Properties

Label 525.4.a.e.1.1
Level $525$
Weight $4$
Character 525.1
Self dual yes
Analytic conductor $30.976$
Analytic rank $1$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [525,4,Mod(1,525)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(525, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("525.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 525 = 3 \cdot 5^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 525.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(30.9760027530\)
Analytic rank: \(1\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 105)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Character \(\chi\) \(=\) 525.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+3.00000 q^{3} -8.00000 q^{4} -7.00000 q^{7} +9.00000 q^{9} +O(q^{10})\) \(q+3.00000 q^{3} -8.00000 q^{4} -7.00000 q^{7} +9.00000 q^{9} +42.0000 q^{11} -24.0000 q^{12} -20.0000 q^{13} +64.0000 q^{16} -66.0000 q^{17} +38.0000 q^{19} -21.0000 q^{21} -12.0000 q^{23} +27.0000 q^{27} +56.0000 q^{28} -258.000 q^{29} +146.000 q^{31} +126.000 q^{33} -72.0000 q^{36} -434.000 q^{37} -60.0000 q^{39} -282.000 q^{41} -20.0000 q^{43} -336.000 q^{44} +72.0000 q^{47} +192.000 q^{48} +49.0000 q^{49} -198.000 q^{51} +160.000 q^{52} -336.000 q^{53} +114.000 q^{57} -360.000 q^{59} -682.000 q^{61} -63.0000 q^{63} -512.000 q^{64} -812.000 q^{67} +528.000 q^{68} -36.0000 q^{69} +810.000 q^{71} +124.000 q^{73} -304.000 q^{76} -294.000 q^{77} +1136.00 q^{79} +81.0000 q^{81} -156.000 q^{83} +168.000 q^{84} -774.000 q^{87} -1038.00 q^{89} +140.000 q^{91} +96.0000 q^{92} +438.000 q^{93} -1208.00 q^{97} +378.000 q^{99} +O(q^{100})\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(3\) 3.00000 0.577350
\(4\) −8.00000 −1.00000
\(5\) 0 0
\(6\) 0 0
\(7\) −7.00000 −0.377964
\(8\) 0 0
\(9\) 9.00000 0.333333
\(10\) 0 0
\(11\) 42.0000 1.15123 0.575613 0.817723i \(-0.304764\pi\)
0.575613 + 0.817723i \(0.304764\pi\)
\(12\) −24.0000 −0.577350
\(13\) −20.0000 −0.426692 −0.213346 0.976977i \(-0.568436\pi\)
−0.213346 + 0.976977i \(0.568436\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 64.0000 1.00000
\(17\) −66.0000 −0.941609 −0.470804 0.882238i \(-0.656036\pi\)
−0.470804 + 0.882238i \(0.656036\pi\)
\(18\) 0 0
\(19\) 38.0000 0.458831 0.229416 0.973329i \(-0.426318\pi\)
0.229416 + 0.973329i \(0.426318\pi\)
\(20\) 0 0
\(21\) −21.0000 −0.218218
\(22\) 0 0
\(23\) −12.0000 −0.108790 −0.0543951 0.998519i \(-0.517323\pi\)
−0.0543951 + 0.998519i \(0.517323\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 0 0
\(27\) 27.0000 0.192450
\(28\) 56.0000 0.377964
\(29\) −258.000 −1.65205 −0.826024 0.563635i \(-0.809403\pi\)
−0.826024 + 0.563635i \(0.809403\pi\)
\(30\) 0 0
\(31\) 146.000 0.845883 0.422942 0.906157i \(-0.360998\pi\)
0.422942 + 0.906157i \(0.360998\pi\)
\(32\) 0 0
\(33\) 126.000 0.664660
\(34\) 0 0
\(35\) 0 0
\(36\) −72.0000 −0.333333
\(37\) −434.000 −1.92836 −0.964178 0.265257i \(-0.914543\pi\)
−0.964178 + 0.265257i \(0.914543\pi\)
\(38\) 0 0
\(39\) −60.0000 −0.246351
\(40\) 0 0
\(41\) −282.000 −1.07417 −0.537085 0.843528i \(-0.680475\pi\)
−0.537085 + 0.843528i \(0.680475\pi\)
\(42\) 0 0
\(43\) −20.0000 −0.0709296 −0.0354648 0.999371i \(-0.511291\pi\)
−0.0354648 + 0.999371i \(0.511291\pi\)
\(44\) −336.000 −1.15123
\(45\) 0 0
\(46\) 0 0
\(47\) 72.0000 0.223453 0.111726 0.993739i \(-0.464362\pi\)
0.111726 + 0.993739i \(0.464362\pi\)
\(48\) 192.000 0.577350
\(49\) 49.0000 0.142857
\(50\) 0 0
\(51\) −198.000 −0.543638
\(52\) 160.000 0.426692
\(53\) −336.000 −0.870814 −0.435407 0.900234i \(-0.643396\pi\)
−0.435407 + 0.900234i \(0.643396\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 114.000 0.264906
\(58\) 0 0
\(59\) −360.000 −0.794373 −0.397187 0.917738i \(-0.630013\pi\)
−0.397187 + 0.917738i \(0.630013\pi\)
\(60\) 0 0
\(61\) −682.000 −1.43149 −0.715747 0.698360i \(-0.753914\pi\)
−0.715747 + 0.698360i \(0.753914\pi\)
\(62\) 0 0
\(63\) −63.0000 −0.125988
\(64\) −512.000 −1.00000
\(65\) 0 0
\(66\) 0 0
\(67\) −812.000 −1.48062 −0.740310 0.672265i \(-0.765321\pi\)
−0.740310 + 0.672265i \(0.765321\pi\)
\(68\) 528.000 0.941609
\(69\) −36.0000 −0.0628100
\(70\) 0 0
\(71\) 810.000 1.35393 0.676967 0.736013i \(-0.263294\pi\)
0.676967 + 0.736013i \(0.263294\pi\)
\(72\) 0 0
\(73\) 124.000 0.198810 0.0994048 0.995047i \(-0.468306\pi\)
