Properties

Label 525.4.a.k.1.1
Level $525$
Weight $4$
Character 525.1
Self dual yes
Analytic conductor $30.976$
Analytic rank $1$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [525,4,Mod(1,525)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(525, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("525.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 525 = 3 \cdot 5^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 525.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(30.9760027530\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{65}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 16 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 105)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(4.53113\) of defining polynomial
Character \(\chi\) \(=\) 525.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-4.53113 q^{2} -3.00000 q^{3} +12.5311 q^{4} +13.5934 q^{6} +7.00000 q^{7} -20.5311 q^{8} +9.00000 q^{9} +O(q^{10})\) \(q-4.53113 q^{2} -3.00000 q^{3} +12.5311 q^{4} +13.5934 q^{6} +7.00000 q^{7} -20.5311 q^{8} +9.00000 q^{9} -19.0623 q^{11} -37.5934 q^{12} +2.93774 q^{13} -31.7179 q^{14} -7.21984 q^{16} +6.49806 q^{17} -40.7802 q^{18} -5.43580 q^{19} -21.0000 q^{21} +86.3735 q^{22} -49.3774 q^{23} +61.5934 q^{24} -13.3113 q^{26} -27.0000 q^{27} +87.7179 q^{28} -291.494 q^{29} +244.307 q^{31} +196.963 q^{32} +57.1868 q^{33} -29.4436 q^{34} +112.780 q^{36} +193.121 q^{37} +24.6303 q^{38} -8.81323 q^{39} +315.113 q^{41} +95.1537 q^{42} +300.996 q^{43} -238.872 q^{44} +223.735 q^{46} -86.5058 q^{47} +21.6595 q^{48} +49.0000 q^{49} -19.4942 q^{51} +36.8132 q^{52} -509.677 q^{53} +122.340 q^{54} -143.718 q^{56} +16.3074 q^{57} +1320.80 q^{58} -83.3852 q^{59} -5.25291 q^{61} -1106.99 q^{62} +63.0000 q^{63} -834.706 q^{64} -259.121 q^{66} -205.992 q^{67} +81.4281 q^{68} +148.132 q^{69} +1004.31 q^{71} -184.780 q^{72} +1007.29 q^{73} -875.055 q^{74} -68.1168 q^{76} -133.436 q^{77} +39.9339 q^{78} -863.237 q^{79} +81.0000 q^{81} -1427.82 q^{82} -1334.72 q^{83} -263.154 q^{84} -1363.85 q^{86} +874.483 q^{87} +391.370 q^{88} +326.249 q^{89} +20.5642 q^{91} -618.755 q^{92} -732.922 q^{93} +391.969 q^{94} -590.889 q^{96} -1526.77 q^{97} -222.025 q^{98} -171.560 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - q^{2} - 6 q^{3} + 17 q^{4} + 3 q^{6} + 14 q^{7} - 33 q^{8} + 18 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 2 q - q^{2} - 6 q^{3} + 17 q^{4} + 3 q^{6} + 14 q^{7} - 33 q^{8} + 18 q^{9} - 22 q^{11} - 51 q^{12} + 22 q^{13} - 7 q^{14} - 87 q^{16} - 116 q^{17} - 9 q^{18} + 102 q^{19} - 42 q^{21} + 76 q^{22} - 260 q^{23} + 99 q^{24} + 54 q^{26} - 54 q^{27} + 119 q^{28} - 196 q^{29} + 150 q^{31} + 15 q^{32} + 66 q^{33} - 462 q^{34} + 153 q^{36} + 96 q^{37} + 404 q^{38} - 66 q^{39} - 176 q^{41} + 21 q^{42} + 344 q^{43} - 252 q^{44} - 520 q^{46} - 560 q^{47} + 261 q^{48} + 98 q^{49} + 348 q^{51} + 122 q^{52} - 326 q^{53} + 27 q^{54} - 231 q^{56} - 306 q^{57} + 1658 q^{58} - 844 q^{59} - 204 q^{61} - 1440 q^{62} + 126 q^{63} - 839 q^{64} - 228 q^{66} + 104 q^{67} - 466 q^{68} + 780 q^{69} + 1670 q^{71} - 297 q^{72} + 386 q^{73} - 1218 q^{74} + 412 q^{76} - 154 q^{77} - 162 q^{78} - 888 q^{79} + 162 q^{81} - 3162 q^{82} - 928 q^{83} - 357 q^{84} - 1212 q^{86} + 588 q^{87} + 428 q^{88} + 588 q^{89} + 154 q^{91} - 1560 q^{92} - 450 q^{93} - 1280 q^{94} - 45 q^{96} - 522 q^{97} - 49 q^{98} - 198 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −4.53113 −1.60200 −0.800998 0.598667i \(-0.795697\pi\)
−0.800998 + 0.598667i \(0.795697\pi\)
\(3\) −3.00000 −0.577350
\(4\) 12.5311 1.56639
\(5\) 0 0
\(6\) 13.5934 0.924913
\(7\) 7.00000 0.377964
\(8\) −20.5311 −0.907356
\(9\) 9.00000 0.333333
\(10\) 0 0
\(11\) −19.0623 −0.522499 −0.261249 0.965271i \(-0.584135\pi\)
−0.261249 + 0.965271i \(0.584135\pi\)
\(12\) −37.5934 −0.904356
\(13\) 2.93774 0.0626756 0.0313378 0.999509i \(-0.490023\pi\)
0.0313378 + 0.999509i \(0.490023\pi\)
\(14\) −31.7179 −0.605498
\(15\) 0 0
\(16\) −7.21984 −0.112810
\(17\) 6.49806 0.0927066 0.0463533 0.998925i \(-0.485240\pi\)
0.0463533 + 0.998925i \(0.485240\pi\)
\(18\) −40.7802 −0.533999
\(19\) −5.43580 −0.0656347 −0.0328173 0.999461i \(-0.510448\pi\)
−0.0328173 + 0.999461i \(0.510448\pi\)
\(20\) 0 0
\(21\) −21.0000 −0.218218
\(22\) 86.3735 0.837041
\(23\) −49.3774 −0.447648 −0.223824 0.974630i \(-0.571854\pi\)
−0.223824 + 0.974630i \(0.571854\pi\)
\(24\) 61.5934 0.523862
\(25\) 0 0
\(26\) −13.3113 −0.100406
\(27\) −27.0000 −0.192450
\(28\) 87.7179 0.592040
\(29\) −291.494 −1.86652 −0.933261 0.359200i \(-0.883050\pi\)
−0.933261 + 0.359200i \(0.883050\pi\)
\(30\) 0 0
\(31\) 244.307 1.41545 0.707724 0.706489i \(-0.249722\pi\)
0.707724 + 0.706489i \(0.249722\pi\)
\(32\) 196.963 1.08808
\(33\) 57.1868 0.301665
\(34\) −29.4436 −0.148516
\(35\) 0 0
\(36\) 112.780 0.522130
\(37\) 193.121 0.858077 0.429038 0.903286i \(-0.358853\pi\)
0.429038 + 0.903286i \(0.358853\pi\)
\(38\) 24.6303 0.105147
