Properties

Label 525.2.j.b.407.3
Level 525
Weight 2
Character 525.407
Analytic conductor 4.192
Analytic rank 0
Dimension 24
CM no
Inner twists 4

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 525 = 3 \cdot 5^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 525.j (of order \(4\), degree \(2\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(4.19214610612\)
Analytic rank: \(0\)
Dimension: \(24\)
Relative dimension: \(12\) over \(\Q(i)\)
Twist minimal: no (minimal twist has level 105)
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 407.3
Character \(\chi\) \(=\) 525.407
Dual form 525.2.j.b.218.3

$q$-expansion

\(f(q)\) \(=\) \(q+(-1.24414 + 1.24414i) q^{2} +(-0.474620 + 1.66575i) q^{3} -1.09578i q^{4} +(-1.48194 - 2.66293i) q^{6} +(-0.707107 - 0.707107i) q^{7} +(-1.12498 - 1.12498i) q^{8} +(-2.54947 - 1.58120i) q^{9} +O(q^{10})\) \(q+(-1.24414 + 1.24414i) q^{2} +(-0.474620 + 1.66575i) q^{3} -1.09578i q^{4} +(-1.48194 - 2.66293i) q^{6} +(-0.707107 - 0.707107i) q^{7} +(-1.12498 - 1.12498i) q^{8} +(-2.54947 - 1.58120i) q^{9} -1.55221i q^{11} +(1.82530 + 0.520079i) q^{12} +(4.50889 - 4.50889i) q^{13} +1.75948 q^{14} +4.99083 q^{16} +(-2.13370 + 2.13370i) q^{17} +(5.13914 - 1.20467i) q^{18} -4.20993i q^{19} +(1.51347 - 0.842259i) q^{21} +(1.93117 + 1.93117i) q^{22} +(-3.76050 - 3.76050i) q^{23} +(2.40787 - 1.34000i) q^{24} +11.2194i q^{26} +(3.84392 - 3.49632i) q^{27} +(-0.774834 + 0.774834i) q^{28} -2.97115 q^{29} -5.79770 q^{31} +(-3.95934 + 3.95934i) q^{32} +(2.58559 + 0.736708i) q^{33} -5.30926i q^{34} +(-1.73265 + 2.79366i) q^{36} +(1.23123 + 1.23123i) q^{37} +(5.23775 + 5.23775i) q^{38} +(5.37069 + 9.65070i) q^{39} -2.68458i q^{41} +(-0.835085 + 2.93087i) q^{42} +(2.09578 - 2.09578i) q^{43} -1.70088 q^{44} +9.35721 q^{46} +(-0.0358428 + 0.0358428i) q^{47} +(-2.36874 + 8.31349i) q^{48} +1.00000i q^{49} +(-2.54153 - 4.56692i) q^{51} +(-4.94075 - 4.94075i) q^{52} +(4.30833 + 4.30833i) q^{53} +(-0.432457 + 9.13231i) q^{54} +1.59096i q^{56} +(7.01270 + 1.99811i) q^{57} +(3.69653 - 3.69653i) q^{58} +4.93760 q^{59} +3.31687 q^{61} +(7.21316 - 7.21316i) q^{62} +(0.684672 + 2.92083i) q^{63} +0.129684i q^{64} +(-4.13342 + 2.30028i) q^{66} +(-1.71008 - 1.71008i) q^{67} +(2.33807 + 2.33807i) q^{68} +(8.04889 - 4.47927i) q^{69} -5.73577i q^{71} +(1.08929 + 4.64692i) q^{72} +(-7.26776 + 7.26776i) q^{73} -3.06366 q^{74} -4.61315 q^{76} +(-1.09758 + 1.09758i) q^{77} +(-18.6887 - 5.32495i) q^{78} -3.59379i q^{79} +(3.99962 + 8.06245i) q^{81} +(3.34000 + 3.34000i) q^{82} +(-12.2139 - 12.2139i) q^{83} +(-0.922931 - 1.65843i) q^{84} +5.21490i q^{86} +(1.41016 - 4.94920i) q^{87} +(-1.74620 + 1.74620i) q^{88} +1.35643 q^{89} -6.37653 q^{91} +(-4.12069 + 4.12069i) q^{92} +(2.75170 - 9.65754i) q^{93} -0.0891871i q^{94} +(-4.71611 - 8.47447i) q^{96} +(-10.9812 - 10.9812i) q^{97} +(-1.24414 - 1.24414i) q^{98} +(-2.45435 + 3.95731i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 24q + 4q^{3} + O(q^{10}) \) \( 24q + 4q^{3} - 16q^{12} + 8q^{13} - 16q^{16} + 20q^{18} + 4q^{21} - 8q^{22} + 16q^{27} - 28q^{33} + 16q^{36} + 16q^{37} + 20q^{42} + 40q^{43} - 64q^{46} - 16q^{48} - 20q^{51} - 4q^{57} - 40q^{58} + 32q^{61} + 8q^{63} - 16q^{66} - 24q^{67} + 8q^{72} - 32q^{73} + 32q^{76} - 60q^{78} + 52q^{81} + 80q^{82} - 4q^{87} - 96q^{88} - 24q^{91} + 76q^{93} - 96q^{96} - 24q^{97} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/525\mathbb{Z}\right)^\times\).

