Properties

Label 525.2.r.f
Level $525$
Weight $2$
Character orbit 525.r
Analytic conductor $4.192$
Analytic rank $0$
Dimension $4$
CM no
Inner twists $2$

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 525 = 3 \cdot 5^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 525.r (of order \(6\), degree \(2\), not minimal)

Newform invariants

Self dual: no
Analytic conductor: \(4.19214610612\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\Q(\zeta_{12})\)
Defining polynomial: \(x^{4} - x^{2} + 1\)
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 105)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

$q$-expansion

Coefficients of the \(q\)-expansion are expressed in terms of a primitive root of unity \(\zeta_{12}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + ( 2 - \zeta_{12} - \zeta_{12}^{2} + \zeta_{12}^{3} ) q^{2} -\zeta_{12} q^{3} + ( 2 - 2 \zeta_{12} - 2 \zeta_{12}^{2} + 4 \zeta_{12}^{3} ) q^{4} + ( 1 - 2 \zeta_{12} + \zeta_{12}^{3} ) q^{6} + ( -2 - \zeta_{12}^{2} ) q^{7} + ( 2 - 4 \zeta_{12}^{2} + 6 \zeta_{12}^{3} ) q^{8} + \zeta_{12}^{2} q^{9} +O(q^{10})\) \( q + ( 2 - \zeta_{12} - \zeta_{12}^{2} + \zeta_{12}^{3} ) q^{2} -\zeta_{12} q^{3} + ( 2 - 2 \zeta_{12} - 2 \zeta_{12}^{2} + 4 \zeta_{12}^{3} ) q^{4} + ( 1 - 2 \zeta_{12} + \zeta_{12}^{3} ) q^{6} + ( -2 - \zeta_{12}^{2} ) q^{7} + ( 2 - 4 \zeta_{12}^{2} + 6 \zeta_{12}^{3} ) q^{8} + \zeta_{12}^{2} q^{9} + ( 1 + \zeta_{12} - \zeta_{12}^{2} - 2 \zeta_{12}^{3} ) q^{11} + ( 4 - 2 \zeta_{12} - 2 \zeta_{12}^{2} + 2 \zeta_{12}^{3} ) q^{12} + ( 1 - 2 \zeta_{12}^{2} - 4 \zeta_{12}^{3} ) q^{13} + ( -5 + 3 \zeta_{12} + \zeta_{12}^{2} - 2 \zeta_{12}^{3} ) q^{14} + ( 4 \zeta_{12} - 8 \zeta_{12}^{2} + 4 \zeta_{12}^{3} ) q^{16} + ( -1 - 5 \zeta_{12} - \zeta_{12}^{2} ) q^{17} + ( 1 - \zeta_{12} + \zeta_{12}^{2} ) q^{18} + ( -2 \zeta_{12} + \zeta_{12}^{2} - 2 \zeta_{12}^{3} ) q^{19} + ( 2 \zeta_{12} + \zeta_{12}^{3} ) q^{21} -2 \zeta_{12}^{3} q^{22} + ( -2 + 3 \zeta_{12} + \zeta_{12}^{2} - 3 \zeta_{12}^{3} ) q^{23} + ( 6 - 2 \zeta_{12} - 6 \zeta_{12}^{2} + 4 \zeta_{12}^{3} ) q^{24} + ( -3 \zeta_{12} + \zeta_{12}^{2} - 3 \zeta_{12}^{3} ) q^{26} -\zeta_{12}^{3} q^{27} + ( -6 + 8 \zeta_{12} + 4 \zeta_{12}^{2} - 10 \zeta_{12}^{3} ) q^{28} + ( -1 - 6 \zeta_{12} + 3 \zeta_{12}^{3} ) q^{29} + ( -3 - 2 \zeta_{12} + 3 \zeta_{12}^{2} + 4 \zeta_{12}^{3} ) q^{31} + ( -8 + 8 \zeta_{12} - 8 \zeta_{12}^{2} ) q^{32} + ( -2 - \zeta_{12} + \zeta_{12}^{2} + \zeta_{12}^{3} ) q^{33} + ( 2 - 8 \zeta_{12} + 4 \zeta_{12}^{3} ) q^{34} + ( 2 - 4 \zeta_{12} + 2 \zeta_{12}^{3} ) q^{36} + ( 6 + 2 \zeta_{12} - 3 \zeta_{12}^{2} - 2 \zeta_{12}^{3} ) q^{37} + ( 3 - 7 \zeta_{12} + 3 \zeta_{12}^{2} ) q^{38} + ( -4 - \zeta_{12} + 4 \zeta_{12}^{2} + 2 \zeta_{12}^{3} ) q^{39} + ( 1 + 2 \zeta_{12} - \zeta_{12}^{3} ) q^{41} + ( -2 + 5 \zeta_{12} - \zeta_{12}^{2} - \zeta_{12}^{3} ) q^{42} + ( -3 + 6 \zeta_{12}^{2} + 2 \zeta_{12}^{3} ) q^{43} + 4 \zeta_{12}^{2} q^{44} + ( -6 + 4 \zeta_{12} + 6 \zeta_{12}^{2} - 8 \zeta_{12}^{3} ) q^{46} + ( 2 \zeta_{12} - 2 \zeta_{12}^{3} ) q^{47} + ( 4 - 8 \zeta_{12}^{2} + 8 \zeta_{12}^{3} ) q^{48} + ( 