0.0994048 + 0.995047i \(0.468306\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) −304.000 −0.458831
\(77\) −294.000 −0.435122
\(78\) 0 0
\(79\) 1136.00 1.61785 0.808924 0.587913i \(-0.200050\pi\)
0.808924 + 0.587913i \(0.200050\pi\)
\(80\) 0 0
\(81\) 81.0000 0.111111
\(82\) 0 0
\(83\) −156.000 −0.206304 −0.103152 0.994666i \(-0.532893\pi\)
−0.103152 + 0.994666i \(0.532893\pi\)
\(84\) 168.000 0.218218
\(85\) 0 0
\(86\) 0 0
\(87\) −774.000 −0.953810
\(88\) 0 0
\(89\) −1038.00 −1.23627 −0.618134 0.786073i \(-0.712111\pi\)
−0.618134 + 0.786073i \(0.712111\pi\)
\(90\) 0 0
\(91\) 140.000 0.161275
\(92\) 96.0000 0.108790
\(93\) 438.000 0.488371
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) −1208.00 −1.26447 −0.632236 0.774776i \(-0.717863\pi\)
−0.632236 + 0.774776i \(0.717863\pi\)
\(98\) 0 0
\(99\) 378.000 0.383742
\(100\) 0 0
\(101\) 546.000 0.537911 0.268956 0.963153i \(-0.413322\pi\)
0.268956 + 0.963153i \(0.413322\pi\)
\(102\) 0 0
\(103\) 520.000 0.497448 0.248724 0.968574i \(-0.419989\pi\)
0.248724 + 0.968574i \(0.419989\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −1212.00 −1.09503 −0.547516 0.836795i \(-0.684427\pi\)
−0.547516 + 0.836795i \(0.684427\pi\)
\(108\) −216.000 −0.192450
\(109\) −1078.00 −0.947281 −0.473641 0.880718i \(-0.657060\pi\)
−0.473641 + 0.880718i \(0.657060\pi\)
\(110\) 0 0
\(111\) −1302.00 −1.11334
\(112\) −448.000 −0.377964
\(113\) 1452.00 1.20878 0.604392 0.796687i \(-0.293416\pi\)
0.604392 + 0.796687i \(0.293416\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 2064.00 1.65205
\(117\) −180.000 −0.142231
\(118\) 0 0
\(119\) 462.000 0.355895
\(120\) 0 0
\(121\) 433.000 0.325319
\(122\) 0 0
\(123\) −846.000 −0.620173
\(124\) −1168.00 −0.845883
\(125\) 0 0
\(126\) 0 0
\(127\) 1312.00 0.916702 0.458351 0.888771i \(-0.348440\pi\)
0.458351 + 0.888771i \(0.348440\pi\)
\(128\) 0 0
\(129\) −60.0000 −0.0409512
\(130\) 0 0
\(131\) −1356.00 −0.904384 −0.452192 0.891921i \(-0.649358\pi\)
−0.452192 + 0.891921i \(0.649358\pi\)
\(132\) −1008.00 −0.664660
\(133\) −266.000 −0.173422
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 984.000 0.613641 0.306820 0.951767i \(-0.400735\pi\)
0.306820 + 0.951767i \(0.400735\pi\)
\(138\) 0 0
\(139\) −394.000 −0.240422 −0.120211 0.992748i \(-0.538357\pi\)
−0.120211 + 0.992748i \(0.538357\pi\)
\(140\) 0 0
\(141\) 216.000 0.129011
\(142\) 0 0
\(143\) −840.000 −0.491219
\(144\) 576.000 0.333333
\(145\) 0 0
\(146\) 0 0
\(147\) 147.000 0.0824786
\(148\) 3472.00 1.92836
\(149\) −1014.00 −0.557518 −0.278759 0.960361i \(-0.589923\pi\)
−0.278759 + 0.960361i \(0.589923\pi\)
\(150\) 0 0
\(151\) −1996.00 −1.07571 −0.537855 0.843037i \(-0.680765\pi\)
−0.537855 + 0.843037i \(0.680765\pi\)
\(152\) 0 0
\(153\) −594.000 −0.313870
\(154\) 0 0
\(155\) 0 0
\(156\) 480.000 0.246351
\(157\) 2392.00 1.21594 0.607969 0.793960i \(-0.291984\pi\)
0.607969 + 0.793960i \(0.291984\pi\)
\(158\) 0 0
\(159\) −1008.00 −0.502765
\(160\) 0 0
\(161\) 84.0000 0.0411188
\(162\) 0 0
\(163\) −2036.00 −0.978355 −0.489177 0.872184i \(-0.662703\pi\)
−0.489177 + 0.872184i \(0.662703\pi\)
\(164\) 2256.00 1.07417
\(165\) 0 0
\(166\) 0 0
\(167\) 3936.00 1.82381 0.911907 0.410398i \(-0.134610\pi\)
0.911907 + 0.410398i \(0.134610\pi\)
\(168\) 0 0
\(169\) −1797.00 −0.817934
\(170\) 0 0
\(171\) 342.000 0.152944
\(172\) 160.000 0.0709296
\(173\) −378.000 −0.166120 −0.0830601 0.996545i \(-0.526469\pi\)
−0.0830601 + 0.996545i \(0.526469\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 2688.00 1.15123
\(177\) −1080.00 −0.458631
\(178\) 0 0
\(179\) −222.000 −0.0926987 −0.0463493 0.998925i \(-0.514759\pi\)
−0.0463493 + 0.998925i \(0.514759\pi\)
\(180\) 0 0
\(181\) −2590.00 −1.06361 −0.531804 0.846867i \(-0.678486\pi\)
−0.531804 + 0.846867i \(0.678486\pi\)
\(182\) 0 0
\(183\) −2046.00 −0.826474
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) −2772.00 −1.08400
\(188\) −576.000 −0.223453
\(189\) −189.000 −0.0727393
\(190\) 0 0
\(191\) 2214.00 0.838740 0.419370 0.907815i \(-0.362251\pi\)
0.419370 + 0.907815i \(0.362251\pi\)
\(192\) −1536.00 −0.577350
\(193\) −4178.00 −1.55823 −0.779117 0.626879i \(-0.784332\pi\)
−0.779117 + 0.626879i \(0.784332\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) −392.000 −0.142857
\(197\) 3060.00 1.10668 0.553340 0.832955i \(-0.313353\pi\)