\(n\) \(127\) \(176\) \(451\)
\(\chi(n)\) \(e\left(\frac{1}{4}\right)\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.24414 + 1.24414i −0.879741 + 0.879741i −0.993508 0.113766i \(-0.963709\pi\)
0.113766 + 0.993508i \(0.463709\pi\)
\(3\) −0.474620 + 1.66575i −0.274022 + 0.961723i
\(4\) 1.09578i 0.547890i
\(5\) 0 0
\(6\) −1.48194 2.66293i −0.605000 1.08714i
\(7\) −0.707107 0.707107i −0.267261 0.267261i
\(8\) −1.12498 1.12498i −0.397740 0.397740i
\(9\) −2.54947 1.58120i −0.849824 0.527067i
\(10\) 0 0
\(11\) 1.55221i 0.468008i −0.972236 0.234004i \(-0.924817\pi\)
0.972236 0.234004i \(-0.0751828\pi\)
\(12\) 1.82530 + 0.520079i 0.526919 + 0.150134i
\(13\) 4.50889 4.50889i 1.25054 1.25054i 0.295062 0.955478i \(-0.404660\pi\)
0.955478 0.295062i \(-0.0953402\pi\)
\(14\) 1.75948 0.470242
\(15\) 0 0
\(16\) 4.99083 1.24771
\(17\) −2.13370 + 2.13370i −0.517499 + 0.517499i −0.916814 0.399315i \(-0.869248\pi\)
0.399315 + 0.916814i \(0.369248\pi\)
\(18\) 5.13914 1.20467i 1.21131 0.283943i
\(19\) 4.20993i 0.965823i −0.875669 0.482912i \(-0.839579\pi\)
0.875669 0.482912i \(-0.160421\pi\)
\(20\) 0 0
\(21\) 1.51347 0.842259i 0.330267 0.183796i
\(22\) 1.93117 + 1.93117i 0.411726 + 0.411726i
\(23\) −3.76050 3.76050i −0.784119 0.784119i 0.196404 0.980523i \(-0.437074\pi\)
−0.980523 + 0.196404i \(0.937074\pi\)
\(24\) 2.40787 1.34000i 0.491505 0.273526i
\(25\) 0 0
\(26\) 11.2194i 2.20030i
\(27\) 3.84392 3.49632i 0.739763 0.672868i
\(28\) −0.774834 + 0.774834i −0.146430 + 0.146430i
\(29\) −2.97115 −0.551728 −0.275864 0.961197i \(-0.588964\pi\)
−0.275864 + 0.961197i \(0.588964\pi\)
\(30\) 0 0
\(31\) −5.79770 −1.04130 −0.520649 0.853771i \(-0.674310\pi\)
−0.520649 + 0.853771i \(0.674310\pi\)
\(32\) −3.95934 + 3.95934i −0.699919 + 0.699919i
\(33\) 2.58559 + 0.736708i 0.450094 + 0.128244i
\(34\) 5.30926i 0.910531i
\(35\) 0 0
\(36\) −1.73265 + 2.79366i −0.288775 + 0.465610i
\(37\) 1.23123 + 1.23123i 0.202414 + 0.202414i 0.801033 0.598620i \(-0.204284\pi\)
−0.598620 + 0.801033i \(0.704284\pi\)
\(38\) 5.23775 + 5.23775i 0.849675 + 0.849675i
\(39\) 5.37069 + 9.65070i 0.859998 + 1.54535i
\(40\) 0 0
\(41\) 2.68458i 0.419261i −0.977781 0.209631i \(-0.932774\pi\)
0.977781 0.209631i \(-0.0672261\pi\)
\(42\) −0.835085 + 2.93087i −0.128856 + 0.452242i
\(43\) 2.09578 2.09578i 0.319603 0.319603i −0.529011 0.848615i \(-0.677437\pi\)
0.848615 + 0.529011i \(0.177437\pi\)
\(44\) −1.70088 −0.256417
\(45\) 0 0
\(46\) 9.35721 1.37964
\(47\) −0.0358428 + 0.0358428i −0.00522821 + 0.00522821i −0.709716 0.704488i \(-0.751177\pi\)
0.704488 + 0.709716i \(0.251177\pi\)
\(48\) −2.36874 + 8.31349i −0.341899 + 1.19995i
