 0.952739i \(0.598252\pi\)
\(398\) 2067.94 0.260443
\(399\) −2256.15 −0.283080
\(400\) 0 0
\(401\) 3618.59 0.450633 0.225316 0.974286i \(-0.427658\pi\)
0.225316 + 0.974286i \(0.427658\pi\)
\(402\) −3283.87 −0.407424
\(403\) −1797.71 −0.222209
\(404\) −575.911 −0.0709223
\(405\) 0 0
\(406\) 2360.42 0.288536
\(407\) 285.315 0.0347483
\(408\) −4582.24 −0.556016
\(409\) −2109.05 −0.254978 −0.127489 0.991840i \(-0.540692\pi\)
−0.127489 + 0.991840i \(0.540692\pi\)
\(410\) 0 0
\(411\) 4809.40 0.577202
\(412\) −3601.94 −0.430716
\(413\) −5324.30 −0.634363
\(414\) −6693.62 −0.794622
\(415\) 0 0
\(416\) −3468.63 −0.408806
\(417\) −7293.37 −0.856494
\(418\) −1114.49 −0.130410
\(419\) −6905.91 −0.805193 −0.402597 0.915377i \(-0.631892\pi\)
−0.402597 + 0.915377i \(0.631892\pi\)
\(420\) 0 0
\(421\) −9647.54 −1.11685 −0.558423 0.829556i \(-0.688593\pi\)
−0.558423 + 0.829556i \(0.688593\pi\)
\(422\) −3725.91 −0.429797
\(423\) −4261.45 −0.489831
\(424\) −2290.25 −0.262321
\(425\) 0 0
\(426\) −7051.94 −0.802037
\(427\) −1391.23 −0.157673
\(428\) 3439.74 0.388473
\(429\) 168.000 0.0189070
\(430\) 0 0
\(431\) −13002.7 −1.45318 −0.726589 0.687073i \(-0.758895\pi\)
−0.726589 + 0.687073i \(0.758895\pi\)
\(432\) 2154.06 0.239902
\(433\) −7356.07 −0.816420 −0.408210 0.912888i \(-0.633847\pi\)
−0.408210 + 0.912888i \(0.633847\pi\)
\(434\) −2331.08 −0.257824
\(435\) 0 0
\(436\) −3489.55 −0.383300
\(437\) −22628.4 −2.47703
\(438\) 6581.54 0.717987
\(439\) 6909.21 0.751159 0.375579 0.926790i \(-0.377444\pi\)
0.375579 + 0.926790i \(0.377444\pi\)
\(440\) 0 0
\(441\) 441.000 0.0476190
\(442\) −8245.50 −0.887327
\(443\) 14812.6 1.58864 0.794318 0.607502i \(-0.207828\pi\)
0.794318 + 0.607502i \(0.207828\pi\)
\(444\) 1302.06 0.139173
\(445\) 0 0
\(446\) −16511.0 −1.75296
\(447\) −7024.72 −0.743306
\(448\) −30.0561 −0.00316968
\(449\) −10654.5 −1.11986 −0.559932 0.828538i \(-0.689173\pi\)
−0.559932 + 0.828538i \(0.689173\pi\)
\(450\) 0 0
\(451\) 1442.76 0.150636
\(452\) 4985.68 0.518820
\(453\) 6312.21 0.654688
\(454\) −19220.3 −1.98691
\(455\) 0 0
\(456\) 4018.81 0.412715
\(457\) 5855.16 0.599328 0.299664 0.954045i \(-0.403125\pi\)
0.299664 + 0.954045i \(0.403125\pi\)
\(458\) −1893.76 −0.193208
\(459\) 3307.45 0.336336
\(460\) 0 0
\(461\) 3204.74 0.323774 0.161887 0.986809i \(-0.448242\pi\)
0.161887 + 0.986809i \(0.448242\pi\)
\(462\) 217.844 0.0219373
\(463\) −371.658 −0.0373054 −0.0186527 0.999826i \(-0.505938\pi\)
−0.0186527 + 0.999826i \(0.505938\pi\)
\(464\) −7618.54 −0.762245
\(465\) 0 0
\(466\) 647.927 0.0644091
\(467\) 19752.3 1.95723 0.978614 0.205703i \(-0.0659482\pi\)
0.978614 + 0.205703i \(0.0659482\pi\)
\(468\) 766.681 0.0757262
