Properties

Label 525.3.s.d.199.2
Level $525$
Weight $3$
Character 525.199
Analytic conductor $14.305$
Analytic rank $0$
Dimension $4$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [525,3,Mod(124,525)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("525.124"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(525, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 3, 5])) N = Newforms(chi, 3, names="a")
 
Level: \( N \) \(=\) \( 525 = 3 \cdot 5^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 525.s (of order \(6\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,0,0,0,0,0,0,-6,0,-20,0,0,-28] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(14)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(14.3052138789\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\Q(\zeta_{12})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 21)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 199.2
Root \(0.866025 - 0.500000i\) of defining polynomial
Character \(\chi\) \(=\) 525.199
Dual form 525.3.s.d.124.2

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.73205 - 1.00000i) q^{2} +(0.866025 - 1.50000i) q^{3} -3.46410i q^{6} +(-6.06218 + 3.50000i) q^{7} +8.00000i q^{8} +(-1.50000 - 2.59808i) q^{9} +(-5.00000 + 8.66025i) q^{11} -12.1244 q^{13} +(-7.00000 + 12.1244i) q^{14} +(8.00000 + 13.8564i) q^{16} +(-3.46410 + 6.00000i) q^{17} +(-5.19615 - 3.00000i) q^{18} +(-28.5000 + 16.4545i) q^{19} +12.1244i q^{21} +20.0000i q^{22} +(34.6410 - 20.0000i) q^{23} +(12.0000 + 6.92820i) q^{24} +(-21.0000 + 12.1244i) q^{26} -5.19615 q^{27} -16.0000 q^{29} +(4.50000 + 2.59808i) q^{31} +(8.66025 + 15.0000i) q^{33} +13.8564i q^{34} +(-4.33013 + 2.50000i) q^{37} +(-32.9090 + 57.0000i) q^{38} +(-10.5000 + 18.1865i) q^{39} +24.2487i q^{41} +(12.1244 + 21.0000i) q^{42} -19.0000i q^{43} +(40.0000 - 69.2820i) q^{46} +(25.9808 + 45.0000i) q^{47} +27.7128 q^{48} +(24.5000 - 42.4352i) q^{49} +(6.00000 + 10.3923i) q^{51} +(27.7128 + 16.0000i) q^{53} +(-9.00000 + 5.19615i) q^{54} +(-28.0000 - 48.4974i) q^{56} +57.0000i q^{57} +(-27.7128 + 16.0000i) q^{58} +(-36.0000 - 20.7846i) q^{59} +(18.0000 - 10.3923i) q^{61} +10.3923 q^{62} +(18.1865 + 10.5000i) q^{63} -64.0000 q^{64} +(30.0000 + 17.3205i) q^{66} +(51.0955 + 29.5000i) q^{67} -69.2820i q^{69} -26.0000 q^{71} +(20.7846 - 12.0000i) q^{72} +(9.52628 - 16.5000i) q^{73} +(-5.00000 + 8.66025i) q^{74} -70.0000i q^{77} +42.0000i q^{78} +(23.5000 + 40.7032i) q^{79} +(-4.50000 + 7.79423i) q^{81} +(24.2487 + 42.0000i) q^{82} +24.2487 q^{83} +(-19.0000 - 32.9090i) q^{86} +(-13.8564 + 24.0000i) q^{87} +(-69.2820 - 40.0000i) q^{88} +(-102.000 + 58.8897i) q^{89} +(73.5000 - 42.4352i) q^{91} +(7.79423 - 4.50000i) q^{93} +(90.0000 + 51.9615i) q^{94} -48.4974 q^{97} -98.0000i q^{98} +30.0000 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 6 q^{9} - 20 q^{11} - 28 q^{14} + 32 q^{16} - 114 q^{19} + 48 q^{24} - 84 q^{26} - 64 q^{29} + 18 q^{31} - 42 q^{39} + 160 q^{46} + 98 q^{49} + 24 q^{51} - 36 q^{54} - 112 q^{56} - 144 q^{59} + 72 q^{61}+ \cdots + 120 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/525\mathbb{Z}\right)^\times\).

\(n\) \(127\) \(176\) \(451\)
\(\chi(n)\) \(-1\) \(1\) \(e\left(\frac{1}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.73205 1.00000i 0.866025 0.500000i 1.00000i \(-0.5\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(3\) 0.866025 1.50000i 0.288675 0.500000i
\(4\) 0 0
\(5\) 0 0
\(6\) 3.46410i 0.577350i
\(7\) −6.06218 + 3.50000i −0.866025 + 0.500000i
\(8\) 8.00000i 1.00000i
\(9\) −1.50000 2.59808i −0.166667 0.288675i
\(10\) 0 0
\(11\) −5.00000 + 8.66025i −0.454545 + 0.787296i −0.998662 0.0517139i \(-0.983532\pi\)
0.544116 + 0.839010i \(0.316865\pi\)
\(12\) 0 0
\(13\) −12.1244 −0.932643 −0.466321 0.884615i \(-0.654421\pi\)
−0.466321 + 0.884615i \(0.654421\pi\)
\(14\) −7.00000 + 12.1244i −0.500000 + 0.866025i
\(15\) 0 0
\(16\) 8.00000 + 13.8564i 0.500000 + 0.866025i
\(17\) −3.46410 + 6.00000i −0.203771 + 0.352941i −0.949740 0.313039i \(-0.898653\pi\)
0.745970 + 0.665980i \(0.231986\pi\)
\(18\) −5.19615 3.00000i −0.288675 0.166667i
\(19\) −28.5000 + 16.4545i −1.50000 + 0.866025i −0.500000 + 0.866025i \(0.666667\pi\)
−1.00000 \(\pi\)
\(20\) 0 0
\(21\) 12.1244i 0.577350i
\(22\) 20.0000i 0.909091i
\(23\) 34.6410 20.0000i 1.50613 0.869565i 0.506157 0.862442i \(-0.331066\pi\)
0.999975 0.00712357i \(-0.00226752\pi\)
\(24\) 12.0000 + 6.92820i 0.500000 + 0.288675i
\(25\) 0 0
\(26\) −21.0000 + 12.1244i −0.807692 + 0.466321i
\(27\) −5.19615 −0.192450
\(28\) 0 0
\(29\) −16.0000 −0.551724 −0.275862 0.961197i \(-0.588963\pi\)
−0.275862 + 0.961197i \(0.588963\pi\)
\(30\) 0 0
\(31\) 4.50000 + 2.59808i 0.145161 + 0.0838089i 0.570822 0.821074i \(-0.306625\pi\)
−0.425660 + 0.904883i \(0.639958\pi\)
\(32\) 0 0
\(33\) 8.66025 + 15.0000i 0.262432 + 0.454545i
\(34\) 13.8564i 0.407541i
\(35\) 0 0
\(36\) 0 0
\(37\) −4.33013 + 2.50000i −0.117030 + 0.0675676i −0.557373 0.830262i \(-0.688190\pi\)
0.440342 + 0.897830i \(0.354857\pi\)
\(38\) −32.9090 + 57.0000i −0.866025 + 1.50000i
\(39\) −10.5000 + 18.1865i −0.269231 + 0.466321i
\(40\) 0 0
\(41\) 24.2487i 0.591432i 0.955276 + 0.295716i \(0.0955582\pi\)
−0.955276 + 0.295716i \(0.904442\pi\)
\(42\) 12.1244 + 21.0000i 0.288675 + 0.500000i
\(43\) 19.0000i 0.441860i −0.975290 0.220930i \(-0.929091\pi\)
0.975290 0.220930i \(-0.0709093\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 40.0000 69.2820i 0.869565 1.50613i
\(47\) 25.9808 + 45.0000i 0.552782 + 0.957447i 0.998072 + 0.0620605i \(0.0197672\pi\)
−0.445290 + 0.895386i \(0.646899\pi\)
\(48\) 27.7128 0.577350
\(49\) 24.5000 42.4352i 0.500000 0.866025i
\(50\) 0 0
\(51\) 6.00000 + 10.3923i 0.117647 + 0.203771i
\(52\) 0 0
\(53\) 27.7128 + 16.0000i 0.522883 + 0.301887i 0.738114 0.674677i \(-0.235717\pi\)
−0.215230 + 0.976563i \(0.569050\pi\)
\(54\) −9.00000 + 5.19615i −0.166667 + 0.0962250i
\(55\) 0 0
\(56\) −28.0000 48.4974i −0.500000 0.866025i
\(57\) 57.0000i 1.00000i
\(58\) −27.7128 + 16.0000i −0.477807 + 0.275862i
\(59\) −36.0000 20.7846i −0.610169 0.352282i 0.162862 0.986649i \(-0.447927\pi\)
