Properties

Label 525.2.q.b
Level $525$
Weight $2$
Character orbit 525.q
Analytic conductor $4.192$
Analytic rank $0$
Dimension $4$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [525,2,Mod(299,525)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("525.299"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(525, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([3, 3, 5])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 525 = 3 \cdot 5^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 525.q (of order \(6\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,0,-2,0,6,0,0,-6,0,-12,0,0,-12,0,10,0,0,24] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(19)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(4.19214610612\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\Q(\zeta_{12})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 105)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a primitive root of unity \(\zeta_{12}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + ( - \zeta_{12}^{3} - \zeta_{12}) q^{2} + (\zeta_{12}^{3} + \zeta_{12}) q^{3} + (\zeta_{12}^{2} - 1) q^{4} + ( - 3 \zeta_{12}^{2} + 3) q^{6} + ( - 2 \zeta_{12}^{3} - \zeta_{12}) q^{7} + (\zeta_{12}^{3} - 2 \zeta_{12}) q^{8}+ \cdots + ( - 6 \zeta_{12}^{2} + 12) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 2 q^{4} + 6 q^{6} - 6 q^{9} - 12 q^{11} - 12 q^{14} + 10 q^{16} + 24 q^{19} + 12 q^{21} - 6 q^{24} + 12 q^{26} - 12 q^{31} - 6 q^{36} - 12 q^{39} - 12 q^{41} + 12 q^{44} - 6 q^{46} - 22 q^{49} + 18 q^{54}+ \cdots + 36 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/525\mathbb{Z}\right)^\times\).

\(n\) \(127\) \(176\) \(451\)
\(\chi(n)\) \(-1\) \(-1\) \(\zeta_{12}^{2}\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
299.1
0.866025 0.500000i
−0.866025 + 0.500000i
0.866025 + 0.500000i
−0.866025 0.500000i
−0.866025 + 1.50000i 0.866025 1.50000i −0.500000 0.866025i 0 1.50000 + 2.59808i −0.866025 + 2.50000i −1.73205 −1.50000 2.59808i 0
299.2 0.866025 1.50000i −0.866025 + 1.50000i −0.500000 0.866025i 0 1.50000 + 2.59808i 0.866025 2.50000i 1.73205 −1.50000 2.59808i 0
374.1 −0.866025 1.50000i 0.866025 + 1.50000i −0.500000 + 0.866025i 0 1.50000 2.59808i −0.866025 2.50000i −1.73205 −1.50000 + 2.59808i 0
374.2 0.866025 + 1.50000i −0.866025 1.50000i −0.500000 + 0.866025i 0 1.50000 2.59808i 0.866025 + 2.50000i 1.73205 −1.50000 + 2.59808i 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
5.b even 2 1 inner
21.g even 6 1 inner
105.p even 6 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 525.2.q.b 4
3.b odd 2 1 525.2.q.a 4
5.b even 2 1 inner 525.2.q.b 4
5.c odd 4 1 105.2.s.a 2
5.c odd 4 1 525.2.t.e 2
7.d odd 6 1 525.2.q.a 4
15.d odd 2 1 525.2.q.a 4
15.e even 4 1 105.2.s.b yes 2
15.e even 4 1 525.2.t.a 2
21.g even 6 1 inner 525.2.q.b 4
35.f even 4 1 735.2.s.c 2
35.i odd 6 1 525.2.q.a 4
35.k even 12 1 105.2.s.b yes 2
35.k even 12 1 525.2.t.a 2
35.k even 12 1 735.2.b.a 2
35.l odd 12 1 735.2.b.b 2
35.l odd 12 1 735.2.s.e 2
105.k odd 4 1 735.2.s.e 2
105.p even 6 1 inner 525.2.q.b 4
105.w odd 12 1 105.2.s.a 2
105.w odd 12 1 525.2.t.e 2
105.w odd 12 1 735.2.b.b 2
105.x even 12 1 735.2.b.a 2
105.x even 12 1 735.2.s.c 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
105.2.s.a 2 5.c odd 4 1
105.2.s.a 2 105.w odd 12 1
105.2.s.b yes 2 15.e even 4 1
105.2.s.b yes 2 35.k even 12 1
525.2.q.a 4 3.b odd 2 1
525.2.q.a 4 7.d odd 6 1
525.2.q.a 4 15.d odd 2 1
525.2.q.a 4 35.i odd 6 1
525.2.q.b 4 1.a even 1 1 trivial
525.2.q.b 4 5.b even 2 1 inner
525.2.q.b 4 21.g even 6 1 inner
525.2.q.b 4 105.p even 6 1 inner
525.2.t.a 2 15.e even 4 1
525.2.t.a 2 35.k even 12 1
525.2.t.e 2 5.c odd 4 1
525.2.t.e 2 105.w odd 12 1
735.2.b.a 2 35.k even 12 1
735.2.b.a 2 105.x even 12 1
735.2.b.b 2 35.l odd 12 1
735.2.b.b 2 105.w odd 12 1
735.2.s.c 2 35.f even 4 1
735.2.s.c 2 105.x even 12 1
735.2.s.e 2 35.l odd 12 1
735.2.s.e 2 105.k odd 4 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(525, [\chi])\):

\( T_{2}^{4} + 3T_{2}^{2} + 9 \) Copy content Toggle raw display
\( T_{11}^{2} + 6T_{11} + 12 \) Copy content Toggle raw display
\( T_{13}^{2} - 12 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{4} + 3T^{2} + 9 \) Copy content Toggle raw display
$3$ \( T^{4} + 3T^{2} + 9 \) Copy content Toggle raw display
$5$ \( T^{4} \) Copy content Toggle raw display
$7$ \( T^{4} + 11T^{2} + 49 \) Copy content Toggle raw display
$11$ \( (T^{2} + 6 T + 12)^{2} \) Copy content Toggle raw display
$13$ \( (T^{2} - 12)^{2} \) Copy content Toggle raw display
$17$ \( T^{4} - 36T^{2} + 1296 \) Copy content Toggle raw display
$19$ \( (T^{2} - 12 T + 48)^{2} \) Copy content Toggle raw display
$23$ \( T^{4} + 3T^{2} + 9 \) Copy content Toggle raw display
$29$ \( (T^{2} + 3)^{2} \) Copy content Toggle raw display
$31$ \( (T^{2} + 6 T + 12)^{2} \) Copy content Toggle raw display
$37$ \( T^{4} - 16T^{2} + 256 \) Copy content Toggle raw display
$41$ \( (T + 3)^{4} \) Copy content Toggle raw display
$43$ \( (T^{2} + 1)^{2} \) Copy content Toggle raw display
$47$ \( T^{4} \) Copy content Toggle raw display
$53$ \( T^{4} \) Copy content Toggle raw display
$59$ \( T^{4} \) Copy content Toggle raw display
$61$ \( (T^{2} + 9 T + 27)^{2} \) Copy content Toggle raw display
$67$ \( T^{4} - 169 T^{2} + 28561 \) Copy content Toggle raw display
$71$ \( (T^{2} + 48)^{2} \) Copy content Toggle raw display
$73$ \( T^{4} + 12T^{2} + 144 \) Copy content Toggle raw display
$79$ \( (T^{2} + 16 T + 256)^{2} \) Copy content Toggle raw display
$83$ \( (T^{2} + 81)^{2} \) Copy content Toggle raw display
$89$ \( (T^{2} - 3 T + 9)^{2} \) Copy content Toggle raw display
$97$ \( (T^{2} - 108)^{2} \) Copy content Toggle raw display
show more
show less