\(469\) 2169.95 0.213643
\(470\) 0 0
\(471\) −1780.40 −0.174175
\(472\) 9484.01 0.924866
\(473\) −126.334 −0.0122809
\(474\) 262.320 0.0254193
\(475\) 0 0
\(476\) −3832.00 −0.368990
\(477\) 1653.09 0.158679
\(478\) 2271.28 0.217335
\(479\) −20762.0 −1.98046 −0.990232 0.139433i \(-0.955472\pi\)
−0.990232 + 0.139433i \(0.955472\pi\)
\(480\) 0 0
\(481\) −1851.34 −0.175496
\(482\) −20323.8 −1.92059
\(483\) 4423.07 0.416681
\(484\) −5909.50 −0.554987
\(485\) 0 0
\(486\) −858.064 −0.0800876
\(487\) −17647.6 −1.64207 −0.821035 0.570878i \(-0.806603\pi\)
−0.821035 + 0.570878i \(0.806603\pi\)
\(488\) 2478.15 0.229878
\(489\) 6536.12 0.604445
\(490\) 0 0
\(491\) −5637.46 −0.518157 −0.259078 0.965856i \(-0.583419\pi\)
−0.259078 + 0.965856i \(0.583419\pi\)
\(492\) 6584.16 0.603327
\(493\) −11697.9 −1.06865
\(494\) 7231.64 0.658638
\(495\) 0 0
\(496\) 7523.86 0.681112
\(497\) 4659.85 0.420569
\(498\) −4308.58 −0.387695
\(499\) −17474.1 −1.56764 −0.783818 0.620991i \(-0.786730\pi\)
−0.783818 + 0.620991i \(0.786730\pi\)
\(500\) 0 0
\(501\) 2398.51 0.213887
\(502\) −18122.7 −1.61127
\(503\) −7444.81 −0.659936 −0.329968 0.943992i \(-0.607038\pi\)
−0.329968 + 0.943992i \(0.607038\pi\)
\(504\) −785.539 −0.0694260
\(505\) 0 0
\(506\) 2184.90 0.191958
\(507\) 5500.89 0.481860
\(508\) 8383.53 0.732203
\(509\) −3384.48 −0.294724 −0.147362 0.989083i \(-0.547078\pi\)
−0.147362 + 0.989083i \(0.547078\pi\)
\(510\) 0 0
\(511\) −4349.02 −0.376495
\(512\) 6558.89 0.566142
\(513\) −2900.77 −0.249653
\(514\) −17803.0 −1.52774
\(515\) 0 0
\(516\) −576.536 −0.0491872
\(517\) 1391.00 0.118329
\(518\) −2400.62 −0.203624
\(519\) −4333.07 −0.366476
\(520\) 0 0
\(521\) 2973.12 0.250009 0.125005 0.992156i \(-0.460105\pi\)
0.125005 + 0.992156i \(0.460105\pi\)
\(522\) 3034.82 0.254465
\(523\) −2689.02 −0.224823 −0.112412 0.993662i \(-0.535858\pi\)
−0.112412 + 0.993662i \(0.535858\pi\)
\(524\) 1627.57 0.135689
\(525\) 0 0
\(526\) −26755.3 −2.21785
\(527\) 11552.5 0.954903
\(528\) −703.121 −0.0579534
\(529\) 32194.9 2.64608
\(530\) 0 0
\(531\) −6845.53 −0.559455
\(532\) 3360.82 0.273891
\(533\) −9361.72 −0.760790
\(534\) −2772.83 −0.224704
\(535\) 0 0
\(536\) −3865.25 −0.311480
\(537\) −10030.5 −0.806046
\(538\) 3612.69 0.289506
\(539\) −143.949 −0.0115034
\(540\) 0 0
\(541\) −14429.5 −1.14671 −0.573356 0.819306i \(-0.694359\pi\)
−0.573356 + 0.819306i \(0.694359\pi\)
\(542\) −7952.03 −0.630201
\(543\) −6755.44 −0.533893
\(544\) 22290.1 1.75677
\(545\) 0 0
\(546\) −1413.54 −0.110795
\(547\) −13811.2 −1.07957 −0.539784 0.841804i \(-0.681494\pi\)
−0.539784 + 0.841804i \(0.681494\pi\)
\(548\) −7164.19 −0.558466
\(549\) −1788.72 −0.139054
\(550\) 0 0
\(551\) 10259.5 0.793229