−0.773032 + 0.634367i \(0.781261\pi\)
\(60\) 0 0
\(61\) 18.0000 10.3923i 0.295082 0.170366i −0.345149 0.938548i \(-0.612172\pi\)
0.640231 + 0.768182i \(0.278838\pi\)
\(62\) 10.3923 0.167618
\(63\) 18.1865 + 10.5000i 0.288675 + 0.166667i
\(64\) −64.0000 −1.00000
\(65\) 0 0
\(66\) 30.0000 + 17.3205i 0.454545 + 0.262432i
\(67\) 51.0955 + 29.5000i 0.762619 + 0.440299i 0.830235 0.557413i \(-0.188206\pi\)
−0.0676160 + 0.997711i \(0.521539\pi\)
\(68\) 0 0
\(69\) 69.2820i 1.00409i
\(70\) 0 0
\(71\) −26.0000 −0.366197 −0.183099 0.983095i \(-0.558613\pi\)
−0.183099 + 0.983095i \(0.558613\pi\)
\(72\) 20.7846 12.0000i 0.288675 0.166667i
\(73\) 9.52628 16.5000i 0.130497 0.226027i −0.793371 0.608738i \(-0.791676\pi\)
0.923868 + 0.382711i \(0.125009\pi\)
\(74\) −5.00000 + 8.66025i −0.0675676 + 0.117030i
\(75\) 0 0
\(76\) 0 0
\(77\) 70.0000i 0.909091i
\(78\) 42.0000i 0.538462i
\(79\) 23.5000 + 40.7032i 0.297468 + 0.515230i 0.975556 0.219751i \(-0.0705244\pi\)
−0.678088 + 0.734981i \(0.737191\pi\)
\(80\) 0 0
\(81\) −4.50000 + 7.79423i −0.0555556 + 0.0962250i
\(82\) 24.2487 + 42.0000i 0.295716 + 0.512195i
\(83\) 24.2487 0.292153 0.146077 0.989273i \(-0.453335\pi\)
0.146077 + 0.989273i \(0.453335\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) −19.0000 32.9090i −0.220930 0.382662i
\(87\) −13.8564 + 24.0000i −0.159269 + 0.275862i
\(88\) −69.2820 40.0000i −0.787296 0.454545i
\(89\) −102.000 + 58.8897i −1.14607 + 0.661682i −0.947926 0.318491i \(-0.896824\pi\)
−0.198142 + 0.980173i \(0.563491\pi\)
\(90\) 0 0
\(91\) 73.5000 42.4352i 0.807692 0.466321i
\(92\) 0 0
\(93\) 7.79423 4.50000i 0.0838089 0.0483871i
\(94\) 90.0000 + 51.9615i 0.957447 + 0.552782i
\(95\) 0 0
\(96\) 0 0
\(97\) −48.4974 −0.499973 −0.249987 0.968249i \(-0.580426\pi\)
−0.249987 + 0.968249i \(0.580426\pi\)
\(98\) 98.0000i 1.00000i
\(99\) 30.0000 0.303030
\(100\) 0 0
\(101\) −111.000 64.0859i −1.09901 0.634514i −0.163049 0.986618i \(-0.552133\pi\)
−0.935961 + 0.352104i \(0.885466\pi\)
\(102\) 20.7846 + 12.0000i 0.203771 + 0.117647i
\(103\) 4.33013 + 7.50000i 0.0420401 + 0.0728155i 0.886280 0.463150i \(-0.153281\pi\)
−0.844240 + 0.535966i \(0.819948\pi\)
\(104\) 96.9948i 0.932643i
\(105\) 0 0
\(106\) 64.0000 0.603774
\(107\) 183.597 106.000i 1.71586 0.990654i 0.789733 0.613451i \(-0.210219\pi\)
0.926130 0.377204i \(-0.123114\pi\)
\(108\) 0 0
\(109\) 8.50000 14.7224i 0.0779817 0.135068i −0.824397 0.566011i \(-0.808486\pi\)
0.902379 + 0.430943i \(0.141819\pi\)
\(110\) 0 0
\(111\) 8.66025i 0.0780203i
\(112\) −96.9948 56.0000i −0.866025 0.500000i
\(113\) 142.000i 1.25664i 0.777956 + 0.628319i \(0.216257\pi\)
−0.777956 + 0.628319i \(0.783743\pi\)
\(114\) 57.0000 + 98.7269i 0.500000 + 0.866025i
\(115\) 0 0
\(116\) 0 0
\(117\) 18.1865 + 31.5000i 0.155440 + 0.269231i
\(118\) −83.1384 −0.704563
\(119\) 48.4974i 0.407541i
\(120\) 0 0
\(121\) 10.5000 + 18.1865i 0.0867769 + 0.150302i
\(122\) 20.7846 36.0000i 0.170366 0.295082i
\(123\) 36.3731 + 21.0000i 0.295716 + 0.170732i
\(124\) 0 0
\(125\) 0 0
\(126\) 42.0000 0.333333
\(127\) 145.000i 1.14173i 0.821043 + 0.570866i \(0.193392\pi\)
−0.821043 + 0.570866i \(0.806608\pi\)
\(128\) −110.851 + 64.0000i −0.866025 + 0.500000i
\(129\) −28.5000 16.4545i −0.220930 0.127554i
\(130\) 0 0
\(131\) −129.000 + 74.4782i −0.984733 + 0.568536i −0.903696 0.428175i \(-0.859157\pi\)
−0.0810371 + 0.996711i \(0.525823\pi\)
\(132\) 0 0
\(133\) 115.181 199.500i 0.866025 1.50000i
\(134\) 118.000 0.880597
\(135\) 0 0
\(136\) −48.0000 27.7128i −0.352941 0.203771i
\(137\) −100.459 58.0000i −0.733277 0.423358i 0.0863428 0.996265i \(-0.472482\pi\)
−0.819620 + 0.572908i \(0.805815\pi\)
\(138\) −69.2820 120.000i −0.502044 0.869565i
\(139\) 84.8705i 0.610579i −0.952260 0.305290i \(-0.901247\pi\)
0.952260 0.305290i \(-0.0987532\pi\)
\(140\) 0 0
\(141\) 90.0000 0.638298
\(142\) −45.0333 + 26.0000i −0.317136 + 0.183099i
\(143\) 60.6218 105.000i 0.423929 0.734266i
\(144\) 24.0000 41.5692i 0.166667 0.288675i
\(145\) 0 0
\(146\) 38.1051i 0.260994i
\(147\) −42.4352 73.5000i −0.288675 0.500000i
\(148\) 0 0
\(149\) 62.0000 + 107.387i 0.416107 + 0.720719i 0.995544 0.0942982i \(-0.0300607\pi\)
−0.579437 + 0.815017i \(0.696727\pi\)
\(150\) 0 0
\(151\) 23.0000 39.8372i 0.152318 0.263822i −0.779761 0.626077i \(-0.784660\pi\)
0.932079 + 0.362255i \(0.117993\pi\)
\(152\) −131.636 228.000i −0.866025 1.50000i
\(153\) 20.7846 0.135847
\(154\) −70.0000 121.244i −0.454545 0.787296i
\(155\) 0 0
\(156\) 0 0
\(157\) 93.5307 162.000i 0.595737 1.03185i −0.397705 0.917513i \(-0.630193\pi\)
0.993442 0.114334i \(-0.0364734\pi\)
\(158\) 81.4064 + 47.0000i 0.515230 + 0.297468i
\(159\) 48.0000 27.7128i 0.301887 0.174294i
\(160\) 0 0
\(161\) −140.000 + 242.487i −0.869565 + 1.50613i
\(162\) 18.0000i 0.111111i
\(163\) −50.2295 + 29.0000i −0.308156 + 0.177914i −0.646101 0.763252i \(-0.723602\pi\)
0.337945 + 0.941166i \(0.390268\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 42.0000 24.2487i 0.253012 0.146077i
\(167\) −266.736 −1.59722 −0.798610 0.601849i \(-0.794431\pi\)
−0.798610 + 0.601849i \(0.794431\pi\)
\(168\) −96.9948 −0.577350
\(169\) −22.0000 −0.130178
\(170\) 0 0
\(171\) 85.5000 + 49.3634i 0.500000 + 0.288675i
\(172\) 0 0
\(173\) −62.3538 108.000i −0.360427 0.624277i 0.627604 0.778532i \(-0.284036\pi\)
−0.988031 + 0.154255i \(0.950702\pi\)
\(174\) 55.4256i 0.318538i
\(175\) 0 0
\(176\) −160.000 −0.909091
\(177\) −62.3538 + 36.0000i −0.352282 + 0.203390i
\(178\) −117.779 + 204.000i −0.661682 + 1.14607i
\(179\) 5.00000 8.66025i 0.0279330 0.0483813i −0.851721 0.523996i \(-0.824441\pi\)
0.879654 + 0.475614i \(0.157774\pi\)
\(180\) 0 0
\(181\) 327.358i 1.80861i 0.426892 + 0.904303i \(0.359609\pi\)
−0.426892 + 0.904303i \(0.640391\pi\)
\(182\) 84.8705 147.000i 0.466321 0.807692i
\(183\) 36.0000i 0.196721i
\(184\) 160.000 + 277.128i 0.869565 + 1.50613i
\(185\) 0 0
\(186\) 9.00000 15.5885i 0.0483871 0.0838089i
\(187\) −34.6410 60.0000i −0.185246 0.320856i
\(188\) 0 0
\(189\) 31.5000 18.1865i 0.166667 0.0962250i
\(190\) 0 0
\(191\) 1.00000 + 1.73205i 0.00523560 + 0.00906833i 0.868631 0.495459i \(-0.165000\pi\)
−0.863396 + 0.504527i \(0.831667\pi\)
