Properties

Label 525.4.a.e
Level $525$
Weight $4$
Character orbit 525.a
Self dual yes
Analytic conductor $30.976$
Analytic rank $1$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [525,4,Mod(1,525)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(525, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("525.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 525 = 3 \cdot 5^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 525.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(30.9760027530\)
Analytic rank: \(1\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 105)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \( q + 3 q^{3} - 8 q^{4} - 7 q^{7} + 9 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( q + 3 q^{3} - 8 q^{4} - 7 q^{7} + 9 q^{9} + 42 q^{11} - 24 q^{12} - 20 q^{13} + 64 q^{16} - 66 q^{17} + 38 q^{19} - 21 q^{21} - 12 q^{23} + 27 q^{27} + 56 q^{28} - 258 q^{29} + 146 q^{31} + 126 q^{33} - 72 q^{36} - 434 q^{37} - 60 q^{39} - 282 q^{41} - 20 q^{43} - 336 q^{44} + 72 q^{47} + 192 q^{48} + 49 q^{49} - 198 q^{51} + 160 q^{52} - 336 q^{53} + 114 q^{57} - 360 q^{59} - 682 q^{61} - 63 q^{63} - 512 q^{64} - 812 q^{67} + 528 q^{68} - 36 q^{69} + 810 q^{71} + 124 q^{73} - 304 q^{76} - 294 q^{77} + 1136 q^{79} + 81 q^{81} - 156 q^{83} + 168 q^{84} - 774 q^{87} - 1038 q^{89} + 140 q^{91} + 96 q^{92} + 438 q^{93} - 1208 q^{97} + 378 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
0
0 3.00000 −8.00000 0 0 −7.00000 0 9.00000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(3\) \( -1 \)
\(5\) \( +1 \)
\(7\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 525.4.a.e 1
3.b odd 2 1 1575.4.a.f 1
5.b even 2 1 105.4.a.a 1
5.c odd 4 2 525.4.d.f 2
15.d odd 2 1 315.4.a.d 1
20.d odd 2 1 1680.4.a.s 1
35.c odd 2 1 735.4.a.c 1
105.g even 2 1 2205.4.a.o 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
105.4.a.a 1 5.b even 2 1
315.4.a.d 1 15.d odd 2 1
525.4.a.e 1 1.a even 1 1 trivial
525.4.d.f 2 5.c odd 4 2
735.4.a.c 1 35.c odd 2 1
1575.4.a.f 1 3.b odd 2 1
1680.4.a.s 1 20.d odd 2 1
2205.4.a.o 1 105.g even 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{4}^{\mathrm{new}}(\Gamma_0(525))\):

\( T_{2} \) Copy content Toggle raw display
\( T_{11} - 42 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T \) Copy content Toggle raw display
$3$ \( T - 3 \) Copy content Toggle raw display
$5$ \( T \) Copy content Toggle raw display
$7$ \( T + 7 \) Copy content Toggle raw display
$11$ \( T - 42 \) Copy content Toggle raw display
$13$ \( T + 20 \) Copy content Toggle raw display
$17$ \( T + 66 \) Copy content Toggle raw display
$19$ \( T - 38 \) Copy content Toggle raw display
$23$ \( T + 12 \) Copy content Toggle raw display
$29$ \( T + 258 \) Copy content Toggle raw display
$31$ \( T - 146 \) Copy content Toggle raw display
$37$ \( T + 434 \) Copy content Toggle raw display
$41$ \( T + 282 \) Copy content Toggle raw display
$43$ \( T + 20 \) Copy content Toggle raw display
$47$ \( T - 72 \) Copy content Toggle raw display
$53$ \( T + 336 \) Copy content Toggle raw display
$59$ \( T + 360 \) Copy content Toggle raw display
$61$ \( T + 682 \) Copy content Toggle raw display
$67$ \( T + 812 \) Copy content Toggle raw display
$71$ \( T - 810 \) Copy content Toggle raw display
$73$ \( T - 124 \) Copy content Toggle raw display
$79$ \( T - 1136 \) Copy content Toggle raw display
$83$ \( T + 156 \) Copy content Toggle raw display
$89$ \( T + 1038 \) Copy content Toggle raw display
$97$ \( T + 1208 \) Copy content Toggle raw display
show more
show less