3 + 5 \zeta_{12}^{2} ) q^{49} + ( \zeta_{12} + 5 \zeta_{12}^{2} + \zeta_{12}^{3} ) q^{51} + ( 6 - 2 \zeta_{12} + 6 \zeta_{12}^{2} ) q^{52} + ( -6 + 2 \zeta_{12} - 6 \zeta_{12}^{2} ) q^{53} + ( -\zeta_{12} + \zeta_{12}^{2} - \zeta_{12}^{3} ) q^{54} + ( -8 + 6 \zeta_{12} + 10 \zeta_{12}^{2} - 18 \zeta_{12}^{3} ) q^{56} + ( -2 + 4 \zeta_{12}^{2} - \zeta_{12}^{3} ) q^{57} + ( 4 - 8 \zeta_{12} - 2 \zeta_{12}^{2} + 8 \zeta_{12}^{3} ) q^{58} + ( 5 + 3 \zeta_{12} - 5 \zeta_{12}^{2} - 6 \zeta_{12}^{3} ) q^{59} -4 \zeta_{12}^{2} q^{61} + ( -1 + 2 \zeta_{12}^{2} + 3 \zeta_{12}^{3} ) q^{62} + ( 1 - 3 \zeta_{12}^{2} ) q^{63} + ( -16 + 16 \zeta_{12} - 8 \zeta_{12}^{3} ) q^{64} + ( -2 + 2 \zeta_{12}^{2} ) q^{66} + ( -5 + 6 \zeta_{12} - 5 \zeta_{12}^{2} ) q^{67} + ( 16 - 4 \zeta_{12} - 8 \zeta_{12}^{2} + 4 \zeta_{12}^{3} ) q^{68} + ( -3 + 2 \zeta_{12} - \zeta_{12}^{3} ) q^{69} + ( 1 - 6 \zeta_{12} + 3 \zeta_{12}^{3} ) q^{71} + ( 4 - 6 \zeta_{12} - 2 \zeta_{12}^{2} + 6 \zeta_{12}^{3} ) q^{72} + ( -5 + 4 \zeta_{12} - 5 \zeta_{12}^{2} ) q^{73} + ( 7 - \zeta_{12} - 7 \zeta_{12}^{2} + 2 \zeta_{12}^{3} ) q^{74} + ( 14 - 12 \zeta_{12} + 6 \zeta_{12}^{3} ) q^{76} + ( -3 - 4 \zeta_{12} + 2 \zeta_{12}^{2} + 5 \zeta_{12}^{3} ) q^{77} + ( -3 + 6 \zeta_{12}^{2} - \zeta_{12}^{3} ) q^{78} + ( 6 \zeta_{12} + 3 \zeta_{12}^{2} + 6 \zeta_{12}^{3} ) q^{79} + ( -1 + \zeta_{12}^{2} ) q^{81} + ( 2 \zeta_{12} - 2 \zeta_{12}^{3} ) q^{82} + ( -7 + 14 \zeta_{12}^{2} - 3 \zeta_{12}^{3} ) q^{83} + ( -10 + 6 \zeta_{12} + 2 \zeta_{12}^{2} - 4 \zeta_{12}^{3} ) q^{84} + ( -\zeta_{12} + 7 \zeta_{12}^{2} - \zeta_{12}^{3} ) q^{86} + ( 3 + \zeta_{12} + 3 \zeta_{12}^{2} ) q^{87} + ( 4 + 4 \zeta_{12}^{2} ) q^{88} + ( -7 \zeta_{12} + 3 \zeta_{12}^{2} - 7 \zeta_{12}^{3} ) q^{89} + ( -4 - 4 \zeta_{12} + 5 \zeta_{12}^{2} + 12 \zeta_{12}^{3} ) q^{91} + ( -8 + 16 \zeta_{12}^{2} - 12 \zeta_{12}^{3} ) q^{92} + ( 4 + 3 \zeta_{12} - 2 \zeta_{12}^{2} - 3 \zeta_{12}^{3} ) q^{93} + ( -2 + 2 \zeta_{12} + 2 \zeta_{12}^{2} - 4 \zeta_{12}^{3} ) q^{94} + ( 8 \zeta_{12} - 8 \zeta_{12}^{2} + 8 \zeta_{12}^{3} ) q^{96} + ( 4 - 8 \zeta_{12}^{2} + 8 \zeta_{12}^{3} ) q^{97} + ( 11 - 8 \zeta_{12} + 2 \zeta_{12}^{2} + 3 \zeta_{12}^{3} ) q^{98} + ( 1 + 2 \zeta_{12} - \zeta_{12}^{3} ) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4q + 6q^{2} + 4q^{4} + 4q^{6} - 10q^{7} + 2q^{9} + O(q^{10}) \) \( 4q + 6q^{2} + 4q^{4} + 4q^{6} - 10q^{7} + 2q^{9} + 2q^{11} + 12q^{12} - 18q^{14} - 16q^{16} - 6q^{17} + 6q^{18} + 2q^{19} - 6q^{23} + 12q^{24} + 2q^{26} - 16q^{28} - 4q^{29} - 6q^{31} - 48q^{32} - 6q^{33} + 8q^{34} + 8q^{36} + 18q^{37} + 18q^{38} - 8q^{39} + 4q^{41} - 10q^{42} + 8q^{44} - 12q^{46} + 22q^{49} + 10q^{51} + 36q^{52} - 36q^{53} + 2q^{54} - 12q^{56} + 12q^{58} + 10q^{59} - 8q^{61} - 2q^{63} - 64q^{64} - 4q^{66} - 30q^{67} + 48q^{68} - 12q^{69} + 4q^{71} + 12q^{72} - 30q^{73} + 14q^{74} + 56q^{76} - 8q^{77} + 6q^{79} - 2q^{81} - 36q^{84} + 14q^{86} + 18q^{87} + 24q^{88} + 6q^{89} - 6q^{91} + 12q^{93} - 4q^{94} - 16q^{96} + 48q^{98} + 4q^{99} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/525\mathbb{Z}\right)^\times\).

