Properties

Label 525.3.h.d
Level 525
Weight 3
Character orbit 525.h
Analytic conductor 14.305
Analytic rank 0
Dimension 12
CM no
Inner twists 2

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 525 = 3 \cdot 5^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 525.h (of order \(2\), degree \(1\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(14.3052138789\)
Analytic rank: \(0\)
Dimension: \(12\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} - \cdots)\)
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{12}\cdot 3^{2} \)
Twist minimal: no (minimal twist has level 105)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{11}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \beta_{5} q^{2} -\beta_{3} q^{3} + ( 4 + \beta_{1} ) q^{4} -\beta_{9} q^{6} + ( 1 + \beta_{3} + \beta_{11} ) q^{7} + ( -1 + \beta_{1} + 3 \beta_{5} + \beta_{7} ) q^{8} -3 q^{9} +O(q^{10})\) \( q + \beta_{5} q^{2} -\beta_{3} q^{3} + ( 4 + \beta_{1} ) q^{4} -\beta_{9} q^{6} + ( 1 + \beta_{3} + \beta_{11} ) q^{7} + ( -1 + \beta_{1} + 3 \beta_{5} + \beta_{7} ) q^{8} -3 q^{9} + ( -1 + \beta_{1} - \beta_{4} + 2 \beta_{5} + \beta_{7} + \beta_{8} ) q^{11} + ( \beta_{2} - 4 \beta_{3} ) q^{12} + ( \beta_{6} - 2 \beta_{9} ) q^{13} + ( -4 - 2 \beta_{1} - \beta_{2} + 2 \beta_{3} - \beta_{4} - \beta_{5} + \beta_{7} + \beta_{9} - 2 \beta_{10} ) q^{14} + ( 9 + 4 \beta_{1} + 4 \beta_{5} + 2 \beta_{7} + 2 \beta_{10} + 2 \beta_{11} ) q^{16} + ( \beta_{2} + \beta_{3} - 2 \beta_{9} - \beta_{10} + \beta_{11} ) q^{17} -3 \beta_{5} q^{18} + ( -\beta_{2} + 7 \beta_{3} - \beta_{4} - \beta_{6} - \beta_{8} + 2 \beta_{9} + \beta_{10} - \beta_{11} ) q^{19} + ( 3 - \beta_{3} + \beta_{5} + \beta_{7} + \beta_{8} ) q^{21} + ( 9 + 3 \beta_{1} - 2 \beta_{4} + 4 \beta_{5} + 4 \beta_{7} + 2 \beta_{8} + \beta_{10} + \beta_{11} ) q^{22} + ( 3 - 3 \beta_{1} - \beta_{7} - 2 \beta_{10} - 2 \beta_{11} ) q^{23} + ( \beta_{2} + \beta_{3} + \beta_{6} - 3 \beta_{9} + \beta_{10} - \beta_{11} ) q^{24} + ( 4 \beta_{2} - 14 \beta_{3} + \beta_{4} + \beta_{6} + \beta_{8} - 2 \beta_{9} - \beta_{10} + \beta_{11} ) q^{26} + 3 \beta_{3} q^{27} + ( -4 + 3 \beta_{1} - 2 \beta_{2} + 3 \beta_{3} - 4 \beta_{5} - \beta_{6} - 2 \beta_{7} + 2 \beta_{9} - \beta_{10} + 4 \beta_{11} ) q^{28} + ( 5 - 5 \beta_{1} + 2 \beta_{5} - \beta_{7} - 2 \beta_{10} - 2 \beta_{11} ) q^{29} + ( -2 \beta_{3} - \beta_{6} + 2 \beta_{9} - 3 \beta_{10} + 3 \beta_{11} ) q^{31} + ( 20 + 4 \beta_{1} - 2 \beta_{4} + 5 \beta_{5} + 6 \beta_{7} + 2 \beta_{8} ) q^{32} + ( \beta_{2} + \beta_{3} - \beta_{6} + 2 \beta_{10} - 2 \beta_{11} ) q^{33} + ( \beta_{2} - 11 \beta_{3} - \beta_{4} + \beta_{6} - \beta_{8} - 2 \beta_{9} - \beta_{10} + \beta_{11} ) q^{34} + ( -12 - 3 \beta_{1} ) q^{36} + ( -5 - 5 \beta_{1} - 2 \beta_{4} + 2 \beta_{5} + 2 \beta_{8} - 2 \beta_{10} - 2 \beta_{11} ) q^{37} + ( \beta_{2} + \beta_{3} + 2 \beta_{4} - 2 \beta_{6} + 2 \beta_{8} + 6 \beta_{9} - \beta_{10} + \beta_{11} ) q^{38} + ( -\beta_{4} - 