0.553340 + 0.832955i \(0.313353\pi\)
\(198\) 0 0
\(199\) 2666.00 0.949687 0.474844 0.880070i \(-0.342505\pi\)
0.474844 + 0.880070i \(0.342505\pi\)
\(200\) 0 0
\(201\) −2436.00 −0.854837
\(202\) 0 0
\(203\) 1806.00 0.624416
\(204\) 1584.00 0.543638
\(205\) 0 0
\(206\) 0 0
\(207\) −108.000 −0.0362634
\(208\) −1280.00 −0.426692
\(209\) 1596.00 0.528218
\(210\) 0 0
\(211\) −1348.00 −0.439811 −0.219906 0.975521i \(-0.570575\pi\)
−0.219906 + 0.975521i \(0.570575\pi\)
\(212\) 2688.00 0.870814
\(213\) 2430.00 0.781694
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) −1022.00 −0.319714
\(218\) 0 0
\(219\) 372.000 0.114783
\(220\) 0 0
\(221\) 1320.00 0.401777
\(222\) 0 0
\(223\) −3188.00 −0.957329 −0.478664 0.877998i \(-0.658879\pi\)
−0.478664 + 0.877998i \(0.658879\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 3396.00 0.992953 0.496477 0.868050i \(-0.334627\pi\)
0.496477 + 0.868050i \(0.334627\pi\)
\(228\) −912.000 −0.264906
\(229\) 5294.00 1.52767 0.763837 0.645409i \(-0.223313\pi\)
0.763837 + 0.645409i \(0.223313\pi\)
\(230\) 0 0
\(231\) −882.000 −0.251218
\(232\) 0 0
\(233\) −852.000 −0.239555 −0.119778 0.992801i \(-0.538218\pi\)
−0.119778 + 0.992801i \(0.538218\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 2880.00 0.794373
\(237\) 3408.00 0.934065
\(238\) 0 0
\(239\) 4866.00 1.31697 0.658484 0.752595i \(-0.271198\pi\)
0.658484 + 0.752595i \(0.271198\pi\)
\(240\) 0 0
\(241\) −2050.00 −0.547934 −0.273967 0.961739i \(-0.588336\pi\)
−0.273967 + 0.961739i \(0.588336\pi\)
\(242\) 0 0
\(243\) 243.000 0.0641500
\(244\) 5456.00 1.43149
\(245\) 0 0
\(246\) 0 0
\(247\) −760.000 −0.195780
\(248\) 0 0
\(249\) −468.000 −0.119110
\(250\) 0 0
\(251\) −1152.00 −0.289696 −0.144848 0.989454i \(-0.546269\pi\)
−0.144848 + 0.989454i \(0.546269\pi\)
\(252\) 504.000 0.125988
\(253\) −504.000 −0.125242
\(254\) 0 0
\(255\) 0 0
\(256\) 4096.00 1.00000
\(257\) 6450.00 1.56553 0.782763 0.622321i \(-0.213810\pi\)
0.782763 + 0.622321i \(0.213810\pi\)
\(258\) 0 0
\(259\) 3038.00 0.728850
\(260\) 0 0
\(261\) −2322.00 −0.550683
\(262\) 0 0
\(263\) −1968.00 −0.461415 −0.230707 0.973023i \(-0.574104\pi\)
−0.230707 + 0.973023i \(0.574104\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) −3114.00 −0.713759
\(268\) 6496.00 1.48062
\(269\) −3894.00 −0.882607 −0.441304 0.897358i \(-0.645484\pi\)
−0.441304 + 0.897358i \(0.645484\pi\)
\(270\) 0 0
\(271\) 7094.00 1.59015 0.795073 0.606513i \(-0.207432\pi\)
0.795073 + 0.606513i \(0.207432\pi\)
\(272\) −4224.00 −0.941609
\(273\) 420.000 0.0931119
\(274\) 0 0
\(275\) 0 0
\(276\) 288.000 0.0628100
\(277\) 3310.00 0.717973 0.358987 0.933343i \(-0.383122\pi\)
0.358987 + 0.933343i \(0.383122\pi\)
\(278\) 0 0
\(279\) 1314.00 0.281961
\(280\) 0 0
\(281\) 7158.00 1.51961 0.759805 0.650151i \(-0.225294\pi\)
0.759805 + 0.650151i \(0.225294\pi\)
\(282\) 0 0
\(283\) 5164.00 1.08469 0.542346 0.840155i \(-0.317536\pi\)
0.542346 + 0.840155i \(0.317536\pi\)
\(284\) −6480.00 −1.35393
\(285\) 0 0
\(286\) 0 0
\(287\) 1974.00 0.405998
\(288\) 0 0
\(289\) −557.000 −0.113373
\(290\) 0 0
\(291\) −3624.00 −0.730043
\(292\) −992.000 −0.198810
\(293\) 8598.00 1.71434 0.857168 0.515037i \(-0.172222\pi\)
0.857168 + 0.515037i \(0.172222\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) 1134.00 0.221553
\(298\) 0 0
\(299\) 240.000 0.0464199
\(300\) 0 0
\(301\) 140.000 0.0268089
\(302\) 0 0
\(303\) 1638.00 0.310563
\(304\) 2432.00 0.458831
\(305\) 0 0
\(306\) 0 0
\(307\) 448.000 0.0832857 0.0416429 0.999133i \(-0.486741\pi\)
0.0416429 + 0.999133i \(0.486741\pi\)
\(308\) 2352.00 0.435122
\(309\) 1560.00 0.287202
\(310\) 0 0
\(311\) −5832.00 −1.06335 −0.531676 0.846948i \(-0.678438\pi\)
−0.531676 + 0.846948i \(0.678438\pi\)
\(312\) 0 0
\(313\) −9848.00 −1.77841 −0.889204 0.457510i \(-0.848741\pi\)
−0.889204 + 0.457510i \(0.848741\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) −9088.00 −1.61785
\(317\) 5616.00 0.995035 0.497517 0.867454i \(-0.334245\pi\)
0.497517 + 0.867454i \(0.334245\pi\)
\(318\) 0 0
\(319\) −10836.0 −1.90188
\(320\) 0 0
\(321\) −3636.00 −0.632217
\(322\) 0 0
\(323\) −2508.00 −0.432040
\(324\) −648.000 −0.111111
\(325\) 0 0
\(326\) 0 0
\(327\) −3234.00 −0.546913
\(328\) 0 0
\(329\) −504.000 −0.0844572
\(330\) 0 0
\(331\) 452.000 0.0750579 0.0375290 0.999296i \(-0.488051\pi\)