\(192\) −55.4256 + 96.0000i −0.288675 + 0.500000i
\(193\) 203.516 + 117.500i 1.05449 + 0.608808i 0.923902 0.382629i \(-0.124981\pi\)
0.130585 + 0.991437i \(0.458315\pi\)
\(194\) −84.0000 + 48.4974i −0.432990 + 0.249987i
\(195\) 0 0
\(196\) 0 0
\(197\) 100.000i 0.507614i −0.967255 0.253807i \(-0.918317\pi\)
0.967255 0.253807i \(-0.0816828\pi\)
\(198\) 51.9615 30.0000i 0.262432 0.151515i
\(199\) 174.000 + 100.459i 0.874372 + 0.504819i 0.868799 0.495166i \(-0.164893\pi\)
0.00557327 + 0.999984i \(0.498226\pi\)
\(200\) 0 0
\(201\) 88.5000 51.0955i 0.440299 0.254206i
\(202\) −256.344 −1.26903
\(203\) 96.9948 56.0000i 0.477807 0.275862i
\(204\) 0 0
\(205\) 0 0
\(206\) 15.0000 + 8.66025i 0.0728155 + 0.0420401i
\(207\) −103.923 60.0000i −0.502044 0.289855i
\(208\) −96.9948 168.000i −0.466321 0.807692i
\(209\) 329.090i 1.57459i
\(210\) 0 0
\(211\) 2.00000 0.00947867 0.00473934 0.999989i \(-0.498491\pi\)
0.00473934 + 0.999989i \(0.498491\pi\)
\(212\) 0 0
\(213\) −22.5167 + 39.0000i −0.105712 + 0.183099i
\(214\) 212.000 367.195i 0.990654 1.71586i
\(215\) 0 0
\(216\) 41.5692i 0.192450i
\(217\) −36.3731 −0.167618
\(218\) 34.0000i 0.155963i
\(219\) −16.5000 28.5788i −0.0753425 0.130497i
\(220\) 0 0
\(221\) 42.0000 72.7461i 0.190045 0.329168i
\(222\) 8.66025 + 15.0000i 0.0390102 + 0.0675676i
\(223\) 339.482 1.52234 0.761170 0.648552i \(-0.224625\pi\)
0.761170 + 0.648552i \(0.224625\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 142.000 + 245.951i 0.628319 + 1.08828i
\(227\) 81.4064 141.000i 0.358618 0.621145i −0.629112 0.777315i \(-0.716581\pi\)
0.987730 + 0.156169i \(0.0499146\pi\)
\(228\) 0 0
\(229\) −7.50000 + 4.33013i −0.0327511 + 0.0189089i −0.516286 0.856416i \(-0.672686\pi\)
0.483535 + 0.875325i \(0.339353\pi\)
\(230\) 0 0
\(231\) −105.000 60.6218i −0.454545 0.262432i
\(232\) 128.000i 0.551724i
\(233\) −147.224 + 85.0000i −0.631864 + 0.364807i −0.781474 0.623938i \(-0.785532\pi\)
0.149610 + 0.988745i \(0.452198\pi\)
\(234\) 63.0000 + 36.3731i 0.269231 + 0.155440i
\(235\) 0 0
\(236\) 0 0
\(237\) 81.4064 0.343487
\(238\) −48.4974 84.0000i −0.203771 0.352941i
\(239\) −142.000 −0.594142 −0.297071 0.954855i \(-0.596010\pi\)
−0.297071 + 0.954855i \(0.596010\pi\)
\(240\) 0 0
\(241\) −132.000 76.2102i −0.547718 0.316225i 0.200483 0.979697i \(-0.435749\pi\)
−0.748201 + 0.663472i \(0.769082\pi\)
\(242\) 36.3731 + 21.0000i 0.150302 + 0.0867769i
\(243\) 7.79423 + 13.5000i 0.0320750 + 0.0555556i
\(244\) 0 0
\(245\) 0 0
\(246\) 84.0000 0.341463
\(247\) 345.544 199.500i 1.39896 0.807692i
\(248\) −20.7846 + 36.0000i −0.0838089 + 0.145161i
\(249\) 21.0000 36.3731i 0.0843373 0.146077i
\(250\) 0 0
\(251\) 290.985i 1.15930i −0.814865 0.579650i \(-0.803189\pi\)
0.814865 0.579650i \(-0.196811\pi\)
\(252\) 0 0
\(253\) 400.000i 1.58103i
\(254\) 145.000 + 251.147i 0.570866 + 0.988769i
\(255\) 0 0
\(256\) 0 0
\(257\) 219.970 + 381.000i 0.855916 + 1.48249i 0.875792 + 0.482688i \(0.160339\pi\)
−0.0198763 + 0.999802i \(0.506327\pi\)
\(258\) −65.8179 −0.255108
\(259\) 17.5000 30.3109i 0.0675676 0.117030i
\(260\) 0 0
\(261\) 24.0000 + 41.5692i 0.0919540 + 0.159269i
\(262\) −148.956 + 258.000i −0.568536 + 0.984733i
\(263\) −117.779 68.0000i −0.447831 0.258555i 0.259083 0.965855i \(-0.416580\pi\)
−0.706914 + 0.707300i \(0.749913\pi\)
\(264\) −120.000 + 69.2820i −0.454545 + 0.262432i
\(265\) 0 0
\(266\) 460.726i 1.73205i
\(267\) 204.000i 0.764045i
\(268\) 0 0
\(269\) 195.000 + 112.583i 0.724907 + 0.418525i 0.816556 0.577266i \(-0.195880\pi\)
−0.0916490 + 0.995791i \(0.529214\pi\)
\(270\) 0 0
\(271\) −318.000 + 183.597i −1.17343 + 0.677481i −0.954486 0.298256i \(-0.903595\pi\)
−0.218946 + 0.975737i \(0.570262\pi\)
\(272\) −110.851 −0.407541
\(273\) 147.000i 0.538462i
\(274\) −232.000 −0.846715
\(275\) 0 0
\(276\) 0 0
\(277\) 342.080 + 197.500i 1.23495 + 0.712996i 0.968057 0.250731i \(-0.0806709\pi\)
0.266889 + 0.963727i \(0.414004\pi\)
\(278\) −84.8705 147.000i −0.305290 0.528777i
\(279\) 15.5885i 0.0558726i
\(280\) 0 0
\(281\) 100.000 0.355872 0.177936 0.984042i \(-0.443058\pi\)
0.177936 + 0.984042i \(0.443058\pi\)
\(282\) 155.885 90.0000i 0.552782 0.319149i
\(283\) 179.267 310.500i 0.633453 1.09717i −0.353387 0.935477i \(-0.614970\pi\)
0.986841 0.161696i \(-0.0516964\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 242.487i 0.847857i
\(287\) −84.8705 147.000i −0.295716 0.512195i
\(288\) 0 0
\(289\) 120.500 + 208.712i 0.416955 + 0.722187i
\(290\) 0 0
\(291\) −42.0000 + 72.7461i −0.144330 + 0.249987i
\(292\) 0 0
\(293\) −242.487 −0.827601 −0.413801 0.910368i \(-0.635799\pi\)
−0.413801 + 0.910368i \(0.635799\pi\)
\(294\) −147.000 84.8705i −0.500000 0.288675i
\(295\) 0 0
\(296\) −20.0000 34.6410i −0.0675676 0.117030i
\(297\) 25.9808 45.0000i 0.0874773 0.151515i
\(298\) 214.774 + 124.000i 0.720719 + 0.416107i
\(299\) −420.000 + 242.487i −1.40468 + 0.810994i
\(300\) 0 0
\(301\) 66.5000 + 115.181i 0.220930 + 0.382662i
\(302\) 92.0000i 0.304636i
\(303\) −192.258 + 111.000i −0.634514 + 0.366337i
\(304\) −456.000 263.272i −1.50000 0.866025i
\(305\) 0 0
\(306\) 36.0000 20.7846i 0.117647 0.0679236i
\(307\) 181.865 0.592395 0.296198 0.955127i \(-0.404281\pi\)
0.296198 + 0.955127i \(0.404281\pi\)
\(308\) 0 0
\(309\) 15.0000 0.0485437
\(310\) 0 0
\(311\) 477.000 + 275.396i 1.53376 + 0.885518i 0.999184 + 0.0403991i \(0.0128629\pi\)
0.534578 + 0.845119i \(0.320470\pi\)
\(312\) −145.492 84.0000i −0.466321 0.269231i
\(313\) 101.325 + 175.500i 0.323722 + 0.560703i 0.981253 0.192725i \(-0.0617324\pi\)
−0.657531 + 0.753428i \(0.728399\pi\)
\(314\) 374.123i 1.19147i
\(315\) 0 0
\(316\) 0 0
\(317\) −252.879 + 146.000i −0.797727 + 0.460568i −0.842676 0.538421i \(-0.819021\pi\)
0.0449488 + 0.998989i \(0.485688\pi\)
\(318\) 55.4256 96.0000i 0.174294 0.301887i
\(319\) 80.0000 138.564i 0.250784 0.434370i
\(320\) 0 0
\(321\) 367.195i 1.14391i
\(322\) 560.000i 1.73913i
\(323\) 228.000i 0.705882i
\(324\) 0 0
\(325\) 0 0
\(326\) −58.0000 + 100.459i −0.177914 + 0.308156i
\(327\) −14.7224 25.5000i −0.0450227 0.0779817i
\(328\) −193.990 −0.591432
\(329\) −315.000 181.865i −0.957447 0.552782i
\(330\) 0 0