4 \beta_{5} - \beta_{7} + \beta_{8} ) q^{39} + ( 2 \beta_{2} + 20 \beta_{3} + \beta_{4} + \beta_{6} + \beta_{8} - 6 \beta_{9} + \beta_{10} - \beta_{11} ) q^{41} + ( 6 + 3 \beta_{1} - 2 \beta_{2} + 4 \beta_{3} - 2 \beta_{4} + 5 \beta_{5} + 2 \beta_{7} + 2 \beta_{9} + 3 \beta_{10} ) q^{42} + ( -13 + 3 \beta_{1} + 2 \beta_{4} + 6 \beta_{5} - 2 \beta_{7} - 2 \beta_{8} + 3 \beta_{10} + 3 \beta_{11} ) q^{43} + ( 17 + 7 \beta_{1} - \beta_{4} + 14 \beta_{5} + 9 \beta_{7} + \beta_{8} + 4 \beta_{10} + 4 \beta_{11} ) q^{44} + ( 17 + \beta_{1} + 2 \beta_{4} - 8 \beta_{7} - 2 \beta_{8} + 2 \beta_{10} + 2 \beta_{11} ) q^{46} + ( 3 \beta_{2} - 9 \beta_{3} - 2 \beta_{4} - \beta_{6} - 2 \beta_{8} + 6 \beta_{9} - 2 \beta_{10} + 2 \beta_{11} ) q^{47} + ( 4 \beta_{2} - 9 \beta_{3} + 2 \beta_{4} + 2 \beta_{6} + 2 \beta_{8} - 4 \beta_{9} + 2 \beta_{10} - 2 \beta_{11} ) q^{48} + ( 8 - \beta_{1} + 3 \beta_{2} - \beta_{3} + \beta_{4} - 10 \beta_{5} + \beta_{6} - \beta_{8} + 4 \beta_{9} + 3 \beta_{10} - \beta_{11} ) q^{49} + ( 3 - 3 \beta_{1} - \beta_{4} - 4 \beta_{5} + 2 \beta_{7} + \beta_{8} ) q^{51} + ( 2 \beta_{2} + 2 \beta_{3} - 2 \beta_{4} + \beta_{6} - 2 \beta_{8} - 14 \beta_{9} + 4 \beta_{10} - 4 \beta_{11} ) q^{52} + ( -15 - 9 \beta_{1} - 12 \beta_{5} + 3 \beta_{7} - 2 \beta_{10} - 2 \beta_{11} ) q^{53} + 3 \beta_{9} q^{54} + ( -35 - 7 \beta_{1} - 7 \beta_{2} + 14 \beta_{3} - \beta_{4} - \beta_{5} - 3 \beta_{6} - 2 \beta_{8} + 7 \beta_{9} - 5 \beta_{10} - \beta_{11} ) q^{56} + ( 21 + 3 \beta_{1} + 2 \beta_{4} + 2 \beta_{5} - \beta_{7} - 2 \beta_{8} + 3 \beta_{10} + 3 \beta_{11} ) q^{57} + ( 35 + \beta_{1} + 2 \beta_{4} - 4 \beta_{5} - 10 \beta_{7} - 2 \beta_{8} + 2 \beta_{10} + 2 \beta_{11} ) q^{58} + ( -4 \beta_{2} + 14 \beta_{3} - 3 \beta_{4} - 4 \beta_{6} - 3 \beta_{8} - 2 \beta_{9} ) q^{59} + ( 3 \beta_{2} - 19 \beta_{3} - 3 \beta_{4} - 2 \beta_{6} - 3 \beta_{8} + 4 \beta_{9} ) q^{61} + ( -10 \beta_{2} + 26 \beta_{3} - 4 \beta_{4} - \beta_{6} - 4 \beta_{8} - 5 \beta_{10} + 5 \beta_{11} ) q^{62} + ( -3 - 3 \beta_{3} - 3 \beta_{11} ) q^{63} + ( -4 + 9 \beta_{1} - 4 \beta_{4} + 28 \beta_{5} + 6 \beta_{7} + 4 \beta_{8} + 2 \beta_{10} + 2 \beta_{11} ) q^{64} + ( 3 \beta_{2} - 9 \beta_{3} + \beta_{4} + \beta_{8} + 6 \beta_{10} - 6 \beta_{11} ) q^{66} + ( -17 - 9 \beta_{1} + 2 \beta_{4} - 6 \beta_{5} + 4 \beta_{7} - 2 \beta_{8} - \beta_{10} - \beta_{11} ) q^{67} + ( 3 \beta_{2} - 21 \beta_{3} + 2 \beta_{4} + 2 \beta_{6} + 2 \beta_{8} - 14 \beta_{9} - \beta_{10} + \beta_{11} ) q^{68} + ( -3 \beta_{2} - 3 \beta_{3} - 2 \beta_{4} - \beta_{6} - 2 \beta_{8} - \beta_{10} + \beta_{11} ) q^{69} + ( 2 + 4 \beta_{1} - \beta_{4} - 4 \beta_{5} + \beta_{8} - 6 \beta_{10} - 6 \beta_{11} ) q^{71} + ( 3 - 3 \beta_{1} - 9 \beta_{5} - 3 \beta_{7} ) q^{72} + ( -6 \beta_{2} + 20 \beta_{3} - 4 \beta_{4} + \beta_{6} - 4 \beta_{8} + 10 \beta_{9} - \beta_{10} + \beta_{11} ) q^{73} + ( 21 - 3 \beta_{1} - 2 \beta_{4} - 12 \beta_{5} - 5 \beta_{7} + 2 \beta_{8} + 2 \beta_{10} + 2 \beta_{11} ) q^{74} + ( -15 \beta_{2} + 37 \beta_{3} - 3 \beta_{4} + 3 \beta_{6} - 3 \beta_{8} + 6 \beta_{9} + 3 \beta_{10} - 3 \beta_{11} ) q^{76} + ( -4 - 2 \beta_{1} - \beta_{2} + 23 \beta_{3} + 3 \beta_{6} - 6 \beta_{7} + 2 \beta_{8} + 8 \beta_{9} - 4 \beta_{10} - 6 \beta_{11} ) q^{77} + ( -42 - 12 \beta_{1} - 2 \beta_{4} - 2 \beta_{5} + \beta_{7} + 2 \beta_{8} - 3 \beta_{10} - 3 \beta_{11} ) q^{78} + ( 12 - 10 \beta_{1} - 2 \beta_{4} - 20 \beta_{5} - 2 \beta_{7} + 2 \beta_{8} - 4 \beta_{10} - 4 \beta_{11} ) q^{79} + 9 q^{81} + ( 8 \beta_{2} - 40 \beta_{3} + 3 \beta_{6} + 18 \beta_{9} + 6 \beta_{10} - 6 \beta_{11} ) q^{82} + ( -8 \beta_{2} - 8 \beta_{3} - 4 \beta_{4} - 2 \beta_{6} - 4 \beta_{8} + 4 \beta_{9} + 2 \beta_{10} - 2 \beta_{11} ) q^{83} + ( 9 + 6 \beta_{1} + 3 \beta_{2} + 4 \beta_{3} + 9 \beta_{5} - 2 \beta_{6} + 6 \beta_{7} + 3 \beta_{8} + 4 \beta_{9} - 2 \beta_{10} + 2 \beta_{11} ) q^{84} + ( 33 - 3 \beta_{1} + \beta_{4} - 20 \beta_{5} + 3 \beta_{7} - \beta_{8} - 8 \beta_{10} - 8 \beta_{11} ) q^{86} + ( -5 \beta_{2} - 5 \beta_{3} - 2 \beta_{4} - \beta_{6} - 2 \beta_{8} - 2 \beta_{9} - \beta_{10} + \beta_{11} ) q^{87} + ( 47 + 25 \beta_{1} + 2 \beta_{4} + 24 \beta_{5} + 10 \beta_{7} - 2 \beta_{8} + 5 \beta_{10} + 5 \beta_{11} ) q^{88} + ( -2 \beta_{2} + 4 \beta_{3} + \beta_{4} + 7 \beta_{6} + \beta_{8} + 6 \beta_{9} + 3 \beta_{10} - 3 \beta_{11} ) q^{89} + ( 7 + 11 \beta_{1} - 5 \beta_{2} + 19 \beta_{3} + \beta_{4} + 2 \beta_{5} + 4 \beta_{6} + 6 \beta_{7} - \beta_{8} - 2 \beta_{9} + 6 \beta_{10} + 2 \beta_{11} ) q^{91} + ( -29 - 19 \beta_{1} + 2 \beta_{4} - 4 \beta_{5} - 3 \beta_{7} - 2 \beta_{8} - 10 \beta_{10} - 10 \beta_{11} ) q^{92} + ( -6 - 2 \beta_{4} + 10 \beta_{5} + 7 \beta_{7} + 2 \beta_{8} ) q^{93} + ( -\beta_{2} + 41 \beta_{3} + \beta_{4} + 2 \beta_{6} + \beta_{8} - 28 \beta_{9} - 6 \beta_{10} + 6 \beta_{11} ) q^{94} + ( 4 \beta_{2} - 20 \beta_{3} + 2 \beta_{6} - \beta_{9} + 8 \beta_{10} - 8 \beta_{11} ) q^{96} + ( -2 \beta_{2} + 12 \beta_{3} + 2 \beta_{4} - 3 \beta_{6} + 2 \beta_{8} - 6 \beta_{9} + 7 \beta_{10} - 7 \beta_{11} ) q^{97} + ( -79 - 11 \beta_{1} + 5 \beta_{2} + 29 \beta_{3} + 4 \beta_{4} + \beta_{5} + 4 \beta_{6} - \beta_{7} + 2 \beta_{8} - 12 \beta_{9} + 5 \beta_{10} - 7 \beta_{11} ) q^{98} + ( 3 - 3 \beta_{1} + 3 \beta_{4} - 6 \beta_{5} - 3 \beta_{7} - 3 \beta_{8} ) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12q + 4q^{2} + 44q^{4} + 8q^{7} - 4q^{8} - 36q^{9} + O(q^{10}) \) \( 12q + 4q^{2} + 44q^{4} + 8q^{7} - 4q^{8} - 36q^{9} - 16q^{11} - 40q^{14} + 92q^{16} - 12q^{18} + 36q^{21} + 88q^{22} + 64q^{23} - 88q^{28} + 104q^{29} + 228q^{32} - 132q^{36} - 32q^{37} - 24q^{39} + 60q^{42} - 152q^{43} + 192q^{44} + 200q^{46} + 60q^{49} + 24q^{51} - 176q^{53} - 368q^{56} + 240q^{57} + 400q^{58} - 24q^{63} - 20q^{64} - 168q^{67} + 32q^{71} + 12q^{72} + 184q^{74} - 8q^{77} - 456q^{78} + 120q^{79} + 108q^{81} + 108q^{84} + 400q^{86} + 536q^{88} + 24q^{91} - 192q^{92} - 48q^{93} - 884q^{98} + 48q^{99} + O(q^{100}) \)