\(49\) 1.00000i 0.142857i
\(50\) 0 0
\(51\) −2.54153 4.56692i −0.355885 0.639497i
\(52\) −4.94075 4.94075i −0.685158 0.685158i
\(53\) 4.30833 + 4.30833i 0.591794 + 0.591794i 0.938116 0.346322i \(-0.112569\pi\)
−0.346322 + 0.938116i \(0.612569\pi\)
\(54\) −0.432457 + 9.13231i −0.0588500 + 1.24275i
\(55\) 0 0
\(56\) 1.59096i 0.212601i
\(57\) 7.01270 + 1.99811i 0.928855 + 0.264657i
\(58\) 3.69653 3.69653i 0.485378 0.485378i
\(59\) 4.93760 0.642821 0.321410 0.946940i \(-0.395843\pi\)
0.321410 + 0.946940i \(0.395843\pi\)
\(60\) 0 0
\(61\) 3.31687 0.424681 0.212341 0.977196i \(-0.431891\pi\)
0.212341 + 0.977196i \(0.431891\pi\)
\(62\) 7.21316 7.21316i 0.916073 0.916073i
\(63\) 0.684672 + 2.92083i 0.0862606 + 0.367989i
\(64\) 0.129684i 0.0162105i
\(65\) 0 0
\(66\) −4.13342 + 2.30028i −0.508788 + 0.283145i
\(67\) −1.71008 1.71008i −0.208919 0.208919i 0.594889 0.803808i \(-0.297196\pi\)
−0.803808 + 0.594889i \(0.797196\pi\)
\(68\) 2.33807 + 2.33807i 0.283533 + 0.283533i
\(69\) 8.04889 4.47927i 0.968972 0.539240i
\(70\) 0 0
\(71\) 5.73577i 0.680711i −0.940297 0.340356i \(-0.889453\pi\)
0.940297 0.340356i \(-0.110547\pi\)
\(72\) 1.08929 + 4.64692i 0.128374 + 0.547644i
\(73\) −7.26776 + 7.26776i −0.850627 + 0.850627i −0.990210 0.139583i \(-0.955424\pi\)
0.139583 + 0.990210i \(0.455424\pi\)
\(74\) −3.06366 −0.356143
\(75\) 0 0
\(76\) −4.61315 −0.529165
\(77\) −1.09758 + 1.09758i −0.125080 + 0.125080i
\(78\) −18.6887 5.32495i −2.11608 0.602931i
\(79\) 3.59379i 0.404333i −0.979351 0.202166i \(-0.935202\pi\)
0.979351 0.202166i \(-0.0647982\pi\)
\(80\) 0 0
\(81\) 3.99962 + 8.06245i 0.444402 + 0.895828i
\(82\) 3.34000 + 3.34000i 0.368841 + 0.368841i
\(83\) −12.2139 12.2139i −1.34065 1.34065i −0.895417 0.445228i \(-0.853123\pi\)
−0.445228 0.895417i \(-0.646877\pi\)
\(84\) −0.922931 1.65843i −0.100700 0.180950i
\(85\) 0 0
\(86\) 5.21490i 0.562337i
\(87\) 1.41016 4.94920i 0.151185 0.530610i
\(88\) −1.74620 + 1.74620i −0.186145 + 0.186145i
\(89\) 1.35643 0.143782 0.0718908 0.997413i \(-0.477097\pi\)
0.0718908 + 0.997413i \(0.477097\pi\)
\(90\) 0 0
\(91\) −6.37653 −0.668442
\(92\) −4.12069 + 4.12069i −0.429611 + 0.429611i
\(93\) 2.75170 9.65754i 0.285338 1.00144i
\(94\) 0.0891871i 0.00919895i
\(95\) 0 0
\(96\) −4.71611 8.47447i −0.481336 0.864922i
\(97\) −10.9812 10.9812i −1.11497 1.11497i −0.992468 0.122503i \(-0.960908\pi\)
−0.122503 0.992468i \(-0.539092\pi\)
\(98\) −1.24414 1.24414i −0.125677 0.125677i
\(99\) −2.45435 + 3.95731i −0.246671 + 0.397724i
\(100\) 0 0
\(101\) 12.7033i 1.26402i −0.774958 0.632012i \(-0.782229\pi\)
0.774958 0.632012i \(-0.217771\pi\)