\(39\) −8.81323 −0.0361858
\(40\) 0 0
\(41\) 315.113 1.20030 0.600151 0.799887i \(-0.295107\pi\)
0.600151 + 0.799887i \(0.295107\pi\)
\(42\) 95.1537 0.349584
\(43\) 300.996 1.06748 0.533738 0.845650i \(-0.320787\pi\)
0.533738 + 0.845650i \(0.320787\pi\)
\(44\) −238.872 −0.818437
\(45\) 0 0
\(46\) 223.735 0.717130
\(47\) −86.5058 −0.268472 −0.134236 0.990949i \(-0.542858\pi\)
−0.134236 + 0.990949i \(0.542858\pi\)
\(48\) 21.6595 0.0651309
\(49\) 49.0000 0.142857
\(50\) 0 0
\(51\) −19.4942 −0.0535242
\(52\) 36.8132 0.0981745
\(53\) −509.677 −1.32093 −0.660467 0.750855i \(-0.729642\pi\)
−0.660467 + 0.750855i \(0.729642\pi\)
\(54\) 122.340 0.308304
\(55\) 0 0
\(56\) −143.718 −0.342948
\(57\) 16.3074 0.0378942
\(58\) 1320.80 2.99016
\(59\) −83.3852 −0.183997 −0.0919985 0.995759i \(-0.529326\pi\)
−0.0919985 + 0.995759i \(0.529326\pi\)
\(60\) 0 0
\(61\) −5.25291 −0.0110257 −0.00551283 0.999985i \(-0.501755\pi\)
−0.00551283 + 0.999985i \(0.501755\pi\)
\(62\) −1106.99 −2.26754
\(63\) 63.0000 0.125988
\(64\) −834.706 −1.63029
\(65\) 0 0
\(66\) −259.121 −0.483266
\(67\) −205.992 −0.375611 −0.187806 0.982206i \(-0.560138\pi\)
−0.187806 + 0.982206i \(0.560138\pi\)
\(68\) 81.4281 0.145215
\(69\) 148.132 0.258450
\(70\) 0 0
\(71\) 1004.31 1.67872 0.839362 0.543573i \(-0.182929\pi\)
0.839362 + 0.543573i \(0.182929\pi\)
\(72\) −184.780 −0.302452
\(73\) 1007.29 1.61499 0.807494 0.589876i \(-0.200823\pi\)
0.807494 + 0.589876i \(0.200823\pi\)
\(74\) −875.055 −1.37464
\(75\) 0 0
\(76\) −68.1168 −0.102810
\(77\) −133.436 −0.197486
\(78\) 39.9339 0.0579695
\(79\) −863.237 −1.22939 −0.614695 0.788765i \(-0.710721\pi\)
−0.614695 + 0.788765i \(0.710721\pi\)
\(80\) 0 0
\(81\) 81.0000 0.111111
\(82\) −1427.82 −1.92288
\(83\) −1334.72 −1.76512 −0.882560 0.470200i \(-0.844182\pi\)
−0.882560 + 0.470200i \(0.844182\pi\)
\(84\) −263.154 −0.341815
\(85\) 0 0
\(86\) −1363.85 −1.71009
\(87\) 874.483 1.07764
\(88\) 391.370 0.474093
\(89\) 326.249 0.388565 0.194283 0.980946i \(-0.437762\pi\)
0.194283 + 0.980946i \(0.437762\pi\)
\(90\) 0 0
\(91\) 20.5642 0.0236892
\(92\) −618.755 −0.701192
\(93\) −732.922 −0.817210
\(94\) 391.969 0.430091
\(95\) 0 0
\(96\) −590.889 −0.628202
\(97\) −1526.77 −1.59815 −0.799075 0.601232i \(-0.794677\pi\)
−0.799075 + 0.601232i \(0.794677\pi\)
\(98\) −222.025 −0.228857
\(99\) −171.560 −0.174166
\(100\) 0 0
\(101\) 96.8716 0.0954365 0.0477182 0.998861i \(-0.484805\pi\)
0.0477182 + 0.998861i \(0.484805\pi\)
\(102\) 88.3307 0.0857455
\(103\) −1321.99 −1.26466 −0.632329 0.774700i \(-0.717901\pi\)
−0.632329 + 0.774700i \(0.717901\pi\)
\(104\) −60.3152 −0.0568691
\(105\) 0 0
\(106\) 2309.41 2.11613
\(107\) −1745.71 −1.57724 −0.788619 0.614883i \(-0.789203\pi\)
−0.788619 + 0.614883i \(0.789203\pi\)
\(108\) −338.340 −0.301452
\(109\) 476.856 0.419032 0.209516 0.977805i \(-0.432811\pi\)
0.209516 + 0.977805i \(0.432811\pi\)
\(110\) 0 0
\(111\) −579.362 −0.495411
\(112\) −50.5389 −0.0426382
\(113\) −1641.65 −1.36666 −0.683332 0.730108i \(-0.739470\pi\)
−0.683332 + 0.730108i \(0.739470\pi\)
\(114\) −73.8910 −0.0607064
\(115\) 0 0
\(116\) −3652.75 −2.92370
\(117\) 26.4397 0.0208919
\(118\) 377.829 0.294763
\(119\) 45.4864 0.0350398
\(120\) 0 0
\(121\) −967.630 −0.726995
\(122\) 23.8016 0.0176631
\(123\) −945.339 −0.692994
\(124\) 3061.45 2.21715
\(125\) 0 0
\(126\) −285.461 −0.201833
\(127\) 844.016 0.589719 0.294859 0.955541i \(-0.404727\pi\)
0.294859 + 0.955541i \(0.404727\pi\)
\(128\) 2206.46 1.52363
\(129\) −902.988 −0.616308
\(130\) 0 0
\(131\) −2796.20 −1.86493 −0.932463 0.361265i \(-0.882345\pi\)
−0.932463 + 0.361265i \(0.882345\pi\)
\(132\) 716.615 0.472525
\(133\) −38.0506 −0.0248076
\(134\) 933.377 0.601728
\(135\) 0 0
\(136\) −133.413 −0.0841179
\(137\) 2057.13 1.28287 0.641433 0.767179i \(-0.278340\pi\)
0.641433 + 0.767179i \(0.278340\pi\)
\(138\) −671.206 −0.414035
\(139\) −1745.12 −1.06489 −0.532444 0.846465i \(-0.678726\pi\)
−0.532444 + 0.846465i \(0.678726\pi\)
\(140\) 0 0
\(141\) 259.517 0.155002
\(142\) −4550.65 −2.68931
\(143\) −56.0000 −0.0327479
\(144\) −64.9786 −0.0376033
\(145\) 0 0
\(146\) −4564.15 −2.58720
\(147\) −147.000 −0.0824786
\(148\) 2420.02 1.34408
\(149\) −1173.57 −0.645254 −0.322627 0.946526i \(-0.604566\pi\)
−0.322627 + 0.946526i \(0.604566\pi\)
\(150\) 0 0
\(151\) 1540.07 0.829994 0.414997 0.909823i \(-0.363783\pi\)
0.414997 + 0.909823i \(0.363783\pi\)
\(152\) 111.603 0.0595540
\(153\) 58.4826 0.0309022
\(154\) 604.615 0.316372
\(155\) 0 0
\(156\) −110.440 −0.0566811
\(157\) 2544.53 1.29348 0.646738 0.762712i \(-0.276133\pi\)
0.646738 + 0.762712i \(0.276133\pi\)
\(158\) 3911.44 1.96948
\(159\) 1529.03 0.762642
\(160\) 0 0
\(161\) −345.642 −0.169195
\(162\) −367.021 −0.178000
\(163\) 594.708 0.285774 0.142887 0.989739i \(-0.454361\pi\)
0.142887 + 0.989739i \(0.454361\pi\)
\(164\) 3948.72 1.88014
\(165\) 0 0
\(166\) 6047.81 2.82772
\(167\) −928.498 −0.430236 −0.215118 0.976588i \(-0.569014\pi\)