\(552\) −7878.68 −0.607498
\(553\) −173.338 −0.0133293
\(554\) 30476.2 2.33720
\(555\) 0 0
\(556\) 10864.4 0.828692
\(557\) 6033.26 0.458954 0.229477 0.973314i \(-0.426298\pi\)
0.229477 + 0.973314i \(0.426298\pi\)
\(558\) −2997.10 −0.227379
\(559\) 819.751 0.0620246
\(560\) 0 0
\(561\) −1079.60 −0.0812493
\(562\) −26559.8 −1.99352
\(563\) 6958.47 0.520896 0.260448 0.965488i \(-0.416130\pi\)
0.260448 + 0.965488i \(0.416130\pi\)
\(564\) 6347.95 0.473931
\(565\) 0 0
\(566\) −52.3202 −0.00388548
\(567\) 567.000 0.0419961
\(568\) −8300.44 −0.613166
\(569\) −13396.4 −0.987009 −0.493505 0.869743i \(-0.664284\pi\)
−0.493505 + 0.869743i \(0.664284\pi\)
\(570\) 0 0
\(571\) −8055.84 −0.590414 −0.295207 0.955433i \(-0.595389\pi\)
−0.295207 + 0.955433i \(0.595389\pi\)
\(572\) −250.257 −0.0182933
\(573\) 3005.78 0.219142
\(574\) −12139.3 −0.882724
\(575\) 0 0
\(576\) −38.6435 −0.00279539
\(577\) 21456.9 1.54812 0.774059 0.633114i \(-0.218223\pi\)
0.774059 + 0.633114i \(0.218223\pi\)
\(578\) 35638.9 2.56468
\(579\) −12164.9 −0.873153
\(580\) 0 0
\(581\) 2847.07 0.203298
\(582\) −10644.0 −0.758087
\(583\) −539.596 −0.0383324
\(584\) 7746.76 0.548910
\(585\) 0 0
\(586\) −24412.1 −1.72091
\(587\) −20156.3 −1.41728 −0.708638 0.705572i \(-0.750690\pi\)
−0.708638 + 0.705572i \(0.750690\pi\)
\(588\) −656.924 −0.0460733
\(589\) −10132.0 −0.708797
\(590\) 0 0
\(591\) −15420.7 −1.07330
\(592\) 7748.30 0.537928
\(593\) −599.307 −0.0415018 −0.0207509 0.999785i \(-0.506606\pi\)
−0.0207509 + 0.999785i \(0.506606\pi\)
\(594\) 280.086 0.0193469
\(595\) 0 0
\(596\) 10464.2 0.719177
\(597\) −1756.89 −0.120444
\(598\) −14177.3 −0.969485
\(599\) −5493.05 −0.374691 −0.187346 0.982294i \(-0.559988\pi\)
−0.187346 + 0.982294i \(0.559988\pi\)
\(600\) 0 0
\(601\) 24292.8 1.64879 0.824396 0.566014i \(-0.191515\pi\)
0.824396 + 0.566014i \(0.191515\pi\)
\(602\) 1062.97 0.0719655
\(603\) 2789.93 0.188416
\(604\) −9402.82 −0.633436
\(605\) 0 0
\(606\) 1365.19 0.0915131
\(607\) −3029.50 −0.202576 −0.101288 0.994857i \(-0.532296\pi\)
−0.101288 + 0.994857i \(0.532296\pi\)
\(608\) −19549.3 −1.30400
\(609\) −2005.38 −0.133435
\(610\) 0 0
\(611\) −9025.87 −0.597623
\(612\) −4926.85 −0.325419
\(613\) 19339.6 1.27426 0.637129 0.770757i \(-0.280122\pi\)
0.637129 + 0.770757i \(0.280122\pi\)
\(614\) 26992.4 1.77414
\(615\) 0 0
\(616\) 256.412 0.0167713
\(617\) 5743.91 0.374783 0.187391 0.982285i \(-0.439997\pi\)
0.187391 + 0.982285i \(0.439997\pi\)
\(618\) 8538.35 0.555765
\(619\) −8243.35 −0.535264 −0.267632 0.963521i \(-0.586241\pi\)
−0.267632 + 0.963521i \(0.586241\pi\)
\(620\) 0 0
\(621\) 5686.81 0.367478
\(622\) 26815.4 1.72861
\(623\) 1832.26 0.117830
\(624\) 4562.37 0.292694