\(102\) 8.84392 + 2.51988i 0.875679 + 0.249505i
\(103\) 1.46798 1.46798i 0.144644 0.144644i −0.631076 0.775721i \(-0.717387\pi\)
0.775721 + 0.631076i \(0.217387\pi\)
\(104\) −10.1448 −0.994779
\(105\) 0 0
\(106\) −10.7203 −1.04125
\(107\) 13.5523 13.5523i 1.31015 1.31015i 0.388849 0.921302i \(-0.372873\pi\)
0.921302 0.388849i \(-0.127127\pi\)
\(108\) −3.83120 4.21209i −0.368658 0.405309i
\(109\) 4.84158i 0.463739i 0.972747 + 0.231869i \(0.0744842\pi\)
−0.972747 + 0.231869i \(0.925516\pi\)
\(110\) 0 0
\(111\) −2.63530 + 1.46656i −0.250132 + 0.139200i
\(112\) −3.52905 3.52905i −0.333464 0.333464i
\(113\) 10.6222 + 10.6222i 0.999254 + 0.999254i 1.00000 0.000746132i \(-0.000237501\pi\)
−0.000746132 1.00000i \(0.500238\pi\)
\(114\) −11.2107 + 6.23886i −1.04998 + 0.584323i
\(115\) 0 0
\(116\) 3.25572i 0.302286i
\(117\) −18.6247 + 4.36583i −1.72186 + 0.403621i
\(118\) −6.14308 + 6.14308i −0.565516 + 0.565516i
\(119\) 3.01751 0.276615
\(120\) 0 0
\(121\) 8.59066 0.780969
\(122\) −4.12665 + 4.12665i −0.373610 + 0.373610i
\(123\) 4.47185 + 1.27415i 0.403213 + 0.114887i
\(124\) 6.35300i 0.570517i
\(125\) 0 0
\(126\) −4.48575 2.78209i −0.399623 0.247849i
\(127\) −10.1595 10.1595i −0.901511 0.901511i 0.0940560 0.995567i \(-0.470017\pi\)
−0.995567 + 0.0940560i \(0.970017\pi\)
\(128\) −8.08003 8.08003i −0.714180 0.714180i
\(129\) 2.49636 + 4.48575i 0.219792 + 0.394948i
\(130\) 0 0
\(131\) 0.509374i 0.0445042i 0.999752 + 0.0222521i \(0.00708365\pi\)
−0.999752 + 0.0222521i \(0.992916\pi\)
\(132\) 0.807270 2.83324i 0.0702638 0.246602i
\(133\) −2.97687 + 2.97687i −0.258127 + 0.258127i
\(134\) 4.25516 0.367590
\(135\) 0 0
\(136\) 4.80074 0.411660
\(137\) 2.61947 2.61947i 0.223797 0.223797i −0.586298 0.810095i \(-0.699415\pi\)
0.810095 + 0.586298i \(0.199415\pi\)
\(138\) −4.44112 + 15.5868i −0.378053 + 1.32684i
\(139\) 6.35379i 0.538921i −0.963011 0.269461i \(-0.913155\pi\)
0.963011 0.269461i \(-0.0868454\pi\)
\(140\) 0 0
\(141\) −0.0426936 0.0767170i −0.00359545 0.00646074i
\(142\) 7.13612 + 7.13612i 0.598850 + 0.598850i
\(143\) −6.99872 6.99872i −0.585262 0.585262i
\(144\) −12.7240 7.89149i −1.06033 0.657624i
\(145\) 0 0
\(146\) 18.0843i 1.49666i
\(147\) −1.66575 0.474620i −0.137389 0.0391460i
\(148\) 1.34916 1.34916i 0.110900 0.110900i
\(149\) −4.27965 −0.350602 −0.175301 0.984515i \(-0.556090\pi\)
−0.175301 + 0.984515i \(0.556090\pi\)
\(150\) 0 0
\(151\) −5.21232 −0.424172 −0.212086 0.977251i \(-0.568026\pi\)
−0.212086 + 0.977251i \(0.568026\pi\)
\(152\) −4.73607 + 4.73607i −0.384146 + 0.384146i
\(153\) 8.81363 2.06601i 0.712539 0.167027i