−0.215118 + 0.976588i \(0.569014\pi\)
\(168\) 431.154 0.198001
\(169\) −2188.37 −0.996072
\(170\) 0 0
\(171\) −48.9222 −0.0218782
\(172\) 3771.82 1.67209
\(173\) 315.642 0.138716 0.0693578 0.997592i \(-0.477905\pi\)
0.0693578 + 0.997592i \(0.477905\pi\)
\(174\) −3962.39 −1.72637
\(175\) 0 0
\(176\) 137.626 0.0589431
\(177\) 250.156 0.106231
\(178\) −1478.28 −0.622480
\(179\) −1445.49 −0.603581 −0.301791 0.953374i \(-0.597584\pi\)
−0.301791 + 0.953374i \(0.597584\pi\)
\(180\) 0 0
\(181\) −1843.81 −0.757180 −0.378590 0.925564i \(-0.623591\pi\)
−0.378590 + 0.925564i \(0.623591\pi\)
\(182\) −93.1790 −0.0379499
\(183\) 15.7587 0.00636567
\(184\) 1013.77 0.406176
\(185\) 0 0
\(186\) 3320.97 1.30917
\(187\) −123.868 −0.0484391
\(188\) −1084.02 −0.420532
\(189\) −189.000 −0.0727393
\(190\) 0 0
\(191\) −244.074 −0.0924637 −0.0462318 0.998931i \(-0.514721\pi\)
−0.0462318 + 0.998931i \(0.514721\pi\)
\(192\) 2504.12 0.941246
\(193\) 1733.03 0.646355 0.323178 0.946338i \(-0.395249\pi\)
0.323178 + 0.946338i \(0.395249\pi\)
\(194\) 6918.01 2.56023
\(195\) 0 0
\(196\) 614.025 0.223770
\(197\) −358.230 −0.129557 −0.0647787 0.997900i \(-0.520634\pi\)
−0.0647787 + 0.997900i \(0.520634\pi\)
\(198\) 777.362 0.279014
\(199\) −3203.63 −1.14120 −0.570601 0.821227i \(-0.693290\pi\)
−0.570601 + 0.821227i \(0.693290\pi\)
\(200\) 0 0
\(201\) 617.977 0.216859
\(202\) −438.938 −0.152889
\(203\) −2040.46 −0.705479
\(204\) −244.284 −0.0838398
\(205\) 0 0
\(206\) 5990.12 2.02598
\(207\) −444.397 −0.149216
\(208\) −21.2100 −0.00707044
\(209\) 103.619 0.0342940
\(210\) 0 0
\(211\) 4943.16 1.61280 0.806401 0.591369i \(-0.201412\pi\)
0.806401 + 0.591369i \(0.201412\pi\)
\(212\) −6386.83 −2.06910
\(213\) −3012.92 −0.969211
\(214\) 7910.05 2.52673
\(215\) 0 0
\(216\) 554.340 0.174621
\(217\) 1710.15 0.534989
\(218\) −2160.70 −0.671288
\(219\) −3021.86 −0.932414
\(220\) 0 0
\(221\) 19.0896 0.00581044
\(222\) 2625.16 0.793646
\(223\) −3160.15 −0.948965 −0.474482 0.880265i \(-0.657365\pi\)
−0.474482 + 0.880265i \(0.657365\pi\)
\(224\) 1378.74 0.411255
\(225\) 0 0
\(226\) 7438.51 2.18939
\(227\) 3651.11 1.06755 0.533773 0.845628i \(-0.320774\pi\)
0.533773 + 0.845628i \(0.320774\pi\)
\(228\) 204.350 0.0593571
\(229\) −4083.70 −1.17842 −0.589210 0.807980i \(-0.700561\pi\)
−0.589210 + 0.807980i \(0.700561\pi\)
\(230\) 0 0
\(231\) 400.307 0.114019
\(232\) 5984.70 1.69360
\(233\) 3682.51 1.03540 0.517702 0.855561i \(-0.326788\pi\)
0.517702 + 0.855561i \(0.326788\pi\)
\(234\) −119.802 −0.0334687
\(235\) 0 0
\(236\) −1044.91 −0.288211
\(237\) 2589.71 0.709789
\(238\) −206.105 −0.0561336
\(239\) 2658.78 0.719591 0.359796 0.933031i \(-0.382846\pi\)
0.359796 + 0.933031i \(0.382846\pi\)
\(240\) 0 0
\(241\) −4820.39 −1.28842 −0.644209 0.764850i \(-0.722813\pi\)
−0.644209 + 0.764850i \(0.722813\pi\)
\(242\) 4384.46 1.16464
\(243\) −243.000 −0.0641500
\(244\) −65.8249 −0.0172705
\(245\) 0 0
\(246\) 4283.45 1.11017
\(247\) −15.9690 −0.00411369
\(248\) −5015.91 −1.28432
\(249\) 4004.17 1.01909
\(250\) 0 0
\(251\) 1672.27 0.420530 0.210265 0.977644i \(-0.432567\pi\)
0.210265 + 0.977644i \(0.432567\pi\)
\(252\) 789.461 0.197347
\(253\) 941.245 0.233896
\(254\) −3824.34 −0.944727
\(255\) 0 0
\(256\) −3320.09 −0.810569
\(257\) 3697.74 0.897506 0.448753 0.893656i \(-0.351868\pi\)
0.448753 + 0.893656i \(0.351868\pi\)
\(258\) 4091.56 0.987322
\(259\) 1351.84 0.324323
\(260\) 0 0
\(261\) −2623.45 −0.622174
\(262\) 12670.0 2.98760
\(263\) −7319.00 −1.71600 −0.858002 0.513646i \(-0.828294\pi\)
−0.858002 + 0.513646i \(0.828294\pi\)
\(264\) −1174.11 −0.273717
\(265\) 0 0
\(266\) 172.412 0.0397416
\(267\) −978.747 −0.224338
\(268\) −2581.32 −0.588354
\(269\) −815.097 −0.184749 −0.0923743 0.995724i \(-0.529446\pi\)
−0.0923743 + 0.995724i \(0.529446\pi\)
\(270\) 0 0
\(271\) −5106.02 −1.14453 −0.572267 0.820068i \(-0.693936\pi\)
−0.572267 + 0.820068i \(0.693936\pi\)
\(272\) −46.9150 −0.0104582
\(273\) −61.6926 −0.0136769
\(274\) −9321.13 −2.05515
\(275\) 0 0
\(276\) 1856.26 0.404833
\(277\) −1398.72 −0.303398 −0.151699 0.988427i \(-0.548474\pi\)
−0.151699 + 0.988427i \(0.548474\pi\)
\(278\) 7907.39 1.70595
\(279\) 2198.77 0.471816
\(280\) 0 0
\(281\) −7102.38 −1.50780 −0.753901 0.656988i \(-0.771830\pi\)
−0.753901 + 0.656988i \(0.771830\pi\)
\(282\) −1175.91 −0.248313
\(283\) −4465.18 −0.937907 −0.468953 0.883223i \(-0.655369\pi\)
−0.468953 + 0.883223i \(0.655369\pi\)
\(284\) 12585.1 2.62954
\(285\) 0 0
\(286\) 253.743 0.0524621
\(287\) 2205.79 0.453671
\(288\) 1772.67 0.362692
\(289\) −4870.78 −0.991405
\(290\) 0 0
\(291\) 4580.32 0.922692
\(292\) 12622.5 2.52970
\(293\) −7590.61 −1.51348 −0.756738 0.653718i \(-0.773208\pi\)
−0.756738 + 0.653718i \(0.773208\pi\)
\(294\) 666.076 0.132130
\(295\) 0 0
\(296\) −3964.98 −0.778581
\(297\) 514.681 0.100555
\(298\) 5317.61 1.03369
\(299\) −145.058 −0.0280566
\(300\) 0 0
\(301\) 2106.97 0.403468
\(302\) −6978.26 −1.32965
\(303\) −290.615 −0.0551003
\(304\) 39.2456 0.00740425