Basis of coefficient ring in terms of a root \(\nu\) of \(x^{12} - 2 x^{11} + 21 x^{10} - 26 x^{9} + 295 x^{8} - 372 x^{7} + 1704 x^{6} - 1074 x^{5} + 5613 x^{4} - 5472 x^{3} + 4950 x^{2} - 1638 x + 441\):

\(\beta_{0}\)\(=\)\( 1 \)
\(\beta_{1}\)\(=\)\((\)\(-1163071964 \nu^{11} - 179172244 \nu^{10} - 20630949354 \nu^{9} - 16671982336 \nu^{8} - 315532034086 \nu^{7} - 213549867516 \nu^{6} - 1552126862414 \nu^{5} - 1781364901824 \nu^{4} - 8663666606754 \nu^{3} - 2969181679896 \nu^{2} + 1028895680526 \nu - 2151653525805\)\()/ 5604734688861 \)
\(\beta_{2}\)\(=\)\((\)\(-6667044052 \nu^{11} + 14676332312 \nu^{10} - 143980659226 \nu^{9} + 199624049398 \nu^{8} - 2011024172970 \nu^{7} + 2810820991382 \nu^{6} - 12003940696366 \nu^{5} + 8638782640594 \nu^{4} - 37068139492878 \nu^{3} + 37151909912694 \nu^{2} - 20338212884178 \nu + 4796809862817\)\()/ 5604734688861 \)
\(\beta_{3}\)\(=\)\((\)\(-7830116016 \nu^{11} + 14497160068 \nu^{10} - 164611608580 \nu^{9} + 182952067062 \nu^{8} - 2326556207056 \nu^{7} + 2597271123866 \nu^{6} - 13556067558780 \nu^{5} + 6857417738770 \nu^{4} - 45731806099632 \nu^{3} + 34182728232798 \nu^{2} - 41728255959096 \nu + 8249891025873\)\()/ 5604734688861 \)
\(\beta_{4}\)\(=\)\((\)\(-28650310720 \nu^{11} + 90431027955 \nu^{10} - 729823436526 \nu^{9} + 1522034358365 \nu^{8} - 10578333857244 \nu^{7} + 21435061416645 \nu^{6} - 78562223824956 \nu^{5} + 100042409833659 \nu^{4} - 287524408048965 \nu^{3} + 375427760691582 \nu^{2} - 582075535170780 \nu + 259629670498401\)\()/ 16814204066583 \)
\(\beta_{5}\)\(=\)\((\)\(5593516534 \nu^{11} - 2605315656 \nu^{10} + 102990651177 \nu^{9} + 27516350446 \nu^{8} + 1489720495401 \nu^{7} + 348399189483 \nu^{6} + 7205061506889 \nu^{5} + 7155359090394 \nu^{4} + 27659028800376 \nu^{3} + 12643415740656 \nu^{2} - 4393836770841 \nu + 10342332760284\)\()/ 2402029152369 \)
\(\beta_{6}\)\(=\)\((\)\(-96862294048 \nu^{11} + 204220441760 \nu^{10} - 2007177917898 \nu^{9} + 2715619789976 \nu^{8} - 27860493938218 \nu^{7} + 38805532808580 \nu^{6} - 153674622475386 \nu^{5} + 115932803100384 \nu^{4} - 463727286510924 \nu^{3} + 549803348459748 \nu^{2} - 150203031997158 \nu + 46133280083394\)\()/ 16814204066583 \)
\(\beta_{7}\)\(=\)\((\)\(-840872 \nu^{11} + 322002 \nu^{10} - 15493812 \nu^{9} - 5194574 \nu^{8} - 224506950 \nu^{7} - 65749440 \nu^{6} - 1088349138 \nu^{5} - 1104025242 \nu^{4} - 4164826464 \nu^{3} - 1933553124 \nu^{2} + 671662530 \nu - 1589299452\)\()/ 133884909 \)
\(\beta_{8}\)\(=\)\((\)\(-119594038472 \nu^{11} + 165327704385 \nu^{10} - 2428788089634 \nu^{9} + 1568894021659 \nu^{8} - 34538883209598 \nu^{7} + 22106716007667 \nu^{6} - 193272117460626 \nu^{5} - 3046412135643 \nu^{4} - 673882966640673 \nu^{3} + 185216431204386 \nu^{2} - 515840030407926 \nu - 55476225402885\)\()/ 16814204066583 \)