\(n\) \(127\) \(176\) \(451\)
\(\chi(n)\) \(-1\) \(1\) \(-\zeta_{12}^{2}\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
424.1
0.866025 + 0.500000i
−0.866025 0.500000i
0.866025 0.500000i
−0.866025 + 0.500000i
0.633975 0.366025i −0.866025 0.500000i −0.732051 + 1.26795i 0 −0.732051 −2.50000 0.866025i 2.53590i 0.500000 + 0.866025i 0
424.2 2.36603 1.36603i 0.866025 + 0.500000i 2.73205 4.73205i 0 2.73205 −2.50000 0.866025i 9.46410i 0.500000 + 0.866025i 0
499.1 0.633975 + 0.366025i −0.866025 + 0.500000i −0.732051 1.26795i 0 −0.732051 −2.50000 + 0.866025i 2.53590i 0.500000 0.866025i 0
499.2 2.36603 + 1.36603i 0.866025 0.500000i 2.73205 + 4.73205i 0 2.73205 −2.50000 + 0.866025i 9.46410i 0.500000 0.866025i 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
35.j even 6 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 525.2.r.f 4
5.b even 2 1 525.2.r.a 4
5.c odd 4 1 105.2.i.d 4
5.c odd 4 1 525.2.i.f 4
7.c even 3 1 525.2.r.a 4
15.e even 4 1 315.2.j.c 4
20.e even 4 1 1680.2.bg.o 4
35.f even 4 1 735.2.i.l 4
35.j even 6 1 inner 525.2.r.f 4
35.k even 12 1 735.2.a.h 2
35.k even 12 1 735.2.i.l 4
35.k even 12 1 3675.2.a.be 2
35.l odd 12 1 105.2.i.d 4
35.l odd 12 1 525.2.i.f 4
35.l odd 12 1 735.2.a.g 2
35.l odd 12 1 3675.2.a.bg 2
105.w odd 12 1 2205.2.a.ba 2
105.x even 12 1 315.2.j.c 4
105.x even 12 1 2205.2.a.z 2
140.w even 12 1 1680.2.bg.o 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
105.2.i.d 4 5.c odd 4 1
105.2.i.d 4 35.l odd 12 1
315.2.j.c 4 15.e even 4 1
315.2.j.c 4 105.x even 12 1
525.2.i.f 4 5.c odd 4 1
525.2.i.f 4 35.l odd 12 1
525.2.r.a 4 5.b even 2 1
525.2.r.a 4 7.c even 3 1
525.2.r.f 4 1.a even 1 1 trivial
525.2.r.f 4 35.j even 6 1 inner
735.2.a.g 2 35.l odd 12 1
735.2.a.h 2 35.k even 12 1
735.2.i.l 4 35.f even 4 1
735.2.i.l 4 35.k even 12 1
1680.2.bg.o 4 20.e even 4 1
1680.2.bg.o 4 140.w even 12 1
2205.2.a.z 2 105.x even 12 1
2205.2.a.ba 2 105.w odd 12 1
3675.2.a.be 2 35.k even 12 1
3675.2.a.bg 2 35.l odd 12 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(525, [\chi])\):