\(625\) 0 0
\(626\) 32231.6 2.05788
\(627\) 946.856 0.0603091
\(628\) 2652.13 0.168521
\(629\) 11897.1 0.754162
\(630\) 0 0
\(631\) −4376.56 −0.276114 −0.138057 0.990424i \(-0.544086\pi\)
−0.138057 + 0.990424i \(0.544086\pi\)
\(632\) 308.762 0.0194334
\(633\) 3165.48 0.198762
\(634\) 17407.8 1.09046
\(635\) 0 0
\(636\) −2462.49 −0.153528
\(637\) 934.051 0.0580980
\(638\) −990.613 −0.0614714
\(639\) 5991.23 0.370907
\(640\) 0 0
\(641\) 11836.6 0.729357 0.364678 0.931133i \(-0.381179\pi\)
0.364678 + 0.931133i \(0.381179\pi\)
\(642\) −8153.86 −0.501257
\(643\) −1448.21 −0.0888209 −0.0444104 0.999013i \(-0.514141\pi\)
−0.0444104 + 0.999013i \(0.514141\pi\)
\(644\) −6588.72 −0.403155
\(645\) 0 0
\(646\) −46472.0 −2.83037
\(647\) 8732.95 0.530646 0.265323 0.964160i \(-0.414521\pi\)
0.265323 + 0.964160i \(0.414521\pi\)
\(648\) −1009.98 −0.0612279
\(649\) 2234.49 0.135149
\(650\) 0 0
\(651\) 1980.46 0.119232
\(652\) −9736.37 −0.584824
\(653\) 21978.4 1.31712 0.658562 0.752527i \(-0.271165\pi\)
0.658562 + 0.752527i \(0.271165\pi\)
\(654\) 8271.91 0.494583
\(655\) 0 0
\(656\) 39181.1 2.33196
\(657\) −5591.59 −0.332038
\(658\) −11703.8 −0.693406
\(659\) −27761.7 −1.64103 −0.820516 0.571623i \(-0.806314\pi\)
−0.820516 + 0.571623i \(0.806314\pi\)
\(660\) 0 0
\(661\) −8573.72 −0.504507 −0.252254 0.967661i \(-0.581172\pi\)
−0.252254 + 0.967661i \(0.581172\pi\)
\(662\) 4313.86 0.253267
\(663\) 7005.27 0.410350
\(664\) −5071.39 −0.296398
\(665\) 0 0
\(666\) −3086.51 −0.179579
\(667\) −20113.2 −1.16760
\(668\) −3572.87 −0.206944
\(669\) 14027.6 0.810668
\(670\) 0 0
\(671\) 583.868 0.0335916
\(672\) 3821.22 0.219356
\(673\) −27159.2 −1.55559 −0.777795 0.628518i \(-0.783662\pi\)
−0.777795 + 0.628518i \(0.783662\pi\)
\(674\) 30879.1 1.76472
\(675\) 0 0
\(676\) −8194.26 −0.466219
\(677\) 1392.30 0.0790404 0.0395202 0.999219i \(-0.487417\pi\)
0.0395202 + 0.999219i \(0.487417\pi\)
\(678\) −11818.5 −0.669448
\(679\) 7033.42 0.397523
\(680\) 0 0
\(681\) 16329.3 0.918857
\(682\) 978.302 0.0549283
\(683\) 8675.09 0.486007 0.243004 0.970025i \(-0.421867\pi\)
0.243004 + 0.970025i \(0.421867\pi\)
\(684\) 4321.05 0.241549
\(685\) 0 0
\(686\) 1211.18 0.0674096
\(687\) 1608.91 0.0893504
\(688\) −3430.86 −0.190117
\(689\) 3501.30 0.193598
\(690\) 0 0
\(691\) −21426.0 −1.17957 −0.589785 0.807561i \(-0.700787\pi\)
−0.589785 + 0.807561i \(0.700787\pi\)
\(692\) 6454.65 0.354579
\(693\) −185.078 −0.0101451
\(694\) −16206.3 −0.886433
\(695\) 0 0
\(696\) 3572.11 0.194541
\(697\) 60160.4 3.26935
\(698\) −14088.8 −0.763997
\(699\) −550.470 −0.0297864
\(700\) 0 0
\(701\) 24840.5 1.33839 0.669197 0.743085i \(-0.266638\pi\)
0.669197 + 0.743085i \(0.266638\pi\)