\(331\) −2.50000 4.33013i −0.00755287 0.0130820i 0.862224 0.506527i \(-0.169071\pi\)
−0.869777 + 0.493445i \(0.835738\pi\)
\(332\) 0 0
\(333\) 12.9904 + 7.50000i 0.0390102 + 0.0225225i
\(334\) −462.000 + 266.736i −1.38323 + 0.798610i
\(335\) 0 0
\(336\) −168.000 + 96.9948i −0.500000 + 0.288675i
\(337\) 439.000i 1.30267i 0.758790 + 0.651335i \(0.225791\pi\)
−0.758790 + 0.651335i \(0.774209\pi\)
\(338\) −38.1051 + 22.0000i −0.112737 + 0.0650888i
\(339\) 213.000 + 122.976i 0.628319 + 0.362760i
\(340\) 0 0
\(341\) −45.0000 + 25.9808i −0.131965 + 0.0761899i
\(342\) 197.454 0.577350
\(343\) 343.000i 1.00000i
\(344\) 152.000 0.441860
\(345\) 0 0
\(346\) −216.000 124.708i −0.624277 0.360427i
\(347\) 190.526 + 110.000i 0.549065 + 0.317003i 0.748745 0.662858i \(-0.230657\pi\)
−0.199680 + 0.979861i \(0.563990\pi\)
\(348\) 0 0
\(349\) 339.482i 0.972728i 0.873756 + 0.486364i \(0.161677\pi\)
−0.873756 + 0.486364i \(0.838323\pi\)
\(350\) 0 0
\(351\) 63.0000 0.179487
\(352\) 0 0
\(353\) −154.153 + 267.000i −0.436693 + 0.756374i −0.997432 0.0716184i \(-0.977184\pi\)
0.560739 + 0.827992i \(0.310517\pi\)
\(354\) −72.0000 + 124.708i −0.203390 + 0.352282i
\(355\) 0 0
\(356\) 0 0
\(357\) −72.7461 42.0000i −0.203771 0.117647i
\(358\) 20.0000i 0.0558659i
\(359\) 146.000 + 252.879i 0.406685 + 0.704399i 0.994516 0.104584i \(-0.0333512\pi\)
−0.587831 + 0.808984i \(0.700018\pi\)
\(360\) 0 0
\(361\) 361.000 625.270i 1.00000 1.73205i
\(362\) 327.358 + 567.000i 0.904303 + 1.56630i
\(363\) 36.3731 0.100201
\(364\) 0 0
\(365\) 0 0
\(366\) −36.0000 62.3538i −0.0983607 0.170366i
\(367\) 269.334 466.500i 0.733880 1.27112i −0.221333 0.975198i \(-0.571041\pi\)
0.955213 0.295919i \(-0.0956258\pi\)
\(368\) 554.256 + 320.000i 1.50613 + 0.869565i
\(369\) 63.0000 36.3731i 0.170732 0.0985720i
\(370\) 0 0
\(371\) −224.000 −0.603774
\(372\) 0 0
\(373\) −177.535 + 102.500i −0.475966 + 0.274799i −0.718734 0.695285i \(-0.755278\pi\)
0.242768 + 0.970084i \(0.421945\pi\)
\(374\) −120.000 69.2820i −0.320856 0.185246i
\(375\) 0 0
\(376\) −360.000 + 207.846i −0.957447 + 0.552782i
\(377\) 193.990 0.514562
\(378\) 36.3731 63.0000i 0.0962250 0.166667i
\(379\) 523.000 1.37995 0.689974 0.723835i \(-0.257622\pi\)
0.689974 + 0.723835i \(0.257622\pi\)
\(380\) 0 0
\(381\) 217.500 + 125.574i 0.570866 + 0.329590i
\(382\) 3.46410 + 2.00000i 0.00906833 + 0.00523560i
\(383\) −38.1051 66.0000i −0.0994912 0.172324i 0.811983 0.583681i \(-0.198388\pi\)
−0.911474 + 0.411357i \(0.865055\pi\)
\(384\) 221.703i 0.577350i
\(385\) 0 0
\(386\) 470.000 1.21762
\(387\) −49.3634 + 28.5000i −0.127554 + 0.0736434i
\(388\) 0 0
\(389\) −37.0000 + 64.0859i −0.0951157 + 0.164745i −0.909657 0.415361i \(-0.863655\pi\)
0.814541 + 0.580106i \(0.196989\pi\)
\(390\) 0 0
\(391\) 277.128i 0.708768i
\(392\) 339.482 + 196.000i 0.866025 + 0.500000i
\(393\) 258.000i 0.656489i
\(394\) −100.000 173.205i −0.253807 0.439607i
\(395\) 0 0
\(396\) 0 0
\(397\) −161.947 280.500i −0.407926 0.706549i 0.586731 0.809782i \(-0.300415\pi\)
−0.994657 + 0.103233i \(0.967081\pi\)
\(398\) 401.836 1.00964
\(399\) −199.500 345.544i −0.500000 0.866025i
\(400\) 0 0
\(401\) 64.0000 + 110.851i 0.159601 + 0.276437i 0.934725 0.355372i \(-0.115646\pi\)
−0.775124 + 0.631809i \(0.782313\pi\)
\(402\) 102.191 177.000i 0.254206 0.440299i
\(403\) −54.5596 31.5000i −0.135384 0.0781638i
\(404\) 0 0
\(405\) 0 0
\(406\) 112.000 193.990i 0.275862 0.477807i
\(407\) 50.0000i 0.122850i
\(408\) −83.1384 + 48.0000i −0.203771 + 0.117647i
\(409\) −256.500 148.090i −0.627139 0.362079i 0.152504 0.988303i \(-0.451266\pi\)
−0.779643 + 0.626224i \(0.784600\pi\)
\(410\) 0 0
\(411\) −174.000 + 100.459i −0.423358 + 0.244426i
\(412\) 0 0
\(413\) 290.985 0.704563
\(414\) −240.000 −0.579710
\(415\) 0 0
\(416\) 0 0
\(417\) −127.306 73.5000i −0.305290 0.176259i
\(418\) −329.090 570.000i −0.787296 1.36364i
\(419\) 412.228i 0.983838i 0.870641 + 0.491919i \(0.163704\pi\)
−0.870641 + 0.491919i \(0.836296\pi\)
\(420\) 0 0
\(421\) 107.000 0.254157 0.127078 0.991893i \(-0.459440\pi\)
0.127078 + 0.991893i \(0.459440\pi\)
\(422\) 3.46410 2.00000i 0.00820877 0.00473934i
\(423\) 77.9423 135.000i 0.184261 0.319149i
\(424\) −128.000 + 221.703i −0.301887 + 0.522883i
\(425\) 0 0
\(426\) 90.0666i 0.211424i
\(427\) −72.7461 + 126.000i −0.170366 + 0.295082i
\(428\) 0 0
\(429\) −105.000 181.865i −0.244755 0.423929i
\(430\) 0 0
\(431\) −131.000 + 226.899i −0.303944 + 0.526447i −0.977026 0.213121i \(-0.931637\pi\)
0.673081 + 0.739568i \(0.264970\pi\)
\(432\) −41.5692 72.0000i −0.0962250 0.166667i
\(433\) 36.3731 0.0840025 0.0420012 0.999118i \(-0.486627\pi\)
0.0420012 + 0.999118i \(0.486627\pi\)
\(434\) −63.0000 + 36.3731i −0.145161 + 0.0838089i
\(435\) 0 0
\(436\) 0 0
\(437\) −658.179 + 1140.00i −1.50613 + 2.60870i
\(438\) −57.1577 33.0000i −0.130497 0.0753425i
\(439\) −270.000 + 155.885i −0.615034 + 0.355090i −0.774933 0.632043i \(-0.782216\pi\)
0.159899 + 0.987133i \(0.448883\pi\)
\(440\) 0 0
\(441\) −147.000 −0.333333
\(442\) 168.000i 0.380090i
\(443\) −183.597 + 106.000i −0.414441 + 0.239278i −0.692696 0.721230i \(-0.743577\pi\)
0.278255 + 0.960507i \(0.410244\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 588.000 339.482i 1.31839 0.761170i
\(447\) 214.774 0.480479
\(448\) 387.979 224.000i 0.866025 0.500000i
\(449\) 782.000 1.74165 0.870824 0.491595i \(-0.163586\pi\)
0.870824 + 0.491595i \(0.163586\pi\)
\(450\) 0 0
\(451\) −210.000 121.244i −0.465632 0.268833i
\(452\) 0 0
\(453\) −39.8372 69.0000i −0.0879408 0.152318i
\(454\) 325.626i 0.717237i
\(455\) 0 0
\(456\) −456.000 −1.00000
\(457\) −586.299 + 338.500i −1.28293 + 0.740700i −0.977383 0.211477i \(-0.932173\pi\)
−0.305547 + 0.952177i \(0.598839\pi\)
\(458\) −8.66025 + 15.0000i −0.0189089 + 0.0327511i
\(459\) 18.0000 31.1769i 0.0392157 0.0679236i
\(460\) 0 0
\(461\) 484.974i 1.05200i 0.850483 + 0.526002i \(0.176310\pi\)
−0.850483 + 0.526002i \(0.823690\pi\)
\(462\) −242.487 −0.524864
\(463\) 443.000i 0.956803i 0.878141 + 0.478402i \(0.158784\pi\)
−0.878141 + 0.478402i \(0.841216\pi\)
\(464\) −128.000 221.703i −0.275862 0.477807i
\(465\) 0 0
\(466\) −170.000 + 294.449i −0.364807 + 0.631864i