\(305\) 0 0
\(306\) −264.992 −0.0495052
\(307\) −9480.12 −1.76241 −0.881203 0.472737i \(-0.843266\pi\)
−0.881203 + 0.472737i \(0.843266\pi\)
\(308\) −1672.10 −0.309340
\(309\) 3965.98 0.730151
\(310\) 0 0
\(311\) 7078.01 1.29054 0.645268 0.763956i \(-0.276746\pi\)
0.645268 + 0.763956i \(0.276746\pi\)
\(312\) 180.945 0.0328334
\(313\) −5593.84 −1.01017 −0.505084 0.863070i \(-0.668539\pi\)
−0.505084 + 0.863070i \(0.668539\pi\)
\(314\) −11529.6 −2.07214
\(315\) 0 0
\(316\) −10817.3 −1.92571
\(317\) −3567.81 −0.632139 −0.316070 0.948736i \(-0.602363\pi\)
−0.316070 + 0.948736i \(0.602363\pi\)
\(318\) −6928.24 −1.22175
\(319\) 5556.54 0.975255
\(320\) 0 0
\(321\) 5237.14 0.910618
\(322\) 1566.15 0.271050
\(323\) −35.3222 −0.00608477
\(324\) 1015.02 0.174043
\(325\) 0 0
\(326\) −2694.70 −0.457809
\(327\) −1430.57 −0.241928
\(328\) −6469.62 −1.08910
\(329\) −605.541 −0.101473
\(330\) 0 0
\(331\) −4389.67 −0.728936 −0.364468 0.931216i \(-0.618749\pi\)
−0.364468 + 0.931216i \(0.618749\pi\)
\(332\) −16725.6 −2.76487
\(333\) 1738.09 0.286026
\(334\) 4207.14 0.689236
\(335\) 0 0
\(336\) 151.617 0.0246172
\(337\) −2348.83 −0.379671 −0.189835 0.981816i \(-0.560795\pi\)
−0.189835 + 0.981816i \(0.560795\pi\)
\(338\) 9915.79 1.59570
\(339\) 4924.94 0.789044
\(340\) 0 0
\(341\) −4657.05 −0.739570
\(342\) 221.673 0.0350488
\(343\) 343.000 0.0539949
\(344\) −6179.79 −0.968581
\(345\) 0 0
\(346\) −1430.21 −0.222222
\(347\) −558.436 −0.0863931 −0.0431965 0.999067i \(-0.513754\pi\)
−0.0431965 + 0.999067i \(0.513754\pi\)
\(348\) 10958.3 1.68800
\(349\) 3233.89 0.496006 0.248003 0.968759i \(-0.420226\pi\)
0.248003 + 0.968759i \(0.420226\pi\)
\(350\) 0 0
\(351\) −79.3190 −0.0120619
\(352\) −3754.56 −0.568519
\(353\) 7516.35 1.13330 0.566650 0.823959i \(-0.308239\pi\)
0.566650 + 0.823959i \(0.308239\pi\)
\(354\) −1133.49 −0.170181
\(355\) 0 0
\(356\) 4088.27 0.608646
\(357\) −136.459 −0.0202302
\(358\) 6549.70 0.966935
\(359\) −6577.76 −0.967021 −0.483511 0.875338i \(-0.660639\pi\)
−0.483511 + 0.875338i \(0.660639\pi\)
\(360\) 0 0
\(361\) −6829.45 −0.995692
\(362\) 8354.56 1.21300
\(363\) 2902.89 0.419731
\(364\) 257.693 0.0371065
\(365\) 0 0
\(366\) −71.4048 −0.0101978
\(367\) −8307.17 −1.18155 −0.590777 0.806835i \(-0.701179\pi\)
−0.590777 + 0.806835i \(0.701179\pi\)
\(368\) 356.497 0.0504992
\(369\) 2836.02 0.400101
\(370\) 0 0
\(371\) −3567.74 −0.499266
\(372\) −9184.34 −1.28007
\(373\) 4551.09 0.631760 0.315880 0.948799i \(-0.397700\pi\)
0.315880 + 0.948799i \(0.397700\pi\)
\(374\) 561.261 0.0775992
\(375\) 0 0
\(376\) 1776.06 0.243599
\(377\) −856.335 −0.116985
\(378\) 856.383 0.116528
\(379\) −1788.29 −0.242370 −0.121185 0.992630i \(-0.538669\pi\)
−0.121185 + 0.992630i \(0.538669\pi\)
\(380\) 0 0
\(381\) −2532.05 −0.340474
\(382\) 1105.93 0.148126
\(383\) 1358.47 0.181240 0.0906199 0.995886i \(-0.471115\pi\)
0.0906199 + 0.995886i \(0.471115\pi\)
\(384\) −6619.37 −0.879670
\(385\) 0 0
\(386\) −7852.60 −1.03546
\(387\) 2708.97 0.355825
\(388\) −19132.2 −2.50333
\(389\) 9722.54 1.26723 0.633615 0.773649i \(-0.281570\pi\)
0.633615 + 0.773649i \(0.281570\pi\)
\(390\) 0 0
\(391\) −320.858 −0.0414999
\(392\) −1006.03 −0.129622
\(393\) 8388.61 1.07672
\(394\) 1623.19 0.207551
\(395\) 0 0
\(396\) −2149.84 −0.272812
\(397\) 4788.04 0.605302 0.302651 0.953101i \(-0.402128\pi\)
0.302651 + 0.953101i \(0.402128\pi\)
\(398\) 14516.1 1.82820
\(399\) 114.152 0.0143227
\(400\) 0 0
\(401\) 9681.41 1.20565 0.602826 0.797873i \(-0.294041\pi\)
0.602826 + 0.797873i \(0.294041\pi\)
\(402\) −2800.13 −0.347408
\(403\) 717.712 0.0887141
\(404\) 1213.91 0.149491
\(405\) 0 0
\(406\) 9245.58 1.13017
\(407\) −3681.32 −0.448344
\(408\) 400.238 0.0485655
\(409\) 11113.1 1.34353 0.671767 0.740763i \(-0.265536\pi\)
0.671767 + 0.740763i \(0.265536\pi\)
\(410\) 0 0
\(411\) −6171.40 −0.740663
\(412\) −16566.1 −1.98095
\(413\) −583.696 −0.0695443
\(414\) 2013.62 0.239043
\(415\) 0 0
\(416\) 578.627 0.0681959
\(417\) 5235.37 0.614814
\(418\) −469.510 −0.0549389
\(419\) −1230.09 −0.143421 −0.0717107 0.997425i \(-0.522846\pi\)
−0.0717107 + 0.997425i \(0.522846\pi\)
\(420\) 0 0
\(421\) −12356.5 −1.43044 −0.715222 0.698897i \(-0.753674\pi\)
−0.715222 + 0.698897i \(0.753674\pi\)
\(422\) −22398.1 −2.58370
\(423\) −778.552 −0.0894906
\(424\) 10464.2 1.19856
\(425\) 0 0
\(426\) 13651.9 1.55267
\(427\) −36.7703 −0.00416731
\(428\) −21875.7 −2.47057
\(429\) 168.000 0.0189070
\(430\) 0 0
\(431\) −7375.27 −0.824256 −0.412128 0.911126i \(-0.635214\pi\)
−0.412128 + 0.911126i \(0.635214\pi\)
\(432\) 194.936 0.0217103
\(433\) 690.067 0.0765877 0.0382939 0.999267i \(-0.487808\pi\)
0.0382939 + 0.999267i \(0.487808\pi\)
\(434\) −7748.92 −0.857051
\(435\) 0 0
\(436\) 5975.55 0.656369
\(437\) 268.406 0.0293812
\(438\) 13692.5 1.49372
\(439\) 8408.79 0.914191 0.457095 0.889418i \(-0.348890\pi\)
0.457095 + 0.889418i \(0.348890\pi\)
\(440\) 0 0
\(441\) 441.000 0.0476190
\(442\) −86.4976 −0.00930830