\(702\) −1817.40 −0.0977116
\(703\) −10434.2 −0.559793
\(704\) 12.6139 0.000675288 0
\(705\) 0 0
\(706\) −8532.45 −0.454848
\(707\) −902.101 −0.0479873
\(708\) 10197.3 0.541295
\(709\) 12525.0 0.663450 0.331725 0.943376i \(-0.392369\pi\)
0.331725 + 0.943376i \(0.392369\pi\)
\(710\) 0 0
\(711\) −222.863 −0.0117553
\(712\) −3263.74 −0.171789
\(713\) 19863.3 1.04332
\(714\) 9083.69 0.476118
\(715\) 0 0
\(716\) 14941.6 0.779881
\(717\) −1929.65 −0.100508
\(718\) −9732.66 −0.505877
\(719\) 28085.0 1.45674 0.728369 0.685185i \(-0.240279\pi\)
0.728369 + 0.685185i \(0.240279\pi\)
\(720\) 0 0
\(721\) −5642.05 −0.291430
\(722\) 16537.9 0.852460
\(723\) 17266.8 0.888189
\(724\) 10063.1 0.516562
\(725\) 0 0
\(726\) 14008.4 0.716115
\(727\) 14326.2 0.730851 0.365426 0.930841i \(-0.380923\pi\)
0.365426 + 0.930841i \(0.380923\pi\)
\(728\) −1663.79 −0.0847037
\(729\) 729.000 0.0370370
\(730\) 0 0
\(731\) −5267.89 −0.266539
\(732\) 2664.53 0.134541
\(733\) −6727.85 −0.339016 −0.169508 0.985529i \(-0.554218\pi\)
−0.169508 + 0.985529i \(0.554218\pi\)
\(734\) −39240.8 −1.97331
\(735\) 0 0
\(736\) 38325.5 1.91943
\(737\) −910.677 −0.0455159
\(738\) −15607.6 −0.778490
\(739\) −3418.51 −0.170165 −0.0850826 0.996374i \(-0.527115\pi\)
−0.0850826 + 0.996374i \(0.527115\pi\)
\(740\) 0 0
\(741\) −6143.91 −0.304591
\(742\) 4540.11 0.224626
\(743\) −8095.50 −0.399724 −0.199862 0.979824i \(-0.564049\pi\)
−0.199862 + 0.979824i \(0.564049\pi\)
\(744\) −3527.72 −0.173834
\(745\) 0 0
\(746\) −21508.4 −1.05560
\(747\) 3660.51 0.179292
\(748\) 1608.20 0.0786119
\(749\) 5387.99 0.262847
\(750\) 0 0
\(751\) 13446.8 0.653371 0.326686 0.945133i \(-0.394068\pi\)
0.326686 + 0.945133i \(0.394068\pi\)
\(752\) 37775.4 1.83182
\(753\) 15396.8 0.745141
\(754\) 6427.84 0.310462
\(755\) 0 0
\(756\) −844.617 −0.0406328
\(757\) 2593.24 0.124508 0.0622541 0.998060i \(-0.480171\pi\)
0.0622541 + 0.998060i \(0.480171\pi\)
\(758\) 14069.0 0.674156
\(759\) −1856.26 −0.0887722
\(760\) 0 0
\(761\) 27079.4 1.28992 0.644959 0.764217i \(-0.276875\pi\)
0.644959 + 0.764217i \(0.276875\pi\)
\(762\) −19873.0 −0.944782
\(763\) −5465.99 −0.259348
\(764\) −4477.48 −0.212028
\(765\) 0 0
\(766\) −1124.58 −0.0530451
\(767\) −14499.0 −0.682568
\(768\) −15363.3 −0.721842
\(769\) 2138.72 0.100292 0.0501458 0.998742i \(-0.484031\pi\)
0.0501458 + 0.998742i \(0.484031\pi\)
\(770\) 0 0
\(771\) 15125.2 0.706513
\(772\) 18121.1 0.844810
\(773\) −25864.0 −1.20345 −0.601724 0.798704i \(-0.705519\pi\)
−0.601724 + 0.798704i \(0.705519\pi\)
\(774\) 1366.67 0.0634676
\(775\) 0 0
\(776\) −12528.4 −0.579566
\(777\) 2039.53 0.0941671
\(778\) 13720.1 0.632247
\(779\) −52763.1 −2.42675
\(780\) 0 0