\(467\) −22.5167 39.0000i −0.0482155 0.0835118i 0.840910 0.541174i \(-0.182020\pi\)
−0.889126 + 0.457663i \(0.848687\pi\)
\(468\) 0 0
\(469\) −413.000 −0.880597
\(470\) 0 0
\(471\) −162.000 280.592i −0.343949 0.595737i
\(472\) 166.277 288.000i 0.352282 0.610169i
\(473\) 164.545 + 95.0000i 0.347875 + 0.200846i
\(474\) 141.000 81.4064i 0.297468 0.171743i
\(475\) 0 0
\(476\) 0 0
\(477\) 96.0000i 0.201258i
\(478\) −245.951 + 142.000i −0.514542 + 0.297071i
\(479\) 48.0000 + 27.7128i 0.100209 + 0.0578556i 0.549267 0.835647i \(-0.314907\pi\)
−0.449058 + 0.893503i \(0.648240\pi\)
\(480\) 0 0
\(481\) 52.5000 30.3109i 0.109148 0.0630164i
\(482\) −304.841 −0.632450
\(483\) 242.487 + 420.000i 0.502044 + 0.869565i
\(484\) 0 0
\(485\) 0 0
\(486\) 27.0000 + 15.5885i 0.0555556 + 0.0320750i
\(487\) −58.0237 33.5000i −0.119145 0.0687885i 0.439243 0.898368i \(-0.355247\pi\)
−0.558388 + 0.829580i \(0.688580\pi\)
\(488\) 83.1384 + 144.000i 0.170366 + 0.295082i
\(489\) 100.459i 0.205438i
\(490\) 0 0
\(491\) −68.0000 −0.138493 −0.0692464 0.997600i \(-0.522059\pi\)
−0.0692464 + 0.997600i \(0.522059\pi\)
\(492\) 0 0
\(493\) 55.4256 96.0000i 0.112425 0.194726i
\(494\) 399.000 691.088i 0.807692 1.39896i
\(495\) 0 0
\(496\) 83.1384i 0.167618i
\(497\) 157.617 91.0000i 0.317136 0.183099i
\(498\) 84.0000i 0.168675i
\(499\) 254.500 + 440.807i 0.510020 + 0.883381i 0.999933 + 0.0116091i \(0.00369536\pi\)
−0.489913 + 0.871772i \(0.662971\pi\)
\(500\) 0 0
\(501\) −231.000 + 400.104i −0.461078 + 0.798610i
\(502\) −290.985 504.000i −0.579650 1.00398i
\(503\) −654.715 −1.30162 −0.650810 0.759240i \(-0.725571\pi\)
−0.650810 + 0.759240i \(0.725571\pi\)
\(504\) −84.0000 + 145.492i −0.166667 + 0.288675i
\(505\) 0 0
\(506\) 400.000 + 692.820i 0.790514 + 1.36921i
\(507\) −19.0526 + 33.0000i −0.0375790 + 0.0650888i
\(508\) 0 0
\(509\) −753.000 + 434.745i −1.47937 + 0.854115i −0.999727 0.0233478i \(-0.992567\pi\)
−0.479644 + 0.877463i \(0.659234\pi\)
\(510\) 0 0
\(511\) 133.368i 0.260994i
\(512\) 512.000i 1.00000i
\(513\) 148.090 85.5000i 0.288675 0.166667i
\(514\) 762.000 + 439.941i 1.48249 + 0.855916i
\(515\) 0 0
\(516\) 0 0
\(517\) −519.615 −1.00506
\(518\) 70.0000i 0.135135i
\(519\) −216.000 −0.416185
\(520\) 0 0
\(521\) 372.000 + 214.774i 0.714012 + 0.412235i 0.812545 0.582899i \(-0.198082\pi\)
−0.0985331 + 0.995134i \(0.531415\pi\)
\(522\) 83.1384 + 48.0000i 0.159269 + 0.0919540i
\(523\) −492.768 853.500i −0.942196 1.63193i −0.761271 0.648434i \(-0.775424\pi\)
−0.180925 0.983497i \(-0.557909\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) −272.000 −0.517110
\(527\) −31.1769 + 18.0000i −0.0591592 + 0.0341556i
\(528\) −138.564 + 240.000i −0.262432 + 0.454545i
\(529\) 535.500 927.513i 1.01229 1.75333i
\(530\) 0 0
\(531\) 124.708i 0.234854i
\(532\) 0 0
\(533\) 294.000i 0.551595i
\(534\) 204.000 + 353.338i 0.382022 + 0.661682i
\(535\) 0 0
\(536\) −236.000 + 408.764i −0.440299 + 0.762619i
\(537\) −8.66025 15.0000i −0.0161271 0.0279330i
\(538\) 450.333 0.837051
\(539\) 245.000 + 424.352i 0.454545 + 0.787296i
\(540\) 0 0
\(541\) 60.5000 + 104.789i 0.111830 + 0.193695i 0.916508 0.400016i \(-0.130995\pi\)
−0.804678 + 0.593711i \(0.797662\pi\)
\(542\) −367.195 + 636.000i −0.677481 + 1.17343i
\(543\) 491.036 + 283.500i 0.904303 + 0.522099i
\(544\) 0 0
\(545\) 0 0
\(546\) −147.000 254.611i −0.269231 0.466321i
\(547\) 926.000i 1.69287i −0.532492 0.846435i \(-0.678744\pi\)
0.532492 0.846435i \(-0.321256\pi\)
\(548\) 0 0
\(549\) −54.0000 31.1769i −0.0983607 0.0567886i
\(550\) 0 0
\(551\) 456.000 263.272i 0.827586 0.477807i
\(552\) 554.256 1.00409
\(553\) −284.922 164.500i −0.515230 0.297468i
\(554\) 790.000 1.42599
\(555\) 0 0
\(556\) 0 0
\(557\) −573.309 331.000i −1.02928 0.594255i −0.112502 0.993652i \(-0.535886\pi\)
−0.916778 + 0.399397i \(0.869220\pi\)
\(558\) −15.5885 27.0000i −0.0279363 0.0483871i
\(559\) 230.363i 0.412098i
\(560\) 0 0
\(561\) −120.000 −0.213904
\(562\) 173.205 100.000i 0.308194 0.177936i
\(563\) 161.081 279.000i 0.286111 0.495560i −0.686767 0.726878i \(-0.740971\pi\)
0.972878 + 0.231318i \(0.0743039\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 717.069i 1.26691i
\(567\) 63.0000i 0.111111i
\(568\) 208.000i 0.366197i
\(569\) −379.000 656.447i −0.666081 1.15369i −0.978991 0.203903i \(-0.934637\pi\)
0.312910 0.949783i \(-0.398696\pi\)
\(570\) 0 0
\(571\) 432.500 749.112i 0.757443 1.31193i −0.186707 0.982416i \(-0.559782\pi\)
0.944151 0.329514i \(-0.106885\pi\)
\(572\) 0 0
\(573\) 3.46410 0.00604555
\(574\) −294.000 169.741i −0.512195 0.295716i
\(575\) 0 0
\(576\) 96.0000 + 166.277i 0.166667 + 0.288675i
\(577\) 536.070 928.500i 0.929064 1.60919i 0.144172 0.989553i \(-0.453948\pi\)
0.784892 0.619633i \(-0.212718\pi\)
\(578\) 417.424 + 241.000i 0.722187 + 0.416955i
\(579\) 352.500 203.516i 0.608808 0.351496i
\(580\) 0 0
\(581\) −147.000 + 84.8705i −0.253012 + 0.146077i
\(582\) 168.000i 0.288660i
\(583\) −277.128 + 160.000i −0.475348 + 0.274443i
\(584\) 132.000 + 76.2102i 0.226027 + 0.130497i
\(585\) 0 0
\(586\) −420.000 + 242.487i −0.716724 + 0.413801i
\(587\) 339.482 0.578334 0.289167 0.957279i \(-0.406622\pi\)
0.289167 + 0.957279i \(0.406622\pi\)
\(588\) 0 0
\(589\) −171.000 −0.290323
\(590\) 0 0
\(591\) −150.000 86.6025i −0.253807 0.146536i
\(592\) −69.2820 40.0000i −0.117030 0.0675676i
\(593\) −122.976 213.000i −0.207379 0.359191i 0.743509 0.668726i \(-0.233160\pi\)
−0.950888 + 0.309535i \(0.899827\pi\)
\(594\) 103.923i 0.174955i
\(595\) 0 0
\(596\) 0 0
\(597\) 301.377 174.000i 0.504819 0.291457i
\(598\) −484.974 + 840.000i −0.810994 + 1.40468i
\(599\) −142.000 + 245.951i −0.237062 + 0.410603i −0.959870 0.280446i \(-0.909518\pi\)
0.722808 + 0.691049i \(0.242851\pi\)
\(600\) 0 0
\(601\) 594.093i 0.988508i −0.869317 0.494254i \(-0.835441\pi\)
0.869317 0.494254i \(-0.164559\pi\)
\(602\) 230.363 + 133.000i 0.382662 + 0.220930i
\(603\) 177.000i 0.293532i
\(604\) 0 0
\(605\) 0 0
\(606\) −222.000 + 384.515i −0.366337 + 0.634514i
\(607\) −4.33013 7.50000i −0.00713365 0.0123558i 0.862437 0.506165i \(-0.168937\pi\)
−0.869570 + 0.493809i \(0.835604\pi\)
\(608\) 0 0