\(\beta_{9}\)\(=\)\((\)\(-63482984056 \nu^{11} + 122784179216 \nu^{10} - 1310387571065 \nu^{9} + 1539020770436 \nu^{8} - 18330600604705 \nu^{7} + 22137707421633 \nu^{6} - 102461242347749 \nu^{5} + 57601814034902 \nu^{4} - 328824523408572 \nu^{3} + 321597481405422 \nu^{2} - 205290382805907 \nu + 46611711121164\)\()/ 5604734688861 \)
\(\beta_{10}\)\(=\)\((\)\(-202706987158 \nu^{11} + 408710094497 \nu^{10} - 4200036380223 \nu^{9} + 5223219048653 \nu^{8} - 58650062255947 \nu^{7} + 74969433805026 \nu^{6} - 329824152745503 \nu^{5} + 202606625385669 \nu^{4} - 1057168454854971 \nu^{3} + 1078126745843052 \nu^{2} - 783324140850279 \nu + 91244674865799\)\()/ 16814204066583 \)
\(\beta_{11}\)\(=\)\((\)\(708381238 \nu^{11} - 1256290715 \nu^{10} + 14498890029 \nu^{9} - 15120183251 \nu^{8} + 203752626451 \nu^{7} - 218369450286 \nu^{6} + 1132290479175 \nu^{5} - 517844422875 \nu^{4} + 3733481436375 \nu^{3} - 3187046982492 \nu^{2} + 2388849511923 \nu - 774397903797\)\()/ 52709103657 \)
\(1\)\(=\)\(\beta_0\)
\(\nu\)\(=\)\((\)\(-\beta_{3} + \beta_{2} + \beta_{1} + 1\)\()/4\)
\(\nu^{2}\)\(=\)\((\)\(-2 \beta_{11} - 2 \beta_{9} + \beta_{8} - \beta_{7} + \beta_{6} - 2 \beta_{5} + \beta_{4} - 13 \beta_{3} + \beta_{2} - \beta_{1} - 13\)\()/4\)
\(\nu^{3}\)\(=\)\((\)\(-\beta_{8} - \beta_{7} - 6 \beta_{5} + \beta_{4} - 11 \beta_{1} - 9\)\()/2\)
\(\nu^{4}\)\(=\)\((\)\(2 \beta_{11} - 26 \beta_{10} + 34 \beta_{9} - 11 \beta_{8} - 15 \beta_{7} - 17 \beta_{6} - 32 \beta_{5} - 13 \beta_{4} + 138 \beta_{3} - 14 \beta_{2} - 14 \beta_{1} - 138\)\()/4\)
\(\nu^{5}\)\(=\)\((\)\(35 \beta_{11} - 41 \beta_{10} + 76 \beta_{9} + 20 \beta_{8} + 21 \beta_{7} + 13 \beta_{6} + 110 \beta_{5} - 14 \beta_{4} + 117 \beta_{3} - 131 \beta_{2} + 131 \beta_{1} + 117\)\()/4\)
\(\nu^{6}\)\(=\)\((\)\(144 \beta_{11} + 144 \beta_{10} - 13 \beta_{8} + 213 \beta_{7} + 476 \beta_{5} + 13 \beta_{4} + 194 \beta_{1} + 1644\)\()/2\)
\(\nu^{7}\)\(=\)\((\)\(-641 \beta_{11} + 551 \beta_{10} - 1216 \beta_{9} + 194 \beta_{8} + 357 \beta_{7} - 121 \beta_{6} + 1694 \beta_{5} - 284 \beta_{4} - 1644 \beta_{3} + 1658 \beta_{2} + 1658 \beta_{1} + 1644\)\()/4\)
\(\nu^{8}\)\(=\)\((\)\(-4610 \beta_{11} + 1052 \beta_{10} - 7120 \beta_{9} + 1900 \beta_{8} - 2952 \beta_{7} + 3194 \beta_{6} - 6878 \beta_{5} + 1658 \beta_{4} - 20703 \beta_{3} + 2765 \beta_{2} - 2765 \beta_{1} - 20703\)\()/4\)
\(\nu^{9}\)\(=\)\((\)\(429 \beta_{11} + 429 \beta_{10} - 3194 \beta_{8} - 5598 \beta_{7} - 24704 \beta_{5} + 3194 \beta_{4} - 21683 \beta_{1} - 24291\)\()/2\)
\(\nu^{10}\)\(=\)\((\)\(17228 \beta_{11} - 62174 \beta_{10} + 99298 \beta_{9} - 21683 \beta_{8} - 40491 \beta_{7} - 42071 \beta_{6} - 97718 \beta_{5} - 23263 \beta_{4} + 268665 \beta_{3} - 40079 \beta_{2} - 40079 \beta_{1} - 268665\)\()/4\)
\(\nu^{11}\)\(=\)\((\)\(124562 \beta_{11} - 128546 \beta_{10} + 268264 \beta_{9} + 44063 \beta_{8} + 84483 \beta_{7} - 341 \beta_{6} + 352406 \beta_{5} - 40079 \beta_{4} + 366186 \beta_{3} - 288668 \beta_{2} + 288668 \beta_{1} + 366186\)\()/4\)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/525\mathbb{Z}\right)^\times\).