0.0375290 + 0.999296i \(0.488051\pi\)
\(332\) 1248.00 0.206304
\(333\) −3906.00 −0.642785
\(334\) 0 0
\(335\) 0 0
\(336\) −1344.00 −0.218218
\(337\) 2302.00 0.372101 0.186050 0.982540i \(-0.440431\pi\)
0.186050 + 0.982540i \(0.440431\pi\)
\(338\) 0 0
\(339\) 4356.00 0.697892
\(340\) 0 0
\(341\) 6132.00 0.973802
\(342\) 0 0
\(343\) −343.000 −0.0539949
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −1584.00 −0.245054 −0.122527 0.992465i \(-0.539100\pi\)
−0.122527 + 0.992465i \(0.539100\pi\)
\(348\) 6192.00 0.953810
\(349\) 8174.00 1.25371 0.626854 0.779137i \(-0.284342\pi\)
0.626854 + 0.779137i \(0.284342\pi\)
\(350\) 0 0
\(351\) −540.000 −0.0821170
\(352\) 0 0
\(353\) −8610.00 −1.29820 −0.649099 0.760704i \(-0.724854\pi\)
−0.649099 + 0.760704i \(0.724854\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 8304.00 1.23627
\(357\) 1386.00 0.205476
\(358\) 0 0
\(359\) −2154.00 −0.316668 −0.158334 0.987386i \(-0.550612\pi\)
−0.158334 + 0.987386i \(0.550612\pi\)
\(360\) 0 0
\(361\) −5415.00 −0.789474
\(362\) 0 0
\(363\) 1299.00 0.187823
\(364\) −1120.00 −0.161275
\(365\) 0 0
\(366\) 0 0
\(367\) −6644.00 −0.944997 −0.472499 0.881331i \(-0.656648\pi\)
−0.472499 + 0.881331i \(0.656648\pi\)
\(368\) −768.000 −0.108790
\(369\) −2538.00 −0.358057
\(370\) 0 0
\(371\) 2352.00 0.329137
\(372\) −3504.00 −0.488371
\(373\) −7958.00 −1.10469 −0.552345 0.833615i \(-0.686267\pi\)
−0.552345 + 0.833615i \(0.686267\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 5160.00 0.704917
\(378\) 0 0
\(379\) 3440.00 0.466229 0.233115 0.972449i \(-0.425108\pi\)
0.233115 + 0.972449i \(0.425108\pi\)
\(380\) 0 0
\(381\) 3936.00 0.529258
\(382\) 0 0
\(383\) −12936.0 −1.72585 −0.862923 0.505336i \(-0.831369\pi\)
−0.862923 + 0.505336i \(0.831369\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) −180.000 −0.0236432
\(388\) 9664.00 1.26447
\(389\) −14862.0 −1.93710 −0.968552 0.248812i \(-0.919960\pi\)
−0.968552 + 0.248812i \(0.919960\pi\)
\(390\) 0 0
\(391\) 792.000 0.102438
\(392\) 0 0
\(393\) −4068.00 −0.522146
\(394\) 0 0
\(395\) 0 0
\(396\) −3024.00 −0.383742
\(397\) −10460.0 −1.32235 −0.661174 0.750232i \(-0.729942\pi\)
−0.661174 + 0.750232i \(0.729942\pi\)
\(398\) 0 0
\(399\) −798.000 −0.100125
\(400\) 0 0
\(401\) −9150.00 −1.13947 −0.569737 0.821827i \(-0.692955\pi\)
−0.569737 + 0.821827i \(0.692955\pi\)
\(402\) 0 0
\(403\) −2920.00 −0.360932
\(404\) −4368.00 −0.537911
\(405\) 0 0
\(406\) 0 0
\(407\) −18228.0 −2.21997
\(408\) 0 0
\(409\) −4894.00 −0.591669 −0.295835 0.955239i \(-0.595598\pi\)
−0.295835 + 0.955239i \(0.595598\pi\)
\(410\) 0 0
\(411\) 2952.00 0.354286
\(412\) −4160.00 −0.497448
\(413\) 2520.00 0.300245
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) −1182.00 −0.138808
\(418\) 0 0
\(419\) −1668.00 −0.194480 −0.0972400 0.995261i \(-0.531001\pi\)
−0.0972400 + 0.995261i \(0.531001\pi\)
\(420\) 0 0
\(421\) −12418.0 −1.43757 −0.718784 0.695233i \(-0.755301\pi\)
−0.718784 + 0.695233i \(0.755301\pi\)
\(422\) 0 0
\(423\) 648.000 0.0744843
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) 4774.00 0.541054
\(428\) 9696.00 1.09503
\(429\) −2520.00 −0.283605
\(430\) 0 0
\(431\) 15186.0 1.69718 0.848589 0.529052i \(-0.177452\pi\)
0.848589 + 0.529052i \(0.177452\pi\)
\(432\) 1728.00 0.192450
\(433\) 5704.00 0.633064 0.316532 0.948582i \(-0.397482\pi\)
0.316532 + 0.948582i \(0.397482\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 8624.00 0.947281
\(437\) −456.000 −0.0499163
\(438\) 0 0
\(439\) −17206.0 −1.87061 −0.935305 0.353843i \(-0.884875\pi\)
−0.935305 + 0.353843i \(0.884875\pi\)
\(440\) 0 0
\(441\) 441.000 0.0476190
\(442\) 0 0
\(443\) −3456.00 −0.370654 −0.185327 0.982677i \(-0.559334\pi\)
−0.185327 + 0.982677i \(0.559334\pi\)
\(444\) 10416.0 1.11334
\(445\) 0 0
\(446\) 0 0
\(447\) −3042.00 −0.321883
\(448\) 3584.00 0.377964
\(449\) 16074.0 1.68949 0.844743 0.535173i \(-0.179753\pi\)
0.844743 + 0.535173i \(0.179753\pi\)
\(450\) 0 0
\(451\) −11844.0 −1.23661
\(452\) −11616.0 −1.20878
\(453\) −5988.00 −0.621061
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) −7526.00 −0.770353 −0.385177 0.922843i \(-0.625859\pi\)
−0.385177 + 0.922843i \(0.625859\pi\)
\(458\) 0 0
\(459\) −1782.00 −0.181213
\(460\) 0 0
\(461\) −2274.00 −0.229741 −0.114871 0.993380i \(-0.536645\pi\)