\(609\) 193.990i 0.318538i
\(610\) 0 0
\(611\) −315.000 545.596i −0.515548 0.892956i
\(612\) 0 0
\(613\) −760.370 439.000i −1.24041 0.716150i −0.271231 0.962514i \(-0.587431\pi\)
−0.969177 + 0.246364i \(0.920764\pi\)
\(614\) 315.000 181.865i 0.513029 0.296198i
\(615\) 0 0
\(616\) 560.000 0.909091
\(617\) 194.000i 0.314425i 0.987565 + 0.157212i \(0.0502507\pi\)
−0.987565 + 0.157212i \(0.949749\pi\)
\(618\) 25.9808 15.0000i 0.0420401 0.0242718i
\(619\) −529.500 305.707i −0.855412 0.493872i 0.00706124 0.999975i \(-0.497752\pi\)
−0.862473 + 0.506103i \(0.831086\pi\)
\(620\) 0 0
\(621\) −180.000 + 103.923i −0.289855 + 0.167348i
\(622\) 1101.58 1.77104
\(623\) 412.228 714.000i 0.661682 1.14607i
\(624\) −336.000 −0.538462
\(625\) 0 0
\(626\) 351.000 + 202.650i 0.560703 + 0.323722i
\(627\) −493.634 285.000i −0.787296 0.454545i
\(628\) 0 0
\(629\) 34.6410i 0.0550732i
\(630\) 0 0
\(631\) −250.000 −0.396197 −0.198098 0.980182i \(-0.563477\pi\)
−0.198098 + 0.980182i \(0.563477\pi\)
\(632\) −325.626 + 188.000i −0.515230 + 0.297468i
\(633\) 1.73205 3.00000i 0.00273626 0.00473934i
\(634\) −292.000 + 505.759i −0.460568 + 0.797727i
\(635\) 0 0
\(636\) 0 0
\(637\) −297.047 + 514.500i −0.466321 + 0.807692i
\(638\) 320.000i 0.501567i
\(639\) 39.0000 + 67.5500i 0.0610329 + 0.105712i
\(640\) 0 0
\(641\) 562.000 973.413i 0.876755 1.51858i 0.0218737 0.999761i \(-0.493037\pi\)
0.854881 0.518824i \(-0.173630\pi\)
\(642\) −367.195 636.000i −0.571954 0.990654i
\(643\) 569.845 0.886228 0.443114 0.896465i \(-0.353874\pi\)
0.443114 + 0.896465i \(0.353874\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) −228.000 394.908i −0.352941 0.611312i
\(647\) 542.132 939.000i 0.837916 1.45131i −0.0537173 0.998556i \(-0.517107\pi\)
0.891634 0.452758i \(-0.149560\pi\)
\(648\) −62.3538 36.0000i −0.0962250 0.0555556i
\(649\) 360.000 207.846i 0.554700 0.320256i
\(650\) 0 0
\(651\) −31.5000 + 54.5596i −0.0483871 + 0.0838089i
\(652\) 0 0
\(653\) −874.686 + 505.000i −1.33949 + 0.773354i −0.986731 0.162361i \(-0.948089\pi\)
−0.352757 + 0.935715i \(0.614756\pi\)
\(654\) −51.0000 29.4449i −0.0779817 0.0450227i
\(655\) 0 0
\(656\) −336.000 + 193.990i −0.512195 + 0.295716i
\(657\) −57.1577 −0.0869980
\(658\) −727.461 −1.10556
\(659\) 908.000 1.37785 0.688923 0.724835i \(-0.258084\pi\)
0.688923 + 0.724835i \(0.258084\pi\)
\(660\) 0 0
\(661\) −625.500 361.133i −0.946293 0.546343i −0.0543659 0.998521i \(-0.517314\pi\)
−0.891928 + 0.452178i \(0.850647\pi\)
\(662\) −8.66025 5.00000i −0.0130820 0.00755287i
\(663\) −72.7461 126.000i −0.109723 0.190045i
\(664\) 193.990i 0.292153i
\(665\) 0 0
\(666\) 30.0000 0.0450450
\(667\) −554.256 + 320.000i −0.830969 + 0.479760i
\(668\) 0 0
\(669\) 294.000 509.223i 0.439462 0.761170i
\(670\) 0 0
\(671\) 207.846i 0.309756i
\(672\) 0 0
\(673\) 1027.00i 1.52600i −0.646397 0.763001i \(-0.723725\pi\)
0.646397 0.763001i \(-0.276275\pi\)
\(674\) 439.000 + 760.370i 0.651335 + 1.12815i
\(675\) 0 0
\(676\) 0 0
\(677\) 280.592 + 486.000i 0.414464 + 0.717873i 0.995372 0.0960963i \(-0.0306357\pi\)
−0.580908 + 0.813969i \(0.697302\pi\)
\(678\) 491.902 0.725520
\(679\) 294.000 169.741i 0.432990 0.249987i
\(680\) 0 0
\(681\) −141.000 244.219i −0.207048 0.358618i
\(682\) −51.9615 + 90.0000i −0.0761899 + 0.131965i
\(683\) −845.241 488.000i −1.23754 0.714495i −0.268950 0.963154i \(-0.586677\pi\)
−0.968591 + 0.248659i \(0.920010\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 343.000 + 594.093i 0.500000 + 0.866025i
\(687\) 15.0000i 0.0218341i
\(688\) 263.272 152.000i 0.382662 0.220930i
\(689\) −336.000 193.990i −0.487663 0.281553i
\(690\) 0 0
\(691\) 490.500 283.190i 0.709841 0.409827i −0.101161 0.994870i \(-0.532256\pi\)
0.811002 + 0.585043i \(0.198922\pi\)
\(692\) 0 0
\(693\) −181.865 + 105.000i −0.262432 + 0.151515i
\(694\) 440.000 0.634006
\(695\) 0 0
\(696\) −192.000 110.851i −0.275862 0.159269i
\(697\) −145.492 84.0000i −0.208741 0.120516i
\(698\) 339.482 + 588.000i 0.486364 + 0.842407i
\(699\) 294.449i 0.421243i
\(700\) 0 0
\(701\) 352.000 0.502140 0.251070 0.967969i \(-0.419218\pi\)
0.251070 + 0.967969i \(0.419218\pi\)
\(702\) 109.119 63.0000i 0.155440 0.0897436i
\(703\) 82.2724 142.500i 0.117030 0.202703i
\(704\) 320.000 554.256i 0.454545 0.787296i
\(705\) 0 0
\(706\) 616.610i 0.873385i
\(707\) 897.202 1.26903
\(708\) 0 0
\(709\) −575.000 995.929i −0.811001 1.40470i −0.912164 0.409826i \(-0.865590\pi\)
0.101162 0.994870i \(-0.467744\pi\)
\(710\) 0 0
\(711\) 70.5000 122.110i 0.0991561 0.171743i
\(712\) −471.118 816.000i −0.661682 1.14607i
\(713\) 207.846 0.291509
\(714\) −168.000 −0.235294
\(715\) 0 0
\(716\) 0 0
\(717\) −122.976 + 213.000i −0.171514 + 0.297071i
\(718\) 505.759 + 292.000i 0.704399 + 0.406685i
\(719\) 843.000 486.706i 1.17246 0.676921i 0.218203 0.975903i \(-0.429980\pi\)
0.954259 + 0.298982i \(0.0966471\pi\)
\(720\) 0 0
\(721\) −52.5000 30.3109i −0.0728155 0.0420401i
\(722\) 1444.00i 2.00000i
\(723\) −228.631 + 132.000i −0.316225 + 0.182573i
\(724\) 0 0
\(725\) 0 0
\(726\) 63.0000 36.3731i 0.0867769 0.0501006i
\(727\) 206.114 0.283513 0.141757 0.989902i \(-0.454725\pi\)
0.141757 + 0.989902i \(0.454725\pi\)
\(728\) 339.482 + 588.000i 0.466321 + 0.807692i
\(729\) 27.0000 0.0370370
\(730\) 0 0
\(731\) 114.000 + 65.8179i 0.155951 + 0.0900382i
\(732\) 0 0
\(733\) 622.672 + 1078.50i 0.849485 + 1.47135i 0.881669 + 0.471869i \(0.156420\pi\)
−0.0321842 + 0.999482i \(0.510246\pi\)
\(734\) 1077.34i 1.46776i
\(735\) 0 0
\(736\) 0 0
\(737\) −510.955 + 295.000i −0.693290 + 0.400271i
\(738\) 72.7461 126.000i 0.0985720 0.170732i
\(739\) 155.500 269.334i 0.210419 0.364457i −0.741426 0.671034i \(-0.765850\pi\)
0.951846 + 0.306577i \(0.0991837\pi\)
\(740\) 0 0
\(741\) 691.088i 0.932643i
\(742\) −387.979 + 224.000i −0.522883 + 0.301887i
\(743\) 394.000i 0.530283i 0.964210 + 0.265141i \(0.0854186\pi\)
−0.964210 + 0.265141i \(0.914581\pi\)
\(744\) 36.0000 + 62.3538i 0.0483871 + 0.0838089i
\(745\) 0 0
\(746\) −205.000 + 355.070i −0.274799 + 0.475966i
\(747\) −36.3731 63.0000i −0.0486922 0.0843373i
\(748\) 0 0
\(749\) −742.000 + 1285.18i −0.990654 + 1.71586i
\(750\) 0 0