\(781\) −1955.63 −0.0896006
\(782\) 91106.2 4.16618
\(783\) −2578.34 −0.117679
\(784\) −3909.23 −0.178081
\(785\) 0 0
\(786\) −3858.14 −0.175083
\(787\) 32371.3 1.46621 0.733107 0.680113i \(-0.238069\pi\)
0.733107 + 0.680113i \(0.238069\pi\)
\(788\) 22971.0 1.03846
\(789\) 22731.0 1.02566
\(790\) 0 0
\(791\) 7809.52 0.351043
\(792\) 329.673 0.0147909
\(793\) −3788.57 −0.169654
\(794\) −16970.8 −0.758526
\(795\) 0 0
\(796\) 2617.11 0.116534
\(797\) −2024.33 −0.0899691 −0.0449845 0.998988i \(-0.514324\pi\)
−0.0449845 + 0.998988i \(0.514324\pi\)
\(798\) −7966.76 −0.353409
\(799\) 58002.1 2.56817
\(800\) 0 0
\(801\) 2355.76 0.103916
\(802\) 12777.7 0.562589
\(803\) 1825.18 0.0802109
\(804\) −4155.95 −0.182300
\(805\) 0 0
\(806\) −6347.95 −0.277416
\(807\) −3069.29 −0.133884
\(808\) 1606.88 0.0699628
\(809\) 12391.7 0.538526 0.269263 0.963067i \(-0.413220\pi\)
0.269263 + 0.963067i \(0.413220\pi\)
\(810\) 0 0
\(811\) 14654.5 0.634511 0.317256 0.948340i \(-0.397239\pi\)
0.317256 + 0.948340i \(0.397239\pi\)
\(812\) 2987.26 0.129104
\(813\) 6755.94 0.291441
\(814\) 1007.49 0.0433813
\(815\) 0 0
\(816\) −29318.7 −1.25780
\(817\) 4620.16 0.197844
\(818\) −7447.33 −0.318325
\(819\) 1200.92 0.0512376
\(820\) 0 0
\(821\) 23887.9 1.01546 0.507731 0.861516i \(-0.330485\pi\)
0.507731 + 0.861516i \(0.330485\pi\)
\(822\) 16982.6 0.720604
\(823\) 4008.41 0.169774 0.0848871 0.996391i \(-0.472947\pi\)
0.0848871 + 0.996391i \(0.472947\pi\)
\(824\) 10050.0 0.424889
\(825\) 0 0
\(826\) −18800.8 −0.791966
\(827\) 45110.4 1.89679 0.948394 0.317096i \(-0.102708\pi\)
0.948394 + 0.317096i \(0.102708\pi\)
\(828\) −8471.21 −0.355549
\(829\) 16165.4 0.677260 0.338630 0.940920i \(-0.390036\pi\)
0.338630 + 0.940920i \(0.390036\pi\)
\(830\) 0 0
\(831\) −25892.2 −1.08085
\(832\) −81.8481 −0.00341054
\(833\) −6002.41 −0.249665
\(834\) −25753.8 −1.06928
\(835\) 0 0
\(836\) −1410.46 −0.0583514
\(837\) 2546.30 0.105153
\(838\) −24385.7 −1.00524
\(839\) −25244.4 −1.03878 −0.519388 0.854538i \(-0.673840\pi\)
−0.519388 + 0.854538i \(0.673840\pi\)
\(840\) 0 0
\(841\) −15269.9 −0.626096
\(842\) −34066.7 −1.39432
\(843\) 22564.9 0.921916
\(844\) −4715.37 −0.192310
\(845\) 0 0
\(846\) −15047.7 −0.611526
\(847\) −9256.59 −0.375514
\(848\) −14653.8 −0.593412
\(849\) 44.4506 0.00179687
\(850\) 0 0
\(851\) 20455.8 0.823990
\(852\) −8924.68 −0.358867
\(853\) 30168.1 1.21094 0.605472 0.795867i \(-0.292984\pi\)
0.605472 + 0.795867i \(0.292984\pi\)
\(854\) −4912.61 −0.196846
\(855\) 0 0
\(856\) −9597.44 −0.383217
\(857\) 13393.6 0.533857 0.266929 0.963716i \(-0.413991\pi\)
0.266929 + 0.963716i \(0.413991\pi\)
\(858\) 593.230 0.0236043
\(859\) 19060.4 0.757081 0.378541 0.925585i \(-0.376426\pi\)