−0.114871 + 0.993380i \(0.536645\pi\)
\(462\) 0 0
\(463\) 10024.0 1.00617 0.503083 0.864238i \(-0.332199\pi\)
0.503083 + 0.864238i \(0.332199\pi\)
\(464\) −16512.0 −1.65205
\(465\) 0 0
\(466\) 0 0
\(467\) 2460.00 0.243759 0.121879 0.992545i \(-0.461108\pi\)
0.121879 + 0.992545i \(0.461108\pi\)
\(468\) 1440.00 0.142231
\(469\) 5684.00 0.559622
\(470\) 0 0
\(471\) 7176.00 0.702023
\(472\) 0 0
\(473\) −840.000 −0.0816559
\(474\) 0 0
\(475\) 0 0
\(476\) −3696.00 −0.355895
\(477\) −3024.00 −0.290271
\(478\) 0 0
\(479\) 19320.0 1.84291 0.921454 0.388486i \(-0.127002\pi\)
0.921454 + 0.388486i \(0.127002\pi\)
\(480\) 0 0
\(481\) 8680.00 0.822815
\(482\) 0 0
\(483\) 252.000 0.0237400
\(484\) −3464.00 −0.325319
\(485\) 0 0
\(486\) 0 0
\(487\) 12544.0 1.16719 0.583596 0.812044i \(-0.301645\pi\)
0.583596 + 0.812044i \(0.301645\pi\)
\(488\) 0 0
\(489\) −6108.00 −0.564853
\(490\) 0 0
\(491\) −15510.0 −1.42557 −0.712787 0.701381i \(-0.752567\pi\)
−0.712787 + 0.701381i \(0.752567\pi\)
\(492\) 6768.00 0.620173
\(493\) 17028.0 1.55558
\(494\) 0 0
\(495\) 0 0
\(496\) 9344.00 0.845883
\(497\) −5670.00 −0.511739
\(498\) 0 0
\(499\) −14344.0 −1.28682 −0.643412 0.765520i \(-0.722482\pi\)
−0.643412 + 0.765520i \(0.722482\pi\)
\(500\) 0 0
\(501\) 11808.0 1.05298
\(502\) 0 0
\(503\) 21384.0 1.89556 0.947779 0.318929i \(-0.103323\pi\)
0.947779 + 0.318929i \(0.103323\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) −5391.00 −0.472234
\(508\) −10496.0 −0.916702
\(509\) −7134.00 −0.621236 −0.310618 0.950535i \(-0.600536\pi\)
−0.310618 + 0.950535i \(0.600536\pi\)
\(510\) 0 0
\(511\) −868.000 −0.0751430
\(512\) 0 0
\(513\) 1026.00 0.0883022
\(514\) 0 0
\(515\) 0 0
\(516\) 480.000 0.0409512
\(517\) 3024.00 0.257244
\(518\) 0 0
\(519\) −1134.00 −0.0959096
\(520\) 0 0
\(521\) −19122.0 −1.60797 −0.803983 0.594653i \(-0.797290\pi\)
−0.803983 + 0.594653i \(0.797290\pi\)
\(522\) 0 0
\(523\) 15640.0 1.30763 0.653814 0.756655i \(-0.273168\pi\)
0.653814 + 0.756655i \(0.273168\pi\)
\(524\) 10848.0 0.904384
\(525\) 0 0
\(526\) 0 0
\(527\) −9636.00 −0.796491
\(528\) 8064.00 0.664660
\(529\) −12023.0 −0.988165
\(530\) 0 0
\(531\) −3240.00 −0.264791
\(532\) 2128.00 0.173422
\(533\) 5640.00 0.458341
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) −666.000 −0.0535196
\(538\) 0 0
\(539\) 2058.00 0.164461
\(540\) 0 0
\(541\) 2846.00 0.226172 0.113086 0.993585i \(-0.463926\pi\)
0.113086 + 0.993585i \(0.463926\pi\)
\(542\) 0 0
\(543\) −7770.00 −0.614075
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) 4444.00 0.347371 0.173685 0.984801i \(-0.444432\pi\)
0.173685 + 0.984801i \(0.444432\pi\)
\(548\) −7872.00 −0.613641
\(549\) −6138.00 −0.477165
\(550\) 0 0
\(551\) −9804.00 −0.758012
\(552\) 0 0
\(553\) −7952.00 −0.611489
\(554\) 0 0
\(555\) 0 0
\(556\) 3152.00 0.240422
\(557\) −18552.0 −1.41126 −0.705631 0.708579i \(-0.749337\pi\)
−0.705631 + 0.708579i \(0.749337\pi\)
\(558\) 0 0
\(559\) 400.000 0.0302651
\(560\) 0 0
\(561\) −8316.00 −0.625850
\(562\) 0 0
\(563\) 16452.0 1.23156 0.615781 0.787918i \(-0.288841\pi\)
0.615781 + 0.787918i \(0.288841\pi\)
\(564\) −1728.00 −0.129011
\(565\) 0 0
\(566\) 0 0
\(567\) −567.000 −0.0419961
\(568\) 0 0
\(569\) 7722.00 0.568933 0.284467 0.958686i \(-0.408183\pi\)
0.284467 + 0.958686i \(0.408183\pi\)
\(570\) 0 0
\(571\) 2576.00 0.188796 0.0943978 0.995535i \(-0.469907\pi\)
0.0943978 + 0.995535i \(0.469907\pi\)
\(572\) 6720.00 0.491219
\(573\) 6642.00 0.484247
\(574\) 0 0
\(575\) 0 0
\(576\) −4608.00 −0.333333
\(577\) 2464.00 0.177778 0.0888888 0.996042i \(-0.471668\pi\)
0.0888888 + 0.996042i \(0.471668\pi\)
\(578\) 0 0
\(579\) −12534.0 −0.899646
\(580\) 0 0
\(581\) 1092.00 0.0779755
\(582\) 0 0
\(583\) −14112.0 −1.00250
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −1452.00 −0.102096 −0.0510481 0.998696i \(-0.516256\pi\)
−0.0510481 + 0.998696i \(0.516256\pi\)
\(588\) −1176.00 −0.0824786
\(589\) 5548.00 0.388118
\(590\) 0 0
\(591\) 9180.00 0.638942
\(592\) −27776.0 −1.92836
\(593\) −10698.0 −0.740833 −0.370417 0.928866i \(-0.620785\pi\)
−0.370417 + 0.928866i \(0.620785\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 8112.00 0.557518
\(597\) 7998.00 0.548302
\(598\) 0 0
\(599\) −8730.00 −0.595489 −0.297745 0.954646i \(-0.596234\pi\)
−0.297745 + 0.954646i \(0.596234\pi\)
\(600\) 0 0