\(751\) 39.5000 + 68.4160i 0.0525965 + 0.0910999i 0.891125 0.453758i \(-0.149917\pi\)
−0.838528 + 0.544858i \(0.816584\pi\)
\(752\) −415.692 + 720.000i −0.552782 + 0.957447i
\(753\) −436.477 252.000i −0.579650 0.334661i
\(754\) 336.000 193.990i 0.445623 0.257281i
\(755\) 0 0
\(756\) 0 0
\(757\) 250.000i 0.330251i 0.986273 + 0.165125i \(0.0528029\pi\)
−0.986273 + 0.165125i \(0.947197\pi\)
\(758\) 905.863 523.000i 1.19507 0.689974i
\(759\) 600.000 + 346.410i 0.790514 + 0.456403i
\(760\) 0 0
\(761\) −822.000 + 474.582i −1.08016 + 0.623629i −0.930939 0.365175i \(-0.881009\pi\)
−0.149219 + 0.988804i \(0.547676\pi\)
\(762\) 502.295 0.659179
\(763\) 119.000i 0.155963i
\(764\) 0 0
\(765\) 0 0
\(766\) −132.000 76.2102i −0.172324 0.0994912i
\(767\) 436.477 + 252.000i 0.569070 + 0.328553i
\(768\) 0 0
\(769\) 860.829i 1.11941i 0.828691 + 0.559707i \(0.189086\pi\)
−0.828691 + 0.559707i \(0.810914\pi\)
\(770\) 0 0
\(771\) 762.000 0.988327
\(772\) 0 0
\(773\) 112.583 195.000i 0.145645 0.252264i −0.783969 0.620800i \(-0.786808\pi\)
0.929613 + 0.368537i \(0.120141\pi\)
\(774\) −57.0000 + 98.7269i −0.0736434 + 0.127554i
\(775\) 0 0
\(776\) 387.979i 0.499973i
\(777\) −30.3109 52.5000i −0.0390102 0.0675676i
\(778\) 148.000i 0.190231i
\(779\) −399.000 691.088i −0.512195 0.887148i
\(780\) 0 0
\(781\) 130.000 225.167i 0.166453 0.288306i
\(782\) 277.128 + 480.000i 0.354384 + 0.613811i
\(783\) 83.1384 0.106179
\(784\) 784.000 1.00000
\(785\) 0 0
\(786\) 258.000 + 446.869i 0.328244 + 0.568536i
\(787\) −124.708 + 216.000i −0.158460 + 0.274460i −0.934313 0.356453i \(-0.883986\pi\)
0.775854 + 0.630913i \(0.217319\pi\)
\(788\) 0 0
\(789\) −204.000 + 117.779i −0.258555 + 0.149277i
\(790\) 0 0
\(791\) −497.000 860.829i −0.628319 1.08828i
\(792\) 240.000i 0.303030i
\(793\) −218.238 + 126.000i −0.275206 + 0.158890i
\(794\) −561.000 323.894i −0.706549 0.407926i
\(795\) 0 0
\(796\) 0 0
\(797\) −1357.93 −1.70380 −0.851900 0.523705i \(-0.824549\pi\)
−0.851900 + 0.523705i \(0.824549\pi\)
\(798\) −691.088 399.000i −0.866025 0.500000i
\(799\) −360.000 −0.450563
\(800\) 0 0
\(801\) 306.000 + 176.669i 0.382022 + 0.220561i
\(802\) 221.703 + 128.000i 0.276437 + 0.159601i
\(803\) 95.2628 + 165.000i 0.118634 + 0.205479i
\(804\) 0 0
\(805\) 0 0
\(806\) −126.000 −0.156328
\(807\) 337.750 195.000i 0.418525 0.241636i
\(808\) 512.687 888.000i 0.634514 1.09901i
\(809\) −709.000 + 1228.02i −0.876391 + 1.51795i −0.0211166 + 0.999777i \(0.506722\pi\)
−0.855274 + 0.518176i \(0.826611\pi\)
\(810\) 0 0
\(811\) 872.954i 1.07639i 0.842820 + 0.538196i \(0.180894\pi\)
−0.842820 + 0.538196i \(0.819106\pi\)
\(812\) 0 0
\(813\) 636.000i 0.782288i
\(814\) −50.0000 86.6025i −0.0614251 0.106391i
\(815\) 0 0
\(816\) −96.0000 + 166.277i −0.117647 + 0.203771i
\(817\) 312.635 + 541.500i 0.382662 + 0.662791i
\(818\) −592.361 −0.724158
\(819\) −220.500 127.306i −0.269231 0.155440i
\(820\) 0 0
\(821\) −125.000 216.506i −0.152253 0.263711i 0.779802 0.626026i \(-0.215320\pi\)
−0.932056 + 0.362315i \(0.881986\pi\)
\(822\) −200.918 + 348.000i −0.244426 + 0.423358i
\(823\) −178.401 103.000i −0.216769 0.125152i 0.387684 0.921792i \(-0.373275\pi\)
−0.604454 + 0.796640i \(0.706608\pi\)
\(824\) −60.0000 + 34.6410i −0.0728155 + 0.0420401i
\(825\) 0 0
\(826\) 504.000 290.985i 0.610169 0.352282i
\(827\) 1234.00i 1.49214i −0.665867 0.746070i \(-0.731938\pi\)
0.665867 0.746070i \(-0.268062\pi\)
\(828\) 0 0
\(829\) −298.500 172.339i −0.360072 0.207888i 0.309040 0.951049i \(-0.399992\pi\)
−0.669113 + 0.743161i \(0.733326\pi\)
\(830\) 0 0
\(831\) 592.500 342.080i 0.712996 0.411649i
\(832\) 775.959 0.932643
\(833\) 169.741 + 294.000i 0.203771 + 0.352941i
\(834\) −294.000 −0.352518
\(835\) 0 0
\(836\) 0 0
\(837\) −23.3827 13.5000i −0.0279363 0.0161290i
\(838\) 412.228 + 714.000i 0.491919 + 0.852029i
\(839\) 484.974i 0.578038i −0.957323 0.289019i \(-0.906671\pi\)
0.957323 0.289019i \(-0.0933291\pi\)
\(840\) 0 0
\(841\) −585.000 −0.695600
\(842\) 185.329 107.000i 0.220106 0.127078i
\(843\) 86.6025 150.000i 0.102731 0.177936i
\(844\) 0 0
\(845\) 0 0
\(846\) 311.769i 0.368521i
\(847\) −127.306 73.5000i −0.150302 0.0867769i
\(848\) 512.000i 0.603774i
\(849\) −310.500 537.802i −0.365724 0.633453i
\(850\) 0 0
\(851\) −100.000 + 173.205i −0.117509 + 0.203531i
\(852\) 0 0
\(853\) −278.860 −0.326917 −0.163458 0.986550i \(-0.552265\pi\)
−0.163458 + 0.986550i \(0.552265\pi\)
\(854\) 290.985i 0.340731i
\(855\) 0 0
\(856\) 848.000 + 1468.78i 0.990654 + 1.71586i
\(857\) −318.697 + 552.000i −0.371876 + 0.644107i −0.989854 0.142088i \(-0.954619\pi\)
0.617979 + 0.786195i \(0.287952\pi\)
\(858\) −363.731 210.000i −0.423929 0.244755i
\(859\) 528.000 304.841i 0.614668 0.354879i −0.160122 0.987097i \(-0.551189\pi\)
0.774790 + 0.632218i \(0.217855\pi\)
\(860\) 0 0
\(861\) −294.000 −0.341463
\(862\) 524.000i 0.607889i
\(863\) 580.237 335.000i 0.672349 0.388181i −0.124617 0.992205i \(-0.539770\pi\)
0.796966 + 0.604024i \(0.206437\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 63.0000 36.3731i 0.0727483 0.0420012i
\(867\) 417.424 0.481458
\(868\) 0 0
\(869\) −470.000 −0.540852
\(870\) 0 0
\(871\) −619.500 357.668i −0.711251 0.410641i
\(872\) 117.779 + 68.0000i 0.135068 + 0.0779817i
\(873\) 72.7461 + 126.000i 0.0833289 + 0.144330i
\(874\) 2632.72i 3.01226i
\(875\) 0 0
\(876\) 0 0
\(877\) 341.214 197.000i 0.389070 0.224629i −0.292687 0.956208i \(-0.594550\pi\)
0.681757 + 0.731579i \(0.261216\pi\)
\(878\) −311.769 + 540.000i −0.355090 + 0.615034i
\(879\) −210.000 + 363.731i −0.238908 + 0.413801i
\(880\) 0 0
\(881\) 1163.94i 1.32116i 0.750758 + 0.660578i \(0.229689\pi\)
−0.750758 + 0.660578i \(0.770311\pi\)
\(882\) −254.611 + 147.000i −0.288675 + 0.166667i
\(883\) 737.000i 0.834655i 0.908756 + 0.417327i \(0.137033\pi\)
−0.908756 + 0.417327i \(0.862967\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) −212.000 + 367.195i −0.239278 + 0.414441i
\(887\) 365.463 + 633.000i 0.412021 + 0.713641i 0.995111 0.0987664i \(-0.0314897\pi\)
−0.583090 + 0.812408i \(0.698156\pi\)
\(888\) −69.2820 −0.0780203
\(889\) −507.500 879.016i −0.570866 0.988769i
\(890\) 0 0
\(891\) −45.0000 77.9423i −0.0505051 0.0874773i