\(n\) \(127\) \(176\) \(451\)
\(\chi(n)\) \(1\) \(1\) \(-1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
76.1
1.31896 2.28450i
1.31896 + 2.28450i
0.378061 0.654821i
0.378061 + 0.654821i
−1.74681 + 3.02556i
−1.74681 3.02556i
−1.01714 + 1.76174i
−1.01714 1.76174i
0.198184 0.343264i
0.198184 + 0.343264i
1.86875 3.23677i
1.86875 + 3.23677i
−3.50369 1.73205i 8.27584 0 6.06857i 6.69736 2.03600i −14.9812 −3.00000 0
76.2 −3.50369 1.73205i 8.27584 0 6.06857i 6.69736 + 2.03600i −14.9812 −3.00000 0
76.3 −2.91758 1.73205i 4.51225 0 5.05339i −6.13981 + 3.36195i −1.49451 −3.00000 0
76.4 −2.91758 1.73205i 4.51225 0 5.05339i −6.13981 3.36195i −1.49451 −3.00000 0
76.5 0.112974 1.73205i −3.98724 0 0.195676i 6.71303 + 1.98374i −0.902349 −3.00000 0
76.6 0.112974 1.73205i −3.98724 0 0.195676i 6.71303 1.98374i −0.902349 −3.00000 0
76.7 1.71214 1.73205i −1.06857 0 2.96552i 3.33344 + 6.15534i −8.67811 −3.00000 0
76.8 1.71214 1.73205i −1.06857 0 2.96552i 3.33344 6.15534i −8.67811 −3.00000 0
76.9 2.79155 1.73205i 3.79273 0 4.83510i −4.15782 5.63139i −0.578591 −3.00000 0
76.10 2.79155 1.73205i 3.79273 0 4.83510i −4.15782 + 5.63139i −0.578591 −3.00000 0
76.11 3.80460 1.73205i 10.4750 0 6.58976i −2.44621 + 6.55866i 24.6348 −3.00000 0
76.12 3.80460 1.73205i 10.4750 0 6.58976i −2.44621 6.55866i 24.6348 −3.00000 0
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 76.12
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
7.b odd 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 525.3.h.d 12
5.b even 2 1 105.3.h.a 12
5.c odd 4 2 525.3.e.c 24
7.b odd 2 1 inner 525.3.h.d 12
15.d odd 2 1 315.3.h.d 12
20.d odd 2 1 1680.3.s.c 12
35.c odd 2 1 105.3.h.a 12
35.f even 4 2 525.3.e.c 24
105.g even 2 1 315.3.h.d 12
140.c even 2 1 1680.3.s.c 12
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
105.3.h.a 12 5.b even 2 1
105.3.h.a 12 35.c odd 2 1
315.3.h.d 12 15.d odd 2 1
315.3.h.d 12 105.g even 2 1
525.3.e.c 24 5.c odd 4 2
525.3.e.c 24 35.f even 4 2
525.3.h.d 12 1.a even 1 1 trivial
525.3.h.d 12 7.b odd 2 1 inner
1680.3.s.c 12 20.d odd 2 1
1680.3.s.c 12 140.c even 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{2}^{6} - 2 T_{2}^{5} - 21 T_{2}^{4} + 40 T_{2}^{3} + 103 T_{2}^{2} - 198 T_{2} + 21 \) acting on \(S_{3}^{\mathrm{new}}(525, [\chi])\).