\(601\) 1910.00 0.129635 0.0648174 0.997897i \(-0.479354\pi\)
0.0648174 + 0.997897i \(0.479354\pi\)
\(602\) 0 0
\(603\) −7308.00 −0.493540
\(604\) 15968.0 1.07571
\(605\) 0 0
\(606\) 0 0
\(607\) 5596.00 0.374192 0.187096 0.982342i \(-0.440092\pi\)
0.187096 + 0.982342i \(0.440092\pi\)
\(608\) 0 0
\(609\) 5418.00 0.360506
\(610\) 0 0
\(611\) −1440.00 −0.0953456
\(612\) 4752.00 0.313870
\(613\) −28586.0 −1.88349 −0.941744 0.336332i \(-0.890814\pi\)
−0.941744 + 0.336332i \(0.890814\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 19236.0 1.25513 0.627563 0.778566i \(-0.284053\pi\)
0.627563 + 0.778566i \(0.284053\pi\)
\(618\) 0 0
\(619\) 6734.00 0.437257 0.218629 0.975808i \(-0.429842\pi\)
0.218629 + 0.975808i \(0.429842\pi\)
\(620\) 0 0
\(621\) −324.000 −0.0209367
\(622\) 0 0
\(623\) 7266.00 0.467265
\(624\) −3840.00 −0.246351
\(625\) 0 0
\(626\) 0 0
\(627\) 4788.00 0.304967
\(628\) −19136.0 −1.21594
\(629\) 28644.0 1.81576
\(630\) 0 0
\(631\) 7184.00 0.453234 0.226617 0.973984i \(-0.427233\pi\)
0.226617 + 0.973984i \(0.427233\pi\)
\(632\) 0 0
\(633\) −4044.00 −0.253925
\(634\) 0 0
\(635\) 0 0
\(636\) 8064.00 0.502765
\(637\) −980.000 −0.0609561
\(638\) 0 0
\(639\) 7290.00 0.451311
\(640\) 0 0
\(641\) 510.000 0.0314256 0.0157128 0.999877i \(-0.494998\pi\)
0.0157128 + 0.999877i \(0.494998\pi\)
\(642\) 0 0
\(643\) 20752.0 1.27275 0.636376 0.771379i \(-0.280433\pi\)
0.636376 + 0.771379i \(0.280433\pi\)
\(644\) −672.000 −0.0411188
\(645\) 0 0
\(646\) 0 0
\(647\) −21072.0 −1.28041 −0.640205 0.768204i \(-0.721151\pi\)
−0.640205 + 0.768204i \(0.721151\pi\)
\(648\) 0 0
\(649\) −15120.0 −0.914502
\(650\) 0 0
\(651\) −3066.00 −0.184587
\(652\) 16288.0 0.978355
\(653\) −2892.00 −0.173312 −0.0866560 0.996238i \(-0.527618\pi\)
−0.0866560 + 0.996238i \(0.527618\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) −18048.0 −1.07417
\(657\) 1116.00 0.0662699
\(658\) 0 0
\(659\) 750.000 0.0443336 0.0221668 0.999754i \(-0.492944\pi\)
0.0221668 + 0.999754i \(0.492944\pi\)
\(660\) 0 0
\(661\) 30062.0 1.76895 0.884475 0.466587i \(-0.154517\pi\)
0.884475 + 0.466587i \(0.154517\pi\)
\(662\) 0 0
\(663\) 3960.00 0.231966
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 3096.00 0.179727
\(668\) −31488.0 −1.82381
\(669\) −9564.00 −0.552714
\(670\) 0 0
\(671\) −28644.0 −1.64797
\(672\) 0 0
\(673\) −15446.0 −0.884695 −0.442347 0.896844i \(-0.645854\pi\)
−0.442347 + 0.896844i \(0.645854\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 14376.0 0.817934
\(677\) 25110.0 1.42549 0.712744 0.701424i \(-0.247452\pi\)
0.712744 + 0.701424i \(0.247452\pi\)
\(678\) 0 0
\(679\) 8456.00 0.477926
\(680\) 0 0
\(681\) 10188.0 0.573282
\(682\) 0 0
\(683\) −7968.00 −0.446394 −0.223197 0.974773i \(-0.571649\pi\)
−0.223197 + 0.974773i \(0.571649\pi\)
\(684\) −2736.00 −0.152944
\(685\) 0 0
\(686\) 0 0
\(687\) 15882.0 0.882003
\(688\) −1280.00 −0.0709296
\(689\) 6720.00 0.371570
\(690\) 0 0
\(691\) −14398.0 −0.792657 −0.396328 0.918109i \(-0.629716\pi\)
−0.396328 + 0.918109i \(0.629716\pi\)
\(692\) 3024.00 0.166120
\(693\) −2646.00 −0.145041
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) 18612.0 1.01145
\(698\) 0 0
\(699\) −2556.00 −0.138307
\(700\) 0 0
\(701\) −9234.00 −0.497523 −0.248761 0.968565i \(-0.580023\pi\)
−0.248761 + 0.968565i \(0.580023\pi\)
\(702\) 0 0
\(703\) −16492.0 −0.884790
\(704\) −21504.0 −1.15123
\(705\) 0 0
\(706\) 0 0
\(707\) −3822.00 −0.203311
\(708\) 8640.00 0.458631
\(709\) 8030.00 0.425350 0.212675 0.977123i \(-0.431782\pi\)
0.212675 + 0.977123i \(0.431782\pi\)
\(710\) 0 0
\(711\) 10224.0 0.539283
\(712\) 0 0
\(713\) −1752.00 −0.0920237
\(714\) 0 0
\(715\) 0 0
\(716\) 1776.00 0.0926987
\(717\) 14598.0 0.760352
\(718\) 0 0
\(719\) 27060.0 1.40357 0.701786 0.712388i \(-0.252386\pi\)
0.701786 + 0.712388i \(0.252386\pi\)
\(720\) 0 0
\(721\) −3640.00 −0.188018
\(722\) 0 0
\(723\) −6150.00 −0.316350
\(724\) 20720.0 1.06361
\(725\) 0 0
\(726\) 0 0
\(727\) 3724.00 0.189980 0.0949900 0.995478i \(-0.469718\pi\)
0.0949900 + 0.995478i \(0.469718\pi\)
\(728\) 0 0
\(729\) 729.000 0.0370370
\(730\) 0 0
\(731\) 1320.00 0.0667879
\(732\) 16368.0 0.826474
\(733\) 5668.00 0.285610 0.142805 0.989751i \(-0.454388\pi\)
0.142805 + 0.989751i \(0.454388\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −34104.0 −1.70453
\(738\) 0 0