\(154\) 2.73108i 0.220077i
\(155\) 0 0
\(156\) 10.5750 5.88509i 0.846681 0.471185i
\(157\) 4.35999 + 4.35999i 0.347965 + 0.347965i 0.859351 0.511386i \(-0.170868\pi\)
−0.511386 + 0.859351i \(0.670868\pi\)
\(158\) 4.47119 + 4.47119i 0.355708 + 0.355708i
\(159\) −9.22143 + 5.13179i −0.731307 + 0.406978i
\(160\) 0 0
\(161\) 5.31816i 0.419129i
\(162\) −15.0069 5.05474i −1.17906 0.397138i
\(163\) −5.34339 + 5.34339i −0.418527 + 0.418527i −0.884696 0.466169i \(-0.845634\pi\)
0.466169 + 0.884696i \(0.345634\pi\)
\(164\) −2.94171 −0.229709
\(165\) 0 0
\(166\) 30.3916 2.35884
\(167\) −13.8232 + 13.8232i −1.06967 + 1.06967i −0.0722908 + 0.997384i \(0.523031\pi\)
−0.997384 + 0.0722908i \(0.976969\pi\)
\(168\) −2.65015 0.755101i −0.204463 0.0582573i
\(169\) 27.6601i 2.12770i
\(170\) 0 0
\(171\) −6.65673 + 10.7331i −0.509053 + 0.820780i
\(172\) −2.29651 2.29651i −0.175108 0.175108i
\(173\) 2.06635 + 2.06635i 0.157102 + 0.157102i 0.781281 0.624179i \(-0.214567\pi\)
−0.624179 + 0.781281i \(0.714567\pi\)
\(174\) 4.40306 + 7.91195i 0.333795 + 0.599803i
\(175\) 0 0
\(176\) 7.74679i 0.583936i
\(177\) −2.34348 + 8.22483i −0.176147 + 0.618216i
\(178\) −1.68759 + 1.68759i −0.126491 + 0.126491i
\(179\) −11.9186 −0.890841 −0.445420 0.895322i \(-0.646946\pi\)
−0.445420 + 0.895322i \(0.646946\pi\)
\(180\) 0 0
\(181\) −17.5945 −1.30779 −0.653893 0.756587i \(-0.726865\pi\)
−0.653893 + 0.756587i \(0.726865\pi\)
\(182\) 7.93331 7.93331i 0.588056 0.588056i
\(183\) −1.57425 + 5.52508i −0.116372 + 0.408426i
\(184\) 8.46097i 0.623751i
\(185\) 0 0
\(186\) 8.59184 + 15.4389i 0.629985 + 1.13203i
\(187\) 3.31195 + 3.31195i 0.242194 + 0.242194i
\(188\) 0.0392758 + 0.0392758i 0.00286449 + 0.00286449i
\(189\) −5.19034 0.245787i −0.377541 0.0178783i
\(190\) 0 0
\(191\) 5.54023i 0.400877i 0.979706 + 0.200438i \(0.0642366\pi\)
−0.979706 + 0.200438i \(0.935763\pi\)
\(192\) −0.216021 0.0615505i −0.0155900 0.00444202i
\(193\) 13.9027 13.9027i 1.00074 1.00074i 0.000740397 1.00000i \(-0.499764\pi\)
1.00000 0.000740397i \(-0.000235676\pi\)
\(194\) 27.3243 1.96177
\(195\) 0 0
\(196\) 1.09578 0.0782700
\(197\) 12.7155 12.7155i 0.905939 0.905939i −0.0900024 0.995942i \(-0.528687\pi\)
0.995942 + 0.0900024i \(0.0286875\pi\)
\(198\) −1.86989 7.97701i −0.132888 0.566901i
\(199\) 6.11487i 0.433472i 0.976230 + 0.216736i \(0.0695411\pi\)
−0.976230 + 0.216736i \(0.930459\pi\)
\(200\) 0 0
\(201\) 3.66021 2.03693i 0.258171 0.143674i
\(202\) 15.8047 + 15.8047i 1.11201 + 1.11201i
\(203\) 2.10092 + 2.10092i 0.147455 + 0.147455i
\(204\) −5.00434 + 2.78495i −0.350374 + 0.194986i
\(205\) 0 0
\(206\) 3.65275i 0.254499i