\(443\) −6568.55 −0.704473 −0.352236 0.935911i \(-0.614579\pi\)
−0.352236 + 0.935911i \(0.614579\pi\)
\(444\) −7260.06 −0.776007
\(445\) 0 0
\(446\) 14319.0 1.52024
\(447\) 3520.72 0.372537
\(448\) −5842.94 −0.616190
\(449\) 2954.55 0.310543 0.155271 0.987872i \(-0.450375\pi\)
0.155271 + 0.987872i \(0.450375\pi\)
\(450\) 0 0
\(451\) −6006.76 −0.627156
\(452\) −20571.7 −2.14073
\(453\) −4620.21 −0.479197
\(454\) −16543.7 −1.71020
\(455\) 0 0
\(456\) −334.810 −0.0343835
\(457\) 8144.84 0.833697 0.416849 0.908976i \(-0.363135\pi\)
0.416849 + 0.908976i \(0.363135\pi\)
\(458\) 18503.8 1.88782
\(459\) −175.448 −0.0178414
\(460\) 0 0
\(461\) 2495.26 0.252095 0.126048 0.992024i \(-0.459771\pi\)
0.126048 + 0.992024i \(0.459771\pi\)
\(462\) −1813.84 −0.182657
\(463\) 5755.66 0.577728 0.288864 0.957370i \(-0.406722\pi\)
0.288864 + 0.957370i \(0.406722\pi\)
\(464\) 2104.54 0.210562
\(465\) 0 0
\(466\) −16685.9 −1.65871
\(467\) 4143.73 0.410598 0.205299 0.978699i \(-0.434183\pi\)
0.205299 + 0.978699i \(0.434183\pi\)
\(468\) 331.319 0.0327248
\(469\) −1441.95 −0.141968
\(470\) 0 0
\(471\) −7633.60 −0.746789
\(472\) 1711.99 0.166951
\(473\) −5737.67 −0.557755
\(474\) −11734.3 −1.13708
\(475\) 0 0
\(476\) 569.996 0.0548860
\(477\) −4587.09 −0.440312
\(478\) −12047.3 −1.15278
\(479\) −6765.96 −0.645396 −0.322698 0.946502i \(-0.604590\pi\)
−0.322698 + 0.946502i \(0.604590\pi\)
\(480\) 0 0
\(481\) 567.339 0.0537805
\(482\) 21841.8 2.06404
\(483\) 1036.93 0.0976848
\(484\) −12125.5 −1.13876
\(485\) 0 0
\(486\) 1101.06 0.102768
\(487\) −6360.42 −0.591824 −0.295912 0.955215i \(-0.595623\pi\)
−0.295912 + 0.955215i \(0.595623\pi\)
\(488\) 107.848 0.0100042
\(489\) −1784.12 −0.164992
\(490\) 0 0
\(491\) −7072.54 −0.650060 −0.325030 0.945704i \(-0.605374\pi\)
−0.325030 + 0.945704i \(0.605374\pi\)
\(492\) −11846.2 −1.08550
\(493\) −1894.15 −0.173039
\(494\) 72.3576 0.00659012
\(495\) 0 0
\(496\) −1763.86 −0.159677
\(497\) 7030.15 0.634498
\(498\) −18143.4 −1.63258
\(499\) −18473.9 −1.65732 −0.828661 0.559751i \(-0.810897\pi\)
−0.828661 + 0.559751i \(0.810897\pi\)
\(500\) 0 0
\(501\) 2785.49 0.248397
\(502\) −7577.28 −0.673687
\(503\) −11379.2 −1.00869 −0.504347 0.863501i \(-0.668267\pi\)
−0.504347 + 0.863501i \(0.668267\pi\)
\(504\) −1293.46 −0.114316
\(505\) 0 0
\(506\) −4264.90 −0.374700
\(507\) 6565.11 0.575082
\(508\) 10576.5 0.923730
\(509\) 6064.48 0.528101 0.264051 0.964509i \(-0.414941\pi\)
0.264051 + 0.964509i \(0.414941\pi\)
\(510\) 0 0
\(511\) 7051.02 0.610408
\(512\) −2607.89 −0.225105
\(513\) 146.767 0.0126314
\(514\) −16755.0 −1.43780
\(515\) 0 0
\(516\) −11315.5 −0.965379
\(517\) 1649.00 0.140276
\(518\) −6125.38 −0.519563
\(519\) −946.926 −0.0800875
\(520\) 0 0
\(521\) 2682.88 0.225603 0.112801 0.993618i \(-0.464018\pi\)
0.112801 + 0.993618i \(0.464018\pi\)
\(522\) 11887.2 0.996720
\(523\) 4309.02 0.360268 0.180134 0.983642i \(-0.442347\pi\)
0.180134 + 0.983642i \(0.442347\pi\)
\(524\) −35039.6 −2.92120
\(525\) 0 0
\(526\) 33163.3 2.74903
\(527\) 1587.52 0.131221
\(528\) −412.879 −0.0340308
\(529\) −9728.87 −0.799611
\(530\) 0 0
\(531\) −750.467 −0.0613323
\(532\) −476.817 −0.0388584
\(533\) 925.720 0.0752296
\(534\) 4434.83 0.359389
\(535\) 0 0
\(536\) 4229.25 0.340813
\(537\) 4336.47 0.348478
\(538\) 3693.31 0.295966
\(539\) −934.051 −0.0746427
\(540\) 0 0
\(541\) 4081.47 0.324355 0.162178 0.986762i \(-0.448148\pi\)
0.162178 + 0.986762i \(0.448148\pi\)
\(542\) 23136.0 1.83354
\(543\) 5531.44 0.437158
\(544\) 1279.88 0.100872
\(545\) 0 0
\(546\) 279.537 0.0219104
\(547\) −8844.82 −0.691366 −0.345683 0.938351i \(-0.612353\pi\)
−0.345683 + 0.938351i \(0.612353\pi\)
\(548\) 25778.2 2.00947
\(549\) −47.2762 −0.00367522
\(550\) 0 0
\(551\) 1584.51 0.122509
\(552\) −3041.32 −0.234506
\(553\) −6042.66 −0.464666
\(554\) 6337.80 0.486042
\(555\) 0 0
\(556\) −21868.4 −1.66803
\(557\) 11144.7 0.847787 0.423894 0.905712i \(-0.360663\pi\)
0.423894 + 0.905712i \(0.360663\pi\)
\(558\) −9962.90 −0.755848
\(559\) 884.249 0.0669047
\(560\) 0 0
\(561\) 371.603 0.0279663
\(562\) 32181.8 2.41549
\(563\) 21857.5 1.63621 0.818104 0.575071i \(-0.195025\pi\)
0.818104 + 0.575071i \(0.195025\pi\)
\(564\) 3252.05 0.242794
\(565\) 0 0
\(566\) 20232.3 1.50252
\(567\) 567.000 0.0419961
\(568\) −20619.6 −1.52320
\(569\) 23496.4 1.73115 0.865573 0.500783i \(-0.166954\pi\)
0.865573 + 0.500783i \(0.166954\pi\)
\(570\) 0 0
\(571\) 11067.8 0.811164 0.405582 0.914059i \(-0.367069\pi\)
0.405582 + 0.914059i \(0.367069\pi\)
\(572\) −701.743 −0.0512961
\(573\) 732.222 0.0533839
\(574\) −9994.72 −0.726780
\(575\) 0 0
\(576\) −7512.36 −0.543429
\(577\) −20482.9 −1.47784 −0.738922 0.673791i \(-0.764665\pi\)
−0.738922 + 0.673791i \(0.764665\pi\)
\(578\) 22070.1 1.58823
\(579\) −5199.10 −0.373173
\(580\) 0 0
\(581\) −9343.07 −0.667153
\(582\) −20754.0 −1.47815
\(583\) 9715.60 0.690187
\(584\) −20680.8 −1.46537
\(585\) 0 0
\(586\) 34394.1 2.42458
\(587\) 23444.3 1.64847 0.824235 0.566248i \(-0.191606\pi\)