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( ( 1 - 2 T + 3 T^{2} + 7 T^{4} - 38 T^{5} + 109 T^{6} - 152 T^{7} + 112 T^{8} + 768 T^{10} - 2048 T^{11} + 4096 T^{12} )^{2} \)
$3$ \( ( 1 + 3 T^{2} )^{6} \)
$5$ 1
$7$ \( 1 - 8 T + 2 T^{2} - 312 T^{3} + 4255 T^{4} - 13888 T^{5} + 43708 T^{6} - 680512 T^{7} + 10216255 T^{8} - 36706488 T^{9} + 11529602 T^{10} - 2259801992 T^{11} + 13841287201 T^{12} \)
$11$ \( ( 1 + 8 T + 198 T^{2} + 1416 T^{3} + 30895 T^{4} + 264944 T^{5} + 5610292 T^{6} + 32058224 T^{7} + 452333695 T^{8} + 2508530376 T^{9} + 42443058438 T^{10} + 207499396808 T^{11} + 3138428376721 T^{12} )^{2} \)
$13$ \( 1 - 852 T^{2} + 436674 T^{4} - 159409348 T^{6} + 45042421839 T^{8} - 10253858128680 T^{10} + 1907667001388316 T^{12} - 292860442013229480 T^{14} + 36742487242313615919 T^{16} - \)\(37\!\cdots\!88\)\( T^{18} + \)\(29\!\cdots\!34\)\( T^{20} - \)\(16\!\cdots\!52\)\( T^{22} + \)\(54\!\cdots\!61\)\( T^{24} \)
$17$ \( 1 - 2172 T^{2} + 2401794 T^{4} - 1757595148 T^{6} + 941667483759 T^{8} - 387997181982840 T^{10} + 125896935467491356 T^{12} - 32405912636388779640 T^{14} + \)\(65\!\cdots\!19\)\( T^{16} - \)\(10\!\cdots\!28\)\( T^{18} + \)\(11\!\cdots\!14\)\( T^{20} - \)\(88\!\cdots\!72\)\( T^{22} + \)\(33\!\cdots\!21\)\( T^{24} \)
$19$ \( 1 - 1404 T^{2} + 1342050 T^{4} - 896154316 T^{6} + 500154418383 T^{8} - 227690692547448 T^{10} + 90028611036772572 T^{12} - 29672878743475970808 T^{14} + \)\(84\!\cdots\!03\)\( T^{16} - \)\(19\!\cdots\!76\)\( T^{18} + \)\(38\!\cdots\!50\)\( T^{20} - \)\(52\!\cdots\!04\)\( T^{22} + \)\(48\!\cdots\!21\)\( T^{24} \)
$23$ \( ( 1 - 32 T + 2418 T^{2} - 60144 T^{3} + 2694751 T^{4} - 53735792 T^{5} + 1782680284 T^{6} - 28426233968 T^{7} + 754101814591 T^{8} - 8903470508016 T^{9} + 189355962409458 T^{10} - 1325648358836768 T^{11} + 21914624432020321 T^{12} )^{2} \)
$29$ \( ( 1 - 52 T + 3990 T^{2} - 132324 T^{3} + 6311983 T^{4} - 164304136 T^{5} + 6334525012 T^{6} - 138179778376 T^{7} + 4464345648223 T^{8} - 78709401128004 T^{9} + 1995983187714390 T^{10} - 21876776131610452 T^{11} + 353814783205469041 T^{12} )^{2} \)
$31$ \( 1 - 6228 T^{2} + 19622274 T^{4} - 42341564932 T^{6} + 69647410996719 T^{8} - 91080823295899560 T^{10} + 96735996796679061276 T^{12} - \)\(84\!\cdots\!60\)\( T^{14} + \)\(59\!\cdots\!79\)\( T^{16} - \)\(33\!\cdots\!52\)\( T^{18} + \)\(14\!\cdots\!94\)\( T^{20} - \)\(41\!\cdots\!28\)\( T^{22} + \)\(62\!\cdots\!21\)\( T^{24} \)
$37$ \( ( 1 + 16 T + 4622 T^{2} - 32784 T^{3} + 7136719 T^{4} - 278279680 T^{5} + 7429424740 T^{6} - 380964881920 T^{7} + 13375360417759 T^{8} - 84114774592656 T^{9} + 16234680036022862 T^{10} + 76937349958685584 T^{11} + 6582952005840035281 T^{12} )^{2} \)
$41$ \( 1 - 7524 T^{2} + 32464386 T^{4} - 93240551380 T^{6} + 206850565610415 T^{8} - 379921653079011144 T^{10} + \)\(65\!\cdots\!56\)\( T^{12} - \)\(10\!\cdots\!84\)\( T^{14} + \)\(16\!\cdots\!15\)\( T^{16} - \)\(21\!\cdots\!80\)\( T^{18} + \)\(20\!\cdots\!26\)\( T^{20} - \)\(13\!\cdots\!24\)\( T^{22} + \)\(50\!\cdots\!61\)\( T^{24} \)
$43$ \( ( 1 + 76 T + 9590 T^{2} + 631788 T^{3} + 42146383 T^{4} + 2188827368 T^{5} + 102971644948 T^{6} + 4047141803432 T^{7} + 144090096346783 T^{8} + 3993761318001612 T^{9} + 112089840662193590 T^{10} + 1642472655809602924 T^{11} + 39959630797262576401 T^{12} )^{2} \)
