Properties

Label 525.4.a.k
Level $525$
Weight $4$
Character orbit 525.a
Self dual yes
Analytic conductor $30.976$
Analytic rank $1$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [525,4,Mod(1,525)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("525.1"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(525, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 4, names="a")
 
Level: \( N \) \(=\) \( 525 = 3 \cdot 5^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 525.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,-1,-6,17,0,3,14,-33,18,0,-22] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(30.9760027530\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{65}) \)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 16 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 105)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = \frac{1}{2}(1 + \sqrt{65})\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - \beta q^{2} - 3 q^{3} + (\beta + 8) q^{4} + 3 \beta q^{6} + 7 q^{7} + ( - \beta - 16) q^{8} + 9 q^{9} + ( - 2 \beta - 10) q^{11} + ( - 3 \beta - 24) q^{12} + ( - 2 \beta + 12) q^{13} - 7 \beta q^{14} + \cdots + ( - 18 \beta - 90) q^{99} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - q^{2} - 6 q^{3} + 17 q^{4} + 3 q^{6} + 14 q^{7} - 33 q^{8} + 18 q^{9} - 22 q^{11} - 51 q^{12} + 22 q^{13} - 7 q^{14} - 87 q^{16} - 116 q^{17} - 9 q^{18} + 102 q^{19} - 42 q^{21} + 76 q^{22} - 260 q^{23}+ \cdots - 198 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
4.53113
−3.53113
−4.53113 −3.00000 12.5311 0 13.5934 7.00000 −20.5311 9.00000 0
1.2 3.53113 −3.00000 4.46887 0 −10.5934 7.00000 −12.4689 9.00000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(3\) \( +1 \)
\(5\) \( +1 \)
\(7\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 525.4.a.k 2
3.b odd 2 1 1575.4.a.w 2
5.b even 2 1 105.4.a.f 2
5.c odd 4 2 525.4.d.h 4
15.d odd 2 1 315.4.a.i 2
20.d odd 2 1 1680.4.a.bg 2
35.c odd 2 1 735.4.a.p 2
105.g even 2 1 2205.4.a.z 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
105.4.a.f 2 5.b even 2 1
315.4.a.i 2 15.d odd 2 1
525.4.a.k 2 1.a even 1 1 trivial
525.4.d.h 4 5.c odd 4 2
735.4.a.p 2 35.c odd 2 1
1575.4.a.w 2 3.b odd 2 1
1680.4.a.bg 2 20.d odd 2 1
2205.4.a.z 2 105.g even 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{4}^{\mathrm{new}}(\Gamma_0(525))\):

\( T_{2}^{2} + T_{2} - 16 \) Copy content Toggle raw display
\( T_{11}^{2} + 22T_{11} + 56 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} + T - 16 \) Copy content Toggle raw display
$3$ \( (T + 3)^{2} \) Copy content Toggle raw display
$5$ \( T^{2} \) Copy content Toggle raw display
$7$ \( (T - 7)^{2} \) Copy content Toggle raw display
$11$ \( T^{2} + 22T + 56 \) Copy content Toggle raw display
$13$ \( T^{2} - 22T + 56 \) Copy content Toggle raw display
$17$ \( T^{2} + 116T - 796 \) Copy content Toggle raw display
$19$ \( T^{2} - 102T - 584 \) Copy content Toggle raw display
$23$ \( T^{2} + 260T + 10400 \) Copy content Toggle raw display
$29$ \( T^{2} + 196T - 27836 \) Copy content Toggle raw display
$31$ \( T^{2} - 150T - 23040 \) Copy content Toggle raw display
$37$ \( T^{2} - 96T - 18756 \) Copy content Toggle raw display
$41$ \( T^{2} + 176T - 154756 \) Copy content Toggle raw display
$43$ \( T^{2} - 344T + 12944 \) Copy content Toggle raw display
$47$ \( T^{2} + 560T + 40960 \) Copy content Toggle raw display
$53$ \( T^{2} + 326T - 93616 \) Copy content Toggle raw display
$59$ \( T^{2} + 844T + 63424 \) Copy content Toggle raw display
$61$ \( T^{2} + 204T + 1044 \) Copy content Toggle raw display
$67$ \( T^{2} - 104T - 63856 \) Copy content Toggle raw display
$71$ \( T^{2} - 1670 T + 668560 \) Copy content Toggle raw display
$73$ \( T^{2} - 386T - 625816 \) Copy content Toggle raw display
$79$ \( T^{2} + 888T + 21376 \) Copy content Toggle raw display
$83$ \( T^{2} + 928T - 542864 \) Copy content Toggle raw display
$89$ \( T^{2} - 588T + 85396 \) Copy content Toggle raw display
$97$ \( T^{2} + 522 T - 1534064 \) Copy content Toggle raw display
show more
show less