0.378541 + 0.925585i \(0.376426\pi\)
\(860\) 0 0
\(861\) 10313.4 0.408222
\(862\) −45914.3 −1.81421
\(863\) 9466.86 0.373413 0.186707 0.982416i \(-0.440219\pi\)
0.186707 + 0.982416i \(0.440219\pi\)
\(864\) 4913.00 0.193453
\(865\) 0 0
\(866\) −25975.2 −1.01925
\(867\) −30278.3 −1.18605
\(868\) −2950.13 −0.115362
\(869\) 72.7461 0.00283975
\(870\) 0 0
\(871\) 5909.15 0.229878
\(872\) 9736.39 0.378115
\(873\) 9042.97 0.350582
\(874\) −79903.8 −3.09243
\(875\) 0 0
\(876\) 8329.37 0.321259
\(877\) −37740.6 −1.45315 −0.726573 0.687090i \(-0.758888\pi\)
−0.726573 + 0.687090i \(0.758888\pi\)
\(878\) 24397.3 0.937778
\(879\) 20740.2 0.795845
\(880\) 0 0
\(881\) 25991.5 0.993957 0.496979 0.867763i \(-0.334443\pi\)
0.496979 + 0.867763i \(0.334443\pi\)
\(882\) 1557.23 0.0594496
\(883\) −39420.3 −1.50238 −0.751189 0.660087i \(-0.770519\pi\)
−0.751189 + 0.660087i \(0.770519\pi\)
\(884\) −10435.2 −0.397030
\(885\) 0 0
\(886\) 52305.0 1.98332
\(887\) −46005.2 −1.74149 −0.870745 0.491735i \(-0.836363\pi\)
−0.870745 + 0.491735i \(0.836363\pi\)
\(888\) −3632.95 −0.137290
\(889\) 13131.9 0.495421
\(890\) 0 0
\(891\) −237.957 −0.00894710
\(892\) −20895.8 −0.784353
\(893\) −50870.2 −1.90628
\(894\) −24805.2 −0.927975
\(895\) 0 0
\(896\) 10083.8 0.375978
\(897\) 12044.8 0.448345
\(898\) −37622.6 −1.39809
\(899\) −9005.81 −0.334105
\(900\) 0 0
\(901\) −22500.1 −0.831950
\(902\) 5094.58 0.188061
\(903\) −903.081 −0.0332809
\(904\) −13910.8 −0.511801
\(905\) 0 0
\(906\) 22289.2 0.817340
\(907\) 2838.97 0.103932 0.0519661 0.998649i \(-0.483451\pi\)
0.0519661 + 0.998649i \(0.483451\pi\)
\(908\) −24324.6 −0.889030
\(909\) −1159.84 −0.0423208
\(910\) 0 0
\(911\) 39890.9 1.45076 0.725382 0.688347i \(-0.241663\pi\)
0.725382 + 0.688347i \(0.241663\pi\)
\(912\) 25713.7 0.933626
\(913\) −1194.85 −0.0433119
\(914\) 20675.3 0.748226
\(915\) 0 0
\(916\) −2396.67 −0.0864500
\(917\) 2549.42 0.0918094
\(918\) 11679.0 0.419897
\(919\) −646.475 −0.0232048 −0.0116024 0.999933i \(-0.503693\pi\)
−0.0116024 + 0.999933i \(0.503693\pi\)
\(920\) 0 0
\(921\) −22932.4 −0.820463
\(922\) 11316.3 0.404213
\(923\) 12689.6 0.452528
\(924\) 275.696 0.00981574
\(925\) 0 0
\(926\) −1312.37 −0.0465737
\(927\) −7254.07 −0.257017
\(928\) −17376.4 −0.614665
\(929\) 51188.2 1.80778 0.903892 0.427760i \(-0.140697\pi\)
0.903892 + 0.427760i \(0.140697\pi\)
\(930\) 0 0
\(931\) 5264.35 0.185319
\(932\) 819.993 0.0288195
\(933\) −22782.0 −0.799409
\(934\) 69747.8 2.44349
\(935\) 0 0
\(936\) −2139.16 −0.0747017
\(937\) −29786.1 −1.03849 −0.519247 0.854624i \(-0.673788\pi\)
−0.519247 + 0.854624i \(0.673788\pi\)
\(938\) 7662.36 0.266722
\(939\) −27383.5 −0.951680
\(940\) 0 0