$47$ \( 1 - 6132 T^{2} + 27456354 T^{4} - 92403901348 T^{6} + 277727516070639 T^{8} - 754801362269230440 T^{10} + \)\(17\!\cdots\!96\)\( T^{12} - \)\(36\!\cdots\!40\)\( T^{14} + \)\(66\!\cdots\!79\)\( T^{16} - \)\(10\!\cdots\!68\)\( T^{18} + \)\(15\!\cdots\!34\)\( T^{20} - \)\(16\!\cdots\!32\)\( T^{22} + \)\(13\!\cdots\!81\)\( T^{24} \)
$53$ \( ( 1 + 88 T + 10434 T^{2} + 574440 T^{3} + 50272015 T^{4} + 2575931008 T^{5} + 181692199804 T^{6} + 7235790201472 T^{7} + 396670379189215 T^{8} + 12732095606942760 T^{9} + 649617609752140674 T^{10} + 15390097392165148312 T^{11} + \)\(49\!\cdots\!41\)\( T^{12} )^{2} \)
$59$ \( 1 - 15948 T^{2} + 137050242 T^{4} - 864152710108 T^{6} + 4419517662043791 T^{8} - 18954945757384385304 T^{10} + \)\(70\!\cdots\!16\)\( T^{12} - \)\(22\!\cdots\!44\)\( T^{14} + \)\(64\!\cdots\!11\)\( T^{16} - \)\(15\!\cdots\!48\)\( T^{18} + \)\(29\!\cdots\!22\)\( T^{20} - \)\(41\!\cdots\!48\)\( T^{22} + \)\(31\!\cdots\!61\)\( T^{24} \)
$61$ \( 1 - 13716 T^{2} + 109224834 T^{4} - 648593370628 T^{6} + 3203041286245839 T^{8} - 13994290873734287016 T^{10} + \)\(55\!\cdots\!56\)\( T^{12} - \)\(19\!\cdots\!56\)\( T^{14} + \)\(61\!\cdots\!59\)\( T^{16} - \)\(17\!\cdots\!88\)\( T^{18} + \)\(40\!\cdots\!74\)\( T^{20} - \)\(69\!\cdots\!16\)\( T^{22} + \)\(70\!\cdots\!41\)\( T^{24} \)
$67$ \( ( 1 + 84 T + 15366 T^{2} + 763540 T^{3} + 102124911 T^{4} + 4033313976 T^{5} + 514098700788 T^{6} + 18105546438264 T^{7} + 2057931438675231 T^{8} + 69068593121318260 T^{9} + 6239635933335345606 T^{10} + \)\(15\!\cdots\!16\)\( T^{11} + \)\(81\!\cdots\!61\)\( T^{12} )^{2} \)
$71$ \( ( 1 - 16 T + 16698 T^{2} - 42336 T^{3} + 131112895 T^{4} + 1041328304 T^{5} + 716701578892 T^{6} + 5249335980464 T^{7} + 3331799062726495 T^{8} - 5423253620079456 T^{9} + 10782792464741717178 T^{10} - 52083896816158099216 T^{11} + \)\(16\!\cdots\!41\)\( T^{12} )^{2} \)
$73$ \( 1 - 19284 T^{2} + 216036930 T^{4} - 1973102936452 T^{6} + 14880325491672495 T^{8} - 96746229105564519336 T^{10} + \)\(55\!\cdots\!08\)\( T^{12} - \)\(27\!\cdots\!76\)\( T^{14} + \)\(12\!\cdots\!95\)\( T^{16} - \)\(45\!\cdots\!92\)\( T^{18} + \)\(14\!\cdots\!30\)\( T^{20} - \)\(35\!\cdots\!84\)\( T^{22} + \)\(52\!\cdots\!41\)\( T^{24} \)
$79$ \( ( 1 - 60 T + 22242 T^{2} - 662476 T^{3} + 201003183 T^{4} - 1192106616 T^{5} + 1261845815388 T^{6} - 7439937390456 T^{7} + 7829090259107823 T^{8} - 161039605183729996 T^{9} + 33743534149941729762 T^{10} - \)\(56\!\cdots\!60\)\( T^{11} + \)\(59\!\cdots\!41\)\( T^{12} )^{2} \)
$83$ \( 1 - 45420 T^{2} + 1066844514 T^{4} - 17098817034364 T^{6} + 206563644037003983 T^{8} - \)\(19\!\cdots\!08\)\( T^{10} + \)\(15\!\cdots\!04\)\( T^{12} - \)\(93\!\cdots\!68\)\( T^{14} + \)\(46\!\cdots\!03\)\( T^{16} - \)\(18\!\cdots\!04\)\( T^{18} + \)\(54\!\cdots\!34\)\( T^{20} - \)\(10\!\cdots\!20\)\( T^{22} + \)\(11\!\cdots\!21\)\( T^{24} \)
$89$ \( 1 - 46020 T^{2} + 1126013634 T^{4} - 19221077499316 T^{6} + 252845241317038383 T^{8} - \)\(26\!\cdots\!72\)\( T^{10} + \)\(23\!\cdots\!84\)\( T^{12} - \)\(16\!\cdots\!52\)\( T^{14} + \)\(99\!\cdots\!23\)\( T^{16} - \)\(47\!\cdots\!36\)\( T^{18} + \)\(17\!\cdots\!74\)\( T^{20} - \)\(44\!\cdots\!20\)\( T^{22} + \)\(61\!\cdots\!41\)\( T^{24} \)
$97$ \( 1 - 51924 T^{2} + 1396974978 T^{4} - 26352399780484 T^{6} + 389015604150559215 T^{8} - \)\(47\!\cdots\!84\)\( T^{10} + \)\(48\!\cdots\!52\)\( T^{12} - \)\(41\!\cdots\!04\)\( T^{14} + \)\(30\!\cdots\!15\)\( T^{16} - \)\(18\!\cdots\!44\)\( T^{18} + \)\(85\!\cdots\!38\)\( T^{20} - \)\(28\!\cdots\!24\)\( T^{22} + \)\(48\!\cdots\!81\)\( T^{24} \)
show more
show less