0.824235 + 0.566248i \(0.191606\pi\)
\(588\) −1842.08 −0.129194
\(589\) −1328.01 −0.0929025
\(590\) 0 0
\(591\) 1074.69 0.0748000
\(592\) −1394.30 −0.0967996
\(593\) −4404.69 −0.305024 −0.152512 0.988302i \(-0.548736\pi\)
−0.152512 + 0.988302i \(0.548736\pi\)
\(594\) −2332.09 −0.161089
\(595\) 0 0
\(596\) −14706.2 −1.01072
\(597\) 9610.89 0.658874
\(598\) 657.277 0.0449466
\(599\) 3327.05 0.226945 0.113472 0.993541i \(-0.463803\pi\)
0.113472 + 0.993541i \(0.463803\pi\)
\(600\) 0 0
\(601\) −14244.8 −0.966818 −0.483409 0.875395i \(-0.660602\pi\)
−0.483409 + 0.875395i \(0.660602\pi\)
\(602\) −9546.97 −0.646354
\(603\) −1853.93 −0.125204
\(604\) 19298.8 1.30010
\(605\) 0 0
\(606\) 1316.81 0.0882704
\(607\) −11446.5 −0.765402 −0.382701 0.923872i \(-0.625006\pi\)
−0.382701 + 0.923872i \(0.625006\pi\)
\(608\) −1070.65 −0.0714156
\(609\) 6121.38 0.407308
\(610\) 0 0
\(611\) −254.132 −0.0168266
\(612\) 732.852 0.0484049
\(613\) 19436.4 1.28063 0.640316 0.768111i \(-0.278803\pi\)
0.640316 + 0.768111i \(0.278803\pi\)
\(614\) 42955.6 2.82337
\(615\) 0 0
\(616\) 2739.59 0.179190
\(617\) 20530.1 1.33956 0.669781 0.742558i \(-0.266388\pi\)
0.669781 + 0.742558i \(0.266388\pi\)
\(618\) −17970.4 −1.16970
\(619\) 5833.35 0.378776 0.189388 0.981902i \(-0.439350\pi\)
0.189388 + 0.981902i \(0.439350\pi\)
\(620\) 0 0
\(621\) 1333.19 0.0861499
\(622\) −32071.4 −2.06744
\(623\) 2283.74 0.146864
\(624\) 63.6301 0.00408212
\(625\) 0 0
\(626\) 25346.4 1.61829
\(627\) −310.856 −0.0197997
\(628\) 31885.9 2.02609
\(629\) 1254.91 0.0795493
\(630\) 0 0
\(631\) 24776.6 1.56314 0.781568 0.623820i \(-0.214420\pi\)
0.781568 + 0.623820i \(0.214420\pi\)
\(632\) 17723.2 1.11549
\(633\) −14829.5 −0.931152
\(634\) 16166.2 1.01268
\(635\) 0 0
\(636\) 19160.5 1.19460
\(637\) 143.949 0.00895366
\(638\) −25177.4 −1.56235
\(639\) 9038.77 0.559574
\(640\) 0 0
\(641\) 27219.4 1.67723 0.838613 0.544728i \(-0.183367\pi\)
0.838613 + 0.544728i \(0.183367\pi\)
\(642\) −23730.1 −1.45881
\(643\) −7091.79 −0.434950 −0.217475 0.976066i \(-0.569782\pi\)
−0.217475 + 0.976066i \(0.569782\pi\)
\(644\) −4331.28 −0.265026
\(645\) 0 0
\(646\) 160.049 0.00974777
\(647\) −27773.0 −1.68758 −0.843792 0.536670i \(-0.819682\pi\)
−0.843792 + 0.536670i \(0.819682\pi\)
\(648\) −1663.02 −0.100817
\(649\) 1589.51 0.0961382
\(650\) 0 0
\(651\) −5130.46 −0.308876
\(652\) 7452.37 0.447634
\(653\) −21380.4 −1.28129 −0.640643 0.767839i \(-0.721332\pi\)
−0.640643 + 0.767839i \(0.721332\pi\)
\(654\) 6482.09 0.387568
\(655\) 0 0
\(656\) −2275.06 −0.135406
\(657\) 9065.59 0.538329
\(658\) 2743.78 0.162559
\(659\) −17232.3 −1.01863 −0.509315 0.860580i \(-0.670101\pi\)
−0.509315 + 0.860580i \(0.670101\pi\)
\(660\) 0 0
\(661\) 26577.7 1.56392 0.781962 0.623326i \(-0.214219\pi\)
0.781962 + 0.623326i \(0.214219\pi\)
\(662\) 19890.1 1.16775
\(663\) −57.2689 −0.00335466
\(664\) 27403.4 1.60159
\(665\) 0 0
\(666\) −7875.49 −0.458212
\(667\) 14393.2 0.835544
\(668\) −11635.1 −0.673917
\(669\) 9480.44 0.547885
\(670\) 0 0
\(671\) 100.132 0.00576090
\(672\) −4136.22 −0.237438
\(673\) 31695.2 1.81540 0.907698 0.419624i \(-0.137838\pi\)
0.907698 + 0.419624i \(0.137838\pi\)
\(674\) 10642.9 0.608231
\(675\) 0 0
\(676\) −27422.7 −1.56024
\(677\) −20440.3 −1.16039 −0.580195 0.814477i \(-0.697024\pi\)
−0.580195 + 0.814477i \(0.697024\pi\)
\(678\) −22315.5 −1.26405
\(679\) −10687.4 −0.604044
\(680\) 0 0
\(681\) −10953.3 −0.616348
\(682\) 21101.7 1.18479
\(683\) 22896.9 1.28276 0.641381 0.767223i \(-0.278362\pi\)
0.641381 + 0.767223i \(0.278362\pi\)
\(684\) −613.051 −0.0342699
\(685\) 0 0
\(686\) −1554.18 −0.0864997
\(687\) 12251.1 0.680361
\(688\) −2173.14 −0.120422
\(689\) −1497.30 −0.0827904
\(690\) 0 0
\(691\) −23764.0 −1.30829 −0.654143 0.756371i \(-0.726971\pi\)
−0.654143 + 0.756371i \(0.726971\pi\)
\(692\) 3955.35 0.217283
\(693\) −1200.92 −0.0658287
\(694\) 2530.34 0.138401
\(695\) 0 0
\(696\) −17954.1 −0.977800
\(697\) 2047.62 0.111276
\(698\) −14653.2 −0.794600
\(699\) −11047.5 −0.597791
\(700\) 0 0
\(701\) 26259.5 1.41485 0.707423 0.706791i \(-0.249858\pi\)
0.707423 + 0.706791i \(0.249858\pi\)
\(702\) 359.405 0.0193232
\(703\) −1049.77 −0.0563196
\(704\) 15911.4 0.851822
\(705\) 0 0
\(706\) −34057.6 −1.81554
\(707\) 678.101 0.0360716
\(708\) 3134.73 0.166399
\(709\) 12783.0 0.677116 0.338558 0.940945i \(-0.390061\pi\)
0.338558 + 0.940945i \(0.390061\pi\)
\(710\) 0 0
\(711\) −7769.14 −0.409797
\(712\) −6698.26 −0.352567
\(713\) −12063.3 −0.633623
\(714\) 618.315 0.0324087
\(715\) 0 0
\(716\) −18113.6 −0.945444
\(717\) −7976.35 −0.415456
\(718\) 29804.7 1.54916
\(719\) −27609.0 −1.43205 −0.716025 0.698075i \(-0.754040\pi\)
−0.716025 + 0.698075i \(0.754040\pi\)
\(720\) 0 0
\(721\) −9253.95 −0.477996
\(722\) 30945.1 1.59509
\(723\) 14461.2 0.743868
\(724\) −23105.1 −1.18604
\(725\) 0 0
\(726\) −13153.4 −0.672407
\(727\) −31306.2 −1.59709 −0.798544 0.601937i \(-0.794396\pi\)
−0.798544 + 0.601937i \(0.794396\pi\)