\( T_{2}^{4} - 6 T_{2}^{3} + 14 T_{2}^{2} - 12 T_{2} + 4 \)
\( T_{11}^{4} - 2 T_{11}^{3} + 6 T_{11}^{2} + 4 T_{11} + 4 \)

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( 4 - 12 T + 14 T^{2} - 6 T^{3} + T^{4} \)
$3$ \( 1 - T^{2} + T^{4} \)
$5$ \( T^{4} \)
$7$ \( ( 7 + 5 T + T^{2} )^{2} \)
$11$ \( 4 + 4 T + 6 T^{2} - 2 T^{3} + T^{4} \)
$13$ \( 169 + 38 T^{2} + T^{4} \)
$17$ \( 484 - 132 T - 10 T^{2} + 6 T^{3} + T^{4} \)
$19$ \( 121 + 22 T + 15 T^{2} - 2 T^{3} + T^{4} \)
$23$ \( 36 - 36 T + 6 T^{2} + 6 T^{3} + T^{4} \)
$29$ \( ( -26 + 2 T + T^{2} )^{2} \)
$31$ \( 9 - 18 T + 39 T^{2} + 6 T^{3} + T^{4} \)
$37$ \( 529 - 414 T + 131 T^{2} - 18 T^{3} + T^{4} \)
$41$ \( ( -2 - 2 T + T^{2} )^{2} \)
$43$ \( 529 + 62 T^{2} + T^{4} \)
$47$ \( 16 - 4 T^{2} + T^{4} \)
$53$ \( 10816 + 3744 T + 536 T^{2} + 36 T^{3} + T^{4} \)
$59$ \( 4 + 20 T + 102 T^{2} - 10 T^{3} + T^{4} \)
$61$ \( ( 16 + 4 T + T^{2} )^{2} \)
$67$ \( 1521 + 1170 T + 339 T^{2} + 30 T^{3} + T^{4} \)
$71$ \( ( -26 - 2 T + T^{2} )^{2} \)
$73$ \( 3481 + 1770 T + 359 T^{2} + 30 T^{3} + T^{4} \)
$79$ \( 9801 + 594 T + 135 T^{2} - 6 T^{3} + T^{4} \)
$83$ \( 19044 + 312 T^{2} + T^{4} \)
$89$ \( 19044 + 828 T + 174 T^{2} - 6 T^{3} + T^{4} \)
$97$ \( 256 + 224 T^{2} + T^{4} \)
show more
show less