\(892\) 0 0
\(893\) −1480.90 855.000i −1.65835 0.957447i
\(894\) 372.000 214.774i 0.416107 0.240240i
\(895\) 0 0
\(896\) 448.000 775.959i 0.500000 0.866025i
\(897\) 840.000i 0.936455i
\(898\) 1354.46 782.000i 1.50831 0.870824i
\(899\) −72.0000 41.5692i −0.0800890 0.0462394i
\(900\) 0 0
\(901\) −192.000 + 110.851i −0.213097 + 0.123031i
\(902\) −484.974 −0.537665
\(903\) 230.363 0.255108
\(904\) −1136.00 −1.25664
\(905\) 0 0
\(906\) −138.000 79.6743i −0.152318 0.0879408i
\(907\) −203.516 117.500i −0.224384 0.129548i 0.383595 0.923502i \(-0.374686\pi\)
−0.607978 + 0.793954i \(0.708019\pi\)
\(908\) 0 0
\(909\) 384.515i 0.423009i
\(910\) 0 0
\(911\) −740.000 −0.812294 −0.406147 0.913808i \(-0.633128\pi\)
−0.406147 + 0.913808i \(0.633128\pi\)
\(912\) −789.815 + 456.000i −0.866025 + 0.500000i
\(913\) −121.244 + 210.000i −0.132797 + 0.230011i
\(914\) −677.000 + 1172.60i −0.740700 + 1.28293i
\(915\) 0 0
\(916\) 0 0
\(917\) 521.347 903.000i 0.568536 0.984733i
\(918\) 72.0000i 0.0784314i
\(919\) 758.500 + 1313.76i 0.825354 + 1.42955i 0.901649 + 0.432469i \(0.142358\pi\)
−0.0762951 + 0.997085i \(0.524309\pi\)
\(920\) 0 0
\(921\) 157.500 272.798i 0.171010 0.296198i
\(922\) 484.974 + 840.000i 0.526002 + 0.911063i
\(923\) 315.233 0.341531
\(924\) 0 0
\(925\) 0 0
\(926\) 443.000 + 767.299i 0.478402 + 0.828616i
\(927\) 12.9904 22.5000i 0.0140134 0.0242718i
\(928\) 0 0
\(929\) −963.000 + 555.988i −1.03660 + 0.598480i −0.918868 0.394565i \(-0.870895\pi\)
−0.117731 + 0.993046i \(0.537562\pi\)
\(930\) 0 0
\(931\) 1612.54i 1.73205i
\(932\) 0 0
\(933\) 826.188 477.000i 0.885518 0.511254i
\(934\) −78.0000 45.0333i −0.0835118 0.0482155i
\(935\) 0 0
\(936\) −252.000 + 145.492i −0.269231 + 0.155440i
\(937\) −836.581 −0.892829 −0.446414 0.894826i \(-0.647299\pi\)
−0.446414 + 0.894826i \(0.647299\pi\)
\(938\) −715.337 + 413.000i −0.762619 + 0.440299i
\(939\) 351.000 0.373802
\(940\) 0 0
\(941\) −342.000 197.454i −0.363443 0.209834i 0.307147 0.951662i \(-0.400626\pi\)
−0.670590 + 0.741828i \(0.733959\pi\)
\(942\) −561.184 324.000i −0.595737 0.343949i
\(943\) 484.974 + 840.000i 0.514289 + 0.890774i
\(944\) 665.108i 0.704563i
\(945\) 0 0
\(946\) 380.000 0.401691
\(947\) 292.717 169.000i 0.309099 0.178458i −0.337424 0.941353i \(-0.609556\pi\)
0.646523 + 0.762894i \(0.276222\pi\)
\(948\) 0 0
\(949\) −115.500 + 200.052i −0.121707 + 0.210803i
\(950\) 0 0
\(951\) 505.759i 0.531818i
\(952\) 387.979 0.407541
\(953\) 1244.00i 1.30535i −0.757637 0.652676i \(-0.773646\pi\)
0.757637 0.652676i \(-0.226354\pi\)
\(954\) −96.0000 166.277i −0.100629 0.174294i
\(955\) 0 0
\(956\) 0 0
\(957\) −138.564 240.000i −0.144790 0.250784i
\(958\) 110.851 0.115711
\(959\) 812.000 0.846715
\(960\) 0 0
\(961\) −467.000 808.868i −0.485952 0.841694i
\(962\) 60.6218 105.000i 0.0630164 0.109148i
\(963\) −550.792 318.000i −0.571954 0.330218i
\(964\) 0 0
\(965\) 0 0
\(966\) 840.000 + 484.974i 0.869565 + 0.502044i
\(967\) 1741.00i 1.80041i 0.435463 + 0.900207i \(0.356585\pi\)
−0.435463 + 0.900207i \(0.643415\pi\)
\(968\) −145.492 + 84.0000i −0.150302 + 0.0867769i
\(969\) −342.000 197.454i −0.352941 0.203771i
\(970\) 0 0
\(971\) 1110.00 640.859i 1.14315 0.659999i 0.195942 0.980615i \(-0.437223\pi\)
0.947209 + 0.320617i \(0.103890\pi\)
\(972\) 0 0
\(973\) 297.047 + 514.500i 0.305290 + 0.528777i
\(974\) −134.000 −0.137577
\(975\) 0 0
\(976\) 288.000 + 166.277i 0.295082 + 0.170366i
\(977\) 226.899 + 131.000i 0.232240 + 0.134084i 0.611605 0.791163i \(-0.290524\pi\)
−0.379365 + 0.925247i \(0.623857\pi\)
\(978\) 100.459 + 174.000i 0.102719 + 0.177914i
\(979\) 1177.79i 1.20306i
\(980\) 0 0
\(981\) −51.0000 −0.0519878
\(982\) −117.779 + 68.0000i −0.119938 + 0.0692464i
\(983\) −554.256 + 960.000i −0.563842 + 0.976602i 0.433315 + 0.901243i \(0.357344\pi\)
−0.997156 + 0.0753596i \(0.975990\pi\)
\(984\) −168.000 + 290.985i −0.170732 + 0.295716i
\(985\) 0 0
\(986\) 221.703i 0.224850i
\(987\) −545.596 + 315.000i −0.552782 + 0.319149i
\(988\) 0 0
\(989\) −380.000 658.179i −0.384226 0.665500i
\(990\) 0 0
\(991\) 33.5000 58.0237i 0.0338042 0.0585507i −0.848628 0.528990i \(-0.822571\pi\)
0.882433 + 0.470439i \(0.155904\pi\)
\(992\) 0 0
\(993\) −8.66025 −0.00872130
\(994\) 182.000 315.233i 0.183099 0.317136i
\(995\) 0 0
\(996\) 0 0
\(997\) −494.501 + 856.500i −0.495988 + 0.859077i −0.999989 0.00462594i \(-0.998528\pi\)
0.504001 + 0.863703i \(0.331861\pi\)
\(998\) 881.614 + 509.000i 0.883381 + 0.510020i
\(999\) 22.5000 12.9904i 0.0225225 0.0130034i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 525.3.s.d.199.2 4
5.2 odd 4 21.3.f.c.10.1 2
5.3 odd 4 525.3.o.b.451.1 2
5.4 even 2 inner 525.3.s.d.199.1 4
7.5 odd 6 inner 525.3.s.d.124.1 4
15.2 even 4 63.3.m.a.10.1 2
20.7 even 4 336.3.bh.c.241.1 2
35.2 odd 12 147.3.f.e.19.1 2
35.12 even 12 21.3.f.c.19.1 yes 2
35.17 even 12 147.3.d.a.97.1 2
35.19 odd 6 inner 525.3.s.d.124.2 4
35.27 even 4 147.3.f.e.31.1 2
35.32 odd 12 147.3.d.a.97.2 2
35.33 even 12 525.3.o.b.376.1 2
60.47 odd 4 1008.3.cg.f.577.1 2
105.2 even 12 441.3.m.b.19.1 2
105.17 odd 12 441.3.d.d.244.1 2
105.32 even 12 441.3.d.d.244.2 2
105.47 odd 12 63.3.m.a.19.1 2
105.62 odd 4 441.3.m.b.325.1 2
140.47 odd 12 336.3.bh.c.145.1 2
140.67 even 12 2352.3.f.b.97.1 2
140.87 odd 12 2352.3.f.b.97.2 2
420.47 even 12 1008.3.cg.f.145.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
21.3.f.c.10.1 2 5.2 odd 4
21.3.f.c.19.1 yes 2 35.12 even 12
63.3.m.a.10.1 2 15.2 even 4
63.3.m.a.19.1 2 105.47 odd 12
147.3.d.a.97.1 2 35.17 even 12
147.3.d.a.97.2 2 35.32 odd 12
147.3.f.e.19.1 2 35.2 odd 12
147.3.f.e.31.1 2 35.27 even 4
336.3.bh.c.145.1 2 140.47 odd 12
336.3.bh.c.241.1 2 20.7 even 4
441.3.d.d.244.1 2 105.17 odd 12
441.3.d.d.244.2 2 105.32 even 12
441.3.m.b.19.1 2 105.2 even 12
441.3.m.b.325.1 2 105.62 odd 4
525.3.o.b.376.1 2 35.33 even 12
525.3.o.b.451.1 2 5.3 odd 4
525.3.s.d.124.1 4 7.5 odd 6 inner
525.3.s.d.124.2 4 35.19 odd 6 inner
525.3.s.d.199.1 4 5.4 even 2 inner
525.3.s.d.199.2 4 1.1 even 1 trivial
1008.3.cg.f.145.1 2 420.47 even 12
1008.3.cg.f.577.1 2 60.47 odd 4
2352.3.f.b.97.1 2 140.67 even 12
2352.3.f.b.97.2 2 140.87 odd 12