\(728\) −422.206 −0.0214945
\(729\) 729.000 0.0370370
\(730\) 0 0
\(731\) 1955.89 0.0989621
\(732\) 197.475 0.00997113
\(733\) 15765.8 0.794441 0.397220 0.917723i \(-0.369975\pi\)
0.397220 + 0.917723i \(0.369975\pi\)
\(734\) 37640.8 1.89285
\(735\) 0 0
\(736\) −9725.53 −0.487076
\(737\) 3926.68 0.196256
\(738\) −12850.4 −0.640959
\(739\) 3966.51 0.197443 0.0987216 0.995115i \(-0.468525\pi\)
0.0987216 + 0.995115i \(0.468525\pi\)
\(740\) 0 0
\(741\) 47.9070 0.00237504
\(742\) 16165.9 0.799823
\(743\) −8224.50 −0.406094 −0.203047 0.979169i \(-0.565084\pi\)
−0.203047 + 0.979169i \(0.565084\pi\)
\(744\) 15047.7 0.741500
\(745\) 0 0
\(746\) −20621.6 −1.01208
\(747\) −12012.5 −0.588373
\(748\) −1552.20 −0.0758745
\(749\) −12220.0 −0.596140
\(750\) 0 0
\(751\) 18929.2 0.919754 0.459877 0.887983i \(-0.347894\pi\)
0.459877 + 0.887983i \(0.347894\pi\)
\(752\) 624.558 0.0302863
\(753\) −5016.82 −0.242793
\(754\) 3880.16 0.187410
\(755\) 0 0
\(756\) −2368.38 −0.113938
\(757\) 34906.8 1.67597 0.837984 0.545695i \(-0.183734\pi\)
0.837984 + 0.545695i \(0.183734\pi\)
\(758\) 8102.96 0.388276
\(759\) −2823.74 −0.135040
\(760\) 0 0
\(761\) −13683.4 −0.651803 −0.325902 0.945404i \(-0.605668\pi\)
−0.325902 + 0.945404i \(0.605668\pi\)
\(762\) 11473.0 0.545438
\(763\) 3337.99 0.158379
\(764\) −3058.52 −0.144834
\(765\) 0 0
\(766\) −6155.42 −0.290345
\(767\) −244.964 −0.0115321
\(768\) 9960.28 0.467982
\(769\) 41837.3 1.96189 0.980943 0.194294i \(-0.0622416\pi\)
0.980943 + 0.194294i \(0.0622416\pi\)
\(770\) 0 0
\(771\) −11093.2 −0.518175
\(772\) 21716.9 1.01245
\(773\) −19640.0 −0.913843 −0.456921 0.889507i \(-0.651048\pi\)
−0.456921 + 0.889507i \(0.651048\pi\)
\(774\) −12274.7 −0.570031
\(775\) 0 0
\(776\) 31346.4 1.45009
\(777\) −4055.53 −0.187248
\(778\) −44054.1 −2.03010
\(779\) −1712.89 −0.0787814
\(780\) 0 0
\(781\) −19144.4 −0.877131
\(782\) 1453.85 0.0664827
\(783\) 7870.34 0.359212
\(784\) −353.772 −0.0161157
\(785\) 0 0
\(786\) −38009.9 −1.72489
\(787\) −24935.3 −1.12941 −0.564705 0.825293i \(-0.691010\pi\)
−0.564705 + 0.825293i \(0.691010\pi\)
\(788\) −4489.02 −0.202938
\(789\) 21957.0 0.990736
\(790\) 0 0
\(791\) −11491.5 −0.516551
\(792\) 3522.33 0.158031
\(793\) −15.4317 −0.000691041 0
\(794\) −21695.2 −0.969692
\(795\) 0 0
\(796\) −40145.1 −1.78757
\(797\) 1168.33 0.0519251 0.0259625 0.999663i \(-0.491735\pi\)
0.0259625 + 0.999663i \(0.491735\pi\)
\(798\) −517.237 −0.0229448
\(799\) −562.120 −0.0248891
\(800\) 0 0
\(801\) 2936.24 0.129522
\(802\) −43867.7 −1.93145
\(803\) −19201.2 −0.843829
\(804\) 7743.95 0.339686
\(805\) 0 0
\(806\) −3252.05 −0.142120
\(807\) 2445.29 0.106665
\(808\) −1988.88 −0.0865949
\(809\) −35175.7 −1.52869 −0.764345 0.644807i \(-0.776938\pi\)
−0.764345 + 0.644807i \(0.776938\pi\)
\(810\) 0 0
\(811\) −15256.5 −0.660577 −0.330288 0.943880i \(-0.607146\pi\)
−0.330288 + 0.943880i \(0.607146\pi\)
\(812\) −25569.3 −1.10506
\(813\) 15318.1 0.660797
\(814\) 16680.5 0.718245
\(815\) 0 0
\(816\) 140.745 0.00603806
\(817\) −1636.16 −0.0700635
\(818\) −50354.7 −2.15233
\(819\) 185.078 0.00789639
\(820\) 0 0
\(821\) −15971.9 −0.678956 −0.339478 0.940614i \(-0.610250\pi\)
−0.339478 + 0.940614i \(0.610250\pi\)
\(822\) 27963.4 1.18654
\(823\) −2312.41 −0.0979409 −0.0489705 0.998800i \(-0.515594\pi\)
−0.0489705 + 0.998800i \(0.515594\pi\)
\(824\) 27142.0 1.14750
\(825\) 0 0
\(826\) 2644.80 0.111410
\(827\) −10422.4 −0.438238 −0.219119 0.975698i \(-0.570318\pi\)
−0.219119 + 0.975698i \(0.570318\pi\)
\(828\) −5568.79 −0.233731
\(829\) −13213.4 −0.553584 −0.276792 0.960930i \(-0.589271\pi\)
−0.276792 + 0.960930i \(0.589271\pi\)
\(830\) 0 0
\(831\) 4196.17 0.175167
\(832\) −2452.15 −0.102179
\(833\) 318.405 0.0132438
\(834\) −23722.2 −0.984929
\(835\) 0 0
\(836\) 1298.46 0.0537179
\(837\) −6596.30 −0.272403
\(838\) 5573.67 0.229761
\(839\) −10119.6 −0.416409 −0.208205 0.978085i \(-0.566762\pi\)
−0.208205 + 0.978085i \(0.566762\pi\)
\(840\) 0 0
\(841\) 60579.9 2.48390
\(842\) 55988.7 2.29157
\(843\) 21307.1 0.870530
\(844\) 61943.4 2.52628
\(845\) 0 0
\(846\) 3527.72 0.143364
\(847\) −6773.41 −0.274778
\(848\) 3679.79 0.149015
\(849\) 13395.5 0.541501
\(850\) 0 0
\(851\) −9535.80 −0.384116
\(852\) −37755.3 −1.51816
\(853\) −35378.1 −1.42007 −0.710037 0.704165i \(-0.751322\pi\)
−0.710037 + 0.704165i \(0.751322\pi\)
\(854\) 166.611 0.00667602
\(855\) 0 0
\(856\) 35841.4 1.43112
\(857\) −6697.57 −0.266960 −0.133480 0.991052i \(-0.542615\pi\)
−0.133480 + 0.991052i \(0.542615\pi\)
\(858\) −761.230 −0.0302890
\(859\) −24298.4 −0.965135 −0.482568 0.875859i \(-0.660296\pi\)
−0.482568 + 0.875859i \(0.660296\pi\)
\(860\) 0 0
\(861\) −6617.37 −0.261927
\(862\) 33418.3 1.32045
\(863\) −24942.9 −0.983853 −0.491926 0.870637i \(-0.663707\pi\)
−0.491926 + 0.870637i \(0.663707\pi\)
\(864\) −5318.00 −0.209401
\(865\) 0 0
\(866\) −3126.78 −0.122693
\(867\) 14612.3 0.572388
\(868\) 21430.1 0.838002
\(869\) 16455.3 0.642355
\(870\) 0 0
\(871\) −605.152 −0.0235417