\(739\) −16072.0 −0.800024 −0.400012 0.916510i \(-0.630994\pi\)
−0.400012 + 0.916510i \(0.630994\pi\)
\(740\) 0 0
\(741\) −2280.00 −0.113034
\(742\) 0 0
\(743\) 8256.00 0.407649 0.203825 0.979007i \(-0.434663\pi\)
0.203825 + 0.979007i \(0.434663\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) −1404.00 −0.0687680
\(748\) 22176.0 1.08400
\(749\) 8484.00 0.413883
\(750\) 0 0
\(751\) −6352.00 −0.308639 −0.154319 0.988021i \(-0.549318\pi\)
−0.154319 + 0.988021i \(0.549318\pi\)
\(752\) 4608.00 0.223453
\(753\) −3456.00 −0.167256
\(754\) 0 0
\(755\) 0 0
\(756\) 1512.00 0.0727393
\(757\) −11558.0 −0.554931 −0.277465 0.960736i \(-0.589494\pi\)
−0.277465 + 0.960736i \(0.589494\pi\)
\(758\) 0 0
\(759\) −1512.00 −0.0723085
\(760\) 0 0
\(761\) 7770.00 0.370121 0.185061 0.982727i \(-0.440752\pi\)
0.185061 + 0.982727i \(0.440752\pi\)
\(762\) 0 0
\(763\) 7546.00 0.358039
\(764\) −17712.0 −0.838740
\(765\) 0 0
\(766\) 0 0
\(767\) 7200.00 0.338953
\(768\) 12288.0 0.577350
\(769\) 22646.0 1.06194 0.530972 0.847389i \(-0.321827\pi\)
0.530972 + 0.847389i \(0.321827\pi\)
\(770\) 0 0
\(771\) 19350.0 0.903856
\(772\) 33424.0 1.55823
\(773\) 35502.0 1.65190 0.825950 0.563744i \(-0.190639\pi\)
0.825950 + 0.563744i \(0.190639\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) 9114.00 0.420802
\(778\) 0 0
\(779\) −10716.0 −0.492863
\(780\) 0 0
\(781\) 34020.0 1.55868
\(782\) 0 0
\(783\) −6966.00 −0.317937
\(784\) 3136.00 0.142857
\(785\) 0 0
\(786\) 0 0
\(787\) 17080.0 0.773617 0.386808 0.922160i \(-0.373578\pi\)
0.386808 + 0.922160i \(0.373578\pi\)
\(788\) −24480.0 −1.10668
\(789\) −5904.00 −0.266398
\(790\) 0 0
\(791\) −10164.0 −0.456878
\(792\) 0 0
\(793\) 13640.0 0.610808
\(794\) 0 0
\(795\) 0 0
\(796\) −21328.0 −0.949687
\(797\) −5730.00 −0.254664 −0.127332 0.991860i \(-0.540641\pi\)
−0.127332 + 0.991860i \(0.540641\pi\)
\(798\) 0 0
\(799\) −4752.00 −0.210405
\(800\) 0 0
\(801\) −9342.00 −0.412089
\(802\) 0 0
\(803\) 5208.00 0.228875
\(804\) 19488.0 0.854837
\(805\) 0 0
\(806\) 0 0
\(807\) −11682.0 −0.509574
\(808\) 0 0
\(809\) 2550.00 0.110820 0.0554099 0.998464i \(-0.482353\pi\)
0.0554099 + 0.998464i \(0.482353\pi\)
\(810\) 0 0
\(811\) −27538.0 −1.19234 −0.596171 0.802857i \(-0.703312\pi\)
−0.596171 + 0.802857i \(0.703312\pi\)
\(812\) −14448.0 −0.624416
\(813\) 21282.0 0.918072
\(814\) 0 0
\(815\) 0 0
\(816\) −12672.0 −0.543638
\(817\) −760.000 −0.0325447
\(818\) 0 0
\(819\) 1260.00 0.0537582
\(820\) 0 0
\(821\) −19242.0 −0.817966 −0.408983 0.912542i \(-0.634117\pi\)
−0.408983 + 0.912542i \(0.634117\pi\)
\(822\) 0 0
\(823\) 11752.0 0.497751 0.248875 0.968536i \(-0.419939\pi\)
0.248875 + 0.968536i \(0.419939\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 28692.0 1.20643 0.603216 0.797578i \(-0.293886\pi\)
0.603216 + 0.797578i \(0.293886\pi\)
\(828\) 864.000 0.0362634
\(829\) 28442.0 1.19159 0.595797 0.803135i \(-0.296836\pi\)
0.595797 + 0.803135i \(0.296836\pi\)
\(830\) 0 0
\(831\) 9930.00 0.414522
\(832\) 10240.0 0.426692
\(833\) −3234.00 −0.134516
\(834\) 0 0
\(835\) 0 0
\(836\) −12768.0 −0.528218
\(837\) 3942.00 0.162790
\(838\) 0 0
\(839\) 20172.0 0.830053 0.415027 0.909809i \(-0.363772\pi\)
0.415027 + 0.909809i \(0.363772\pi\)
\(840\) 0 0
\(841\) 42175.0 1.72926
\(842\) 0 0
\(843\) 21474.0 0.877347
\(844\) 10784.0 0.439811
\(845\) 0 0
\(846\) 0 0
\(847\) −3031.00 −0.122959
\(848\) −21504.0 −0.870814
\(849\) 15492.0 0.626247
\(850\) 0 0
\(851\) 5208.00 0.209786
\(852\) −19440.0 −0.781694
\(853\) −19820.0 −0.795573 −0.397787 0.917478i \(-0.630222\pi\)
−0.397787 + 0.917478i \(0.630222\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 10290.0 0.410151 0.205076 0.978746i \(-0.434256\pi\)
0.205076 + 0.978746i \(0.434256\pi\)
\(858\) 0 0
\(859\) −31606.0 −1.25539 −0.627697 0.778458i \(-0.716002\pi\)
−0.627697 + 0.778458i \(0.716002\pi\)
\(860\) 0 0
\(861\) 5922.00 0.234403
\(862\) 0 0
\(863\) −23172.0 −0.914002 −0.457001 0.889466i \(-0.651076\pi\)
−0.457001 + 0.889466i \(0.651076\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) −1671.00 −0.0654558
\(868\) 8176.00 0.319714
\(869\) 47712.0 1.86251
\(870\) 0 0
\(871\) 16240.0 0.631770
\(872\) 0 0
\(873\) −10872.0 −0.421491
\(874\) 0 0
\(875\) 0 0
\(876\) −2976.00 −0.114783
\(877\) 15550.0 0.598730 0.299365 0.954139i \(-0.403225\pi\)
0.299365 + 0.954139i \(0.403225\pi\)