\(941\) −44817.4 −1.55261 −0.776304 0.630358i \(-0.782908\pi\)
−0.776304 + 0.630358i \(0.782908\pi\)
\(942\) −6286.82 −0.217448
\(943\) 103439. 3.57206
\(944\) 60682.0 2.09219
\(945\) 0 0
\(946\) −446.103 −0.0153320
\(947\) −54697.1 −1.87689 −0.938446 0.345425i \(-0.887735\pi\)
−0.938446 + 0.345425i \(0.887735\pi\)
\(948\) 331.983 0.0113737
\(949\) −11843.2 −0.405105
\(950\) 0 0
\(951\) −14789.4 −0.504290
\(952\) 10691.9 0.363998
\(953\) 7577.51 0.257565 0.128783 0.991673i \(-0.458893\pi\)
0.128783 + 0.991673i \(0.458893\pi\)
\(954\) 5837.29 0.198102
\(955\) 0 0
\(956\) 2874.46 0.0972454
\(957\) 841.612 0.0284278
\(958\) −73313.4 −2.47249
\(959\) −11221.9 −0.377868
\(960\) 0 0
\(961\) −20897.1 −0.701457
\(962\) −6537.32 −0.219097
\(963\) 6927.41 0.231810
\(964\) −25721.1 −0.859357
\(965\) 0 0
\(966\) 15618.4 0.520202
\(967\) −50779.0 −1.68867 −0.844334 0.535817i \(-0.820004\pi\)
−0.844334 + 0.535817i \(0.820004\pi\)
\(968\) 16488.5 0.547478
\(969\) 39482.0 1.30892
\(970\) 0 0
\(971\) −15313.2 −0.506102 −0.253051 0.967453i \(-0.581434\pi\)
−0.253051 + 0.967453i \(0.581434\pi\)
\(972\) −1085.94 −0.0358348
\(973\) 17017.9 0.560707
\(974\) −62315.9 −2.05003
\(975\) 0 0
\(976\) 15856.1 0.520021
\(977\) −46620.4 −1.52663 −0.763316 0.646025i \(-0.776430\pi\)
−0.763316 + 0.646025i \(0.776430\pi\)
\(978\) 23079.9 0.754615
\(979\) −768.957 −0.0251031
\(980\) 0 0
\(981\) −7027.70 −0.228723
\(982\) −19906.6 −0.646889
\(983\) 2824.37 0.0916414 0.0458207 0.998950i \(-0.485410\pi\)
0.0458207 + 0.998950i \(0.485410\pi\)
\(984\) −18370.9 −0.595165
\(985\) 0 0
\(986\) −41306.6 −1.33415
\(987\) 9943.38 0.320670
\(988\) 9152.11 0.294704
\(989\) −9057.59 −0.291218
\(990\) 0 0
\(991\) 16951.4 0.543370 0.271685 0.962386i \(-0.412419\pi\)
0.271685 + 0.962386i \(0.412419\pi\)
\(992\) 17160.5 0.549239
\(993\) −3665.00 −0.117125
\(994\) 16454.5 0.525056
\(995\) 0 0
\(996\) −5452.79 −0.173472
\(997\) −23847.8 −0.757540 −0.378770 0.925491i \(-0.623653\pi\)
−0.378770 + 0.925491i \(0.623653\pi\)
\(998\) −61703.4 −1.95710
\(999\) 2622.26 0.0830476
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 525.4.a.k.1.2 2
3.2 odd 2 1575.4.a.w.1.1 2
5.2 odd 4 525.4.d.h.274.3 4
5.3 odd 4 525.4.d.h.274.2 4
5.4 even 2 105.4.a.f.1.1 2
15.14 odd 2 315.4.a.i.1.2 2
20.19 odd 2 1680.4.a.bg.1.1 2
35.34 odd 2 735.4.a.p.1.1 2
105.104 even 2 2205.4.a.z.1.2 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
105.4.a.f.1.1 2 5.4 even 2
315.4.a.i.1.2 2 15.14 odd 2
525.4.a.k.1.2 2 1.1 even 1 trivial
525.4.d.h.274.2 4 5.3 odd 4
525.4.d.h.274.3 4 5.2 odd 4
735.4.a.p.1.1 2 35.34 odd 2
1575.4.a.w.1.1 2 3.2 odd 2
1680.4.a.bg.1.1 2 20.19 odd 2
2205.4.a.z.1.2 2 105.104 even 2