\(872\) −9790.39 −0.380212
\(873\) −13741.0 −0.532716
\(874\) −1216.18 −0.0470686
\(875\) 0 0
\(876\) −37867.4 −1.46052
\(877\) 16276.6 0.626705 0.313353 0.949637i \(-0.398548\pi\)
0.313353 + 0.949637i \(0.398548\pi\)
\(878\) −38101.3 −1.46453
\(879\) 22771.8 0.873806
\(880\) 0 0
\(881\) 26636.5 1.01862 0.509311 0.860582i \(-0.329900\pi\)
0.509311 + 0.860582i \(0.329900\pi\)
\(882\) −1998.23 −0.0762855
\(883\) 21788.3 0.830392 0.415196 0.909732i \(-0.363713\pi\)
0.415196 + 0.909732i \(0.363713\pi\)
\(884\) 239.215 0.00910142
\(885\) 0 0
\(886\) 29763.0 1.12856
\(887\) 26813.2 1.01499 0.507496 0.861654i \(-0.330571\pi\)
0.507496 + 0.861654i \(0.330571\pi\)
\(888\) 11895.0 0.449514
\(889\) 5908.11 0.222893
\(890\) 0 0
\(891\) −1544.04 −0.0580554
\(892\) −39600.2 −1.48645
\(893\) 470.229 0.0176211
\(894\) −15952.8 −0.596803
\(895\) 0 0
\(896\) 15445.2 0.575879
\(897\) 435.174 0.0161985
\(898\) −13387.4 −0.497488
\(899\) −71214.2 −2.64196
\(900\) 0 0
\(901\) −3311.91 −0.122459
\(902\) 27217.4 1.00470
\(903\) −6320.92 −0.232942
\(904\) 33704.8 1.24005
\(905\) 0 0
\(906\) 20934.8 0.767672
\(907\) −15543.0 −0.569014 −0.284507 0.958674i \(-0.591830\pi\)
−0.284507 + 0.958674i \(0.591830\pi\)
\(908\) 45752.6 1.67219
\(909\) 871.844 0.0318122
\(910\) 0 0
\(911\) 48711.1 1.77154 0.885768 0.464128i \(-0.153632\pi\)
0.885768 + 0.464128i \(0.153632\pi\)
\(912\) −117.737 −0.00427485
\(913\) 25442.8 0.922273
\(914\) −36905.3 −1.33558
\(915\) 0 0
\(916\) −51173.3 −1.84587
\(917\) −19573.4 −0.704876
\(918\) 794.976 0.0285818
\(919\) 1030.47 0.0369883 0.0184941 0.999829i \(-0.494113\pi\)
0.0184941 + 0.999829i \(0.494113\pi\)
\(920\) 0 0
\(921\) 28440.4 1.01753
\(922\) −11306.3 −0.403855
\(923\) 2950.40 0.105215
\(924\) 5016.30 0.178598
\(925\) 0 0
\(926\) −26079.6 −0.925518
\(927\) −11897.9 −0.421553
\(928\) −57413.6 −2.03092
\(929\) 879.756 0.0310698 0.0155349 0.999879i \(-0.495055\pi\)
0.0155349 + 0.999879i \(0.495055\pi\)
\(930\) 0 0
\(931\) −266.354 −0.00937638
\(932\) 46146.0 1.62185
\(933\) −21234.0 −0.745092
\(934\) −18775.8 −0.657776
\(935\) 0 0
\(936\) −542.836 −0.0189564
\(937\) 18668.1 0.650864 0.325432 0.945565i \(-0.394490\pi\)
0.325432 + 0.945565i \(0.394490\pi\)
\(938\) 6533.64 0.227432
\(939\) 16781.5 0.583221
\(940\) 0 0
\(941\) 29613.4 1.02590 0.512948 0.858420i \(-0.328553\pi\)
0.512948 + 0.858420i \(0.328553\pi\)
\(942\) 34588.8 1.19635
\(943\) −15559.5 −0.537313
\(944\) 602.028 0.0207567
\(945\) 0 0
\(946\) 25998.1 0.893521
\(947\) −20738.9 −0.711640 −0.355820 0.934554i \(-0.615798\pi\)
−0.355820 + 0.934554i \(0.615798\pi\)
\(948\) 32452.0 1.11181
\(949\) 2959.15 0.101220
\(950\) 0 0
\(951\) 10703.4 0.364966
\(952\) −933.888 −0.0317936
\(953\) 45776.5 1.55598 0.777988 0.628279i \(-0.216240\pi\)
0.777988 + 0.628279i \(0.216240\pi\)
\(954\) 20784.7 0.705377
\(955\) 0 0
\(956\) 33317.5 1.12716
\(957\) −16669.6 −0.563064
\(958\) 30657.4 1.03392
\(959\) 14399.9 0.484878
\(960\) 0 0
\(961\) 29895.1 1.00349
\(962\) −2570.68 −0.0861561
\(963\) −15711.4 −0.525746
\(964\) −60404.9 −2.01817
\(965\) 0 0
\(966\) −4698.44 −0.156491
\(967\) −34461.0 −1.14601 −0.573005 0.819552i \(-0.694222\pi\)
−0.573005 + 0.819552i \(0.694222\pi\)
\(968\) 19866.5 0.659643
\(969\) 105.967 0.00351304
\(970\) 0 0
\(971\) −22762.8 −0.752309 −0.376154 0.926557i \(-0.622754\pi\)
−0.376154 + 0.926557i \(0.622754\pi\)
\(972\) −3045.06 −0.100484
\(973\) −12215.9 −0.402490
\(974\) 28819.9 0.948099
\(975\) 0 0
\(976\) 37.9251 0.00124381
\(977\) −4809.57 −0.157494 −0.0787470 0.996895i \(-0.525092\pi\)
−0.0787470 + 0.996895i \(0.525092\pi\)
\(978\) 8084.10 0.264316
\(979\) −6219.04 −0.203025
\(980\) 0 0
\(981\) 4291.70 0.139677
\(982\) 32046.6 1.04139
\(983\) 27591.6 0.895256 0.447628 0.894220i \(-0.352269\pi\)
0.447628 + 0.894220i \(0.352269\pi\)
\(984\) 19408.9 0.628793
\(985\) 0 0
\(986\) 8582.63 0.277207
\(987\) 1816.62 0.0585853
\(988\) −200.109 −0.00644365
\(989\) −14862.4 −0.477854
\(990\) 0 0
\(991\) −22263.4 −0.713643 −0.356822 0.934173i \(-0.616140\pi\)
−0.356822 + 0.934173i \(0.616140\pi\)
\(992\) 48119.5 1.54012
\(993\) 13169.0 0.420851
\(994\) −31854.5 −1.01646
\(995\) 0 0
\(996\) 50176.8 1.59630
\(997\) −30378.2 −0.964983 −0.482491 0.875901i \(-0.660268\pi\)
−0.482491 + 0.875901i \(0.660268\pi\)
\(998\) 83707.4 2.65502
\(999\) −5214.26 −0.165137
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 525.4.a.k.1.1 2
3.2 odd 2 1575.4.a.w.1.2 2
5.2 odd 4 525.4.d.h.274.1 4
5.3 odd 4 525.4.d.h.274.4 4
5.4 even 2 105.4.a.f.1.2 2
15.14 odd 2 315.4.a.i.1.1 2
20.19 odd 2 1680.4.a.bg.1.2 2
35.34 odd 2 735.4.a.p.1.2 2
105.104 even 2 2205.4.a.z.1.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
105.4.a.f.1.2 2 5.4 even 2
315.4.a.i.1.1 2 15.14 odd 2
525.4.a.k.1.1 2 1.1 even 1 trivial
525.4.d.h.274.1 4 5.2 odd 4
525.4.d.h.274.4 4 5.3 odd 4
735.4.a.p.1.2 2 35.34 odd 2
1575.4.a.w.1.2 2 3.2 odd 2
1680.4.a.bg.1.2 2 20.19 odd 2
2205.4.a.z.1.1 2 105.104 even 2