\(878\) 0 0
\(879\) 25794.0 0.989772
\(880\) 0 0
\(881\) 28530.0 1.09103 0.545517 0.838100i \(-0.316334\pi\)
0.545517 + 0.838100i \(0.316334\pi\)
\(882\) 0 0
\(883\) 28780.0 1.09686 0.548428 0.836198i \(-0.315226\pi\)
0.548428 + 0.836198i \(0.315226\pi\)
\(884\) −10560.0 −0.401777
\(885\) 0 0
\(886\) 0 0
\(887\) −22872.0 −0.865802 −0.432901 0.901441i \(-0.642510\pi\)
−0.432901 + 0.901441i \(0.642510\pi\)
\(888\) 0 0
\(889\) −9184.00 −0.346481
\(890\) 0 0
\(891\) 3402.00 0.127914
\(892\) 25504.0 0.957329
\(893\) 2736.00 0.102527
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 720.000 0.0268006
\(898\) 0 0
\(899\) −37668.0 −1.39744
\(900\) 0 0
\(901\) 22176.0 0.819966
\(902\) 0 0
\(903\) 420.000 0.0154781
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) 10708.0 0.392010 0.196005 0.980603i \(-0.437203\pi\)
0.196005 + 0.980603i \(0.437203\pi\)
\(908\) −27168.0 −0.992953
\(909\) 4914.00 0.179304
\(910\) 0 0
\(911\) 1326.00 0.0482243 0.0241122 0.999709i \(-0.492324\pi\)
0.0241122 + 0.999709i \(0.492324\pi\)
\(912\) 7296.00 0.264906
\(913\) −6552.00 −0.237502
\(914\) 0 0
\(915\) 0 0
\(916\) −42352.0 −1.52767
\(917\) 9492.00 0.341825
\(918\) 0 0
\(919\) −13696.0 −0.491610 −0.245805 0.969319i \(-0.579052\pi\)
−0.245805 + 0.969319i \(0.579052\pi\)
\(920\) 0 0
\(921\) 1344.00 0.0480850
\(922\) 0 0
\(923\) −16200.0 −0.577713
\(924\) 7056.00 0.251218
\(925\) 0 0
\(926\) 0 0
\(927\) 4680.00 0.165816
\(928\) 0 0
\(929\) 42354.0 1.49579 0.747895 0.663817i \(-0.231064\pi\)
0.747895 + 0.663817i \(0.231064\pi\)
\(930\) 0 0
\(931\) 1862.00 0.0655474
\(932\) 6816.00 0.239555
\(933\) −17496.0 −0.613926
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) −6644.00 −0.231644 −0.115822 0.993270i \(-0.536950\pi\)
−0.115822 + 0.993270i \(0.536950\pi\)
\(938\) 0 0
\(939\) −29544.0 −1.02676
\(940\) 0 0
\(941\) 1350.00 0.0467681 0.0233840 0.999727i \(-0.492556\pi\)
0.0233840 + 0.999727i \(0.492556\pi\)
\(942\) 0 0
\(943\) 3384.00 0.116859
\(944\) −23040.0 −0.794373
\(945\) 0 0
\(946\) 0 0
\(947\) −49320.0 −1.69238 −0.846190 0.532881i \(-0.821109\pi\)
−0.846190 + 0.532881i \(0.821109\pi\)
\(948\) −27264.0 −0.934065
\(949\) −2480.00 −0.0848306
\(950\) 0 0
\(951\) 16848.0 0.574484
\(952\) 0 0
\(953\) −5940.00 −0.201905 −0.100953 0.994891i \(-0.532189\pi\)
−0.100953 + 0.994891i \(0.532189\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) −38928.0 −1.31697
\(957\) −32508.0 −1.09805
\(958\) 0 0
\(959\) −6888.00 −0.231934
\(960\) 0 0
\(961\) −8475.00 −0.284482
\(962\) 0 0
\(963\) −10908.0 −0.365011
\(964\) 16400.0 0.547934
\(965\) 0 0
\(966\) 0 0
\(967\) −47216.0 −1.57018 −0.785090 0.619382i \(-0.787383\pi\)
−0.785090 + 0.619382i \(0.787383\pi\)
\(968\) 0 0
\(969\) −7524.00 −0.249438
\(970\) 0 0
\(971\) 12552.0 0.414843 0.207422 0.978252i \(-0.433493\pi\)
0.207422 + 0.978252i \(0.433493\pi\)
\(972\) −1944.00 −0.0641500
\(973\) 2758.00 0.0908709
\(974\) 0 0
\(975\) 0 0
\(976\) −43648.0 −1.43149
\(977\) −46908.0 −1.53605 −0.768025 0.640420i \(-0.778760\pi\)
−0.768025 + 0.640420i \(0.778760\pi\)
\(978\) 0 0
\(979\) −43596.0 −1.42322
\(980\) 0 0
\(981\) −9702.00 −0.315760
\(982\) 0 0
\(983\) 46128.0 1.49670 0.748349 0.663305i \(-0.230847\pi\)
0.748349 + 0.663305i \(0.230847\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) −1512.00 −0.0487614
\(988\) 6080.00 0.195780
\(989\) 240.000 0.00771644
\(990\) 0 0
\(991\) −12184.0 −0.390552 −0.195276 0.980748i \(-0.562560\pi\)
−0.195276 + 0.980748i \(0.562560\pi\)
\(992\) 0 0
\(993\) 1356.00 0.0433347
\(994\) 0 0
\(995\) 0 0
\(996\) 3744.00 0.119110
\(997\) 5164.00 0.164038 0.0820188 0.996631i \(-0.473863\pi\)
0.0820188 + 0.996631i \(0.473863\pi\)
\(998\) 0 0
\(999\) −11718.0 −0.371112
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 525.4.a.e.1.1 1
3.2 odd 2 1575.4.a.f.1.1 1
5.2 odd 4 525.4.d.f.274.1 2
5.3 odd 4 525.4.d.f.274.2 2
5.4 even 2 105.4.a.a.1.1 1
15.14 odd 2 315.4.a.d.1.1 1
20.19 odd 2 1680.4.a.s.1.1 1
35.34 odd 2 735.4.a.c.1.1 1
105.104 even 2 2205.4.a.o.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
105.4.a.a.1.1 1 5.4 even 2
315.4.a.d.1.1 1 15.14 odd 2
525.4.a.e.1.1 1 1.1 even 1 trivial
525.4.d.f.274.1 2 5.2 odd 4
525.4.d.f.274.2 2 5.3 odd 4
735.4.a.c.1.1 1 35.34 odd 2
1575.4.a.f.1.1 1 3.2 odd 2
1680.4.a.s.1.1 1 20.19 odd 2
2205.4.a.o.1.1 1 105.104 even 2