\(207\) 3.64119 + 15.5334i 0.253080 + 1.07965i
\(208\) 22.5031 22.5031i 1.56031 1.56031i
\(209\) −6.53467 −0.452013
\(210\) 0 0
\(211\) 12.4900 0.859849 0.429924 0.902865i \(-0.358540\pi\)
0.429924 + 0.902865i \(0.358540\pi\)
\(212\) 4.72098 4.72098i 0.324238 0.324238i
\(213\) 9.55439 + 2.72231i 0.654656 + 0.186530i
\(214\) 33.7220i 2.30519i
\(215\) 0 0
\(216\) −8.25761 0.391036i −0.561859 0.0266067i
\(217\) 4.09959 + 4.09959i 0.278298 + 0.278298i
\(218\) −6.02361 6.02361i −0.407970 0.407970i
\(219\) −8.65688 15.5557i −0.584978 1.05116i
\(220\) 0 0
\(221\) 19.2412i 1.29431i
\(222\) 1.45407 5.10330i 0.0975910 0.342511i
\(223\) −8.80424 + 8.80424i −0.589576 + 0.589576i −0.937516 0.347941i \(-0.886881\pi\)
0.347941 + 0.937516i \(0.386881\pi\)
\(224\) 5.59935 0.374123
\(225\) 0 0
\(226\) −26.4311 −1.75817
\(227\) 15.7424 15.7424i 1.04486 1.04486i 0.0459126 0.998945i \(-0.485380\pi\)
0.998945 0.0459126i \(-0.0146196\pi\)
\(228\) 2.18949 7.68438i 0.145003 0.508910i
\(229\) 8.27446i 0.546791i 0.961902 + 0.273396i \(0.0881468\pi\)
−0.961902 + 0.273396i \(0.911853\pi\)
\(230\) 0 0
\(231\) −1.30736 2.34922i −0.0860179 0.154567i
\(232\) 3.34247 + 3.34247i 0.219444 + 0.219444i
\(233\) 12.6425 + 12.6425i 0.828239 + 0.828239i 0.987273 0.159034i \(-0.0508380\pi\)
−0.159034 + 0.987273i \(0.550838\pi\)
\(234\) 17.7401 28.6035i 1.15971 1.86987i
\(235\) 0 0
\(236\) 5.41052i 0.352195i
\(237\) 5.98637 + 1.70568i 0.388856 + 0.110796i
\(238\) −3.75421 + 3.75421i −0.243350 + 0.243350i
\(239\) 25.8260 1.67054 0.835271 0.549838i \(-0.185311\pi\)
0.835271 + 0.549838i \(0.185311\pi\)
\(240\) 0 0
\(241\) −10.5197 −0.677631 −0.338815 0.940853i \(-0.610026\pi\)
−0.338815 + 0.940853i \(0.610026\pi\)
\(242\) −10.6880 + 10.6880i −0.687051 + 0.687051i
\(243\) −15.3284 + 2.83578i −0.983314 + 0.181915i
\(244\) 3.63456i 0.232679i
\(245\) 0 0
\(246\) −7.14885 + 3.97839i −0.455794 + 0.253653i
\(247\) −18.9821 18.9821i −1.20780 1.20780i
\(248\) 6.52229 + 6.52229i 0.414166 + 0.414166i
\(249\) 26.1422 14.5483i 1.65670 0.921964i
\(250\) 0 0
\(251\) 6.94563i 0.438405i 0.975679 + 0.219202i \(0.0703455\pi\)
−0.975679 + 0.219202i \(0.929655\pi\)
\(252\) 3.20058 0.750250i 0.201618 0.0472613i
\(253\) −5.83708 + 5.83708i −0.366974 + 0.366974i
\(254\) 25.2798 1.58619
\(255\) 0 0
\(256\) 19.8460 1.24038
\(257\) 8.17057 8.17057i 0.509666 0.509666i −0.404758 0.914424i \(-0.632644\pi\)
0.914424 + 0.404758i \(0.132644\pi\)
\(258\) −8.68674 2.47509i −0.540813 0.154093i
\(259\) 1.74123i 0.108195i
\(260\) 0 0
\(261\) 7.57485 + 4.69797i 0.468872 + 0.290797i
\(262\) −0.633733 0.633733i −0.0391522 0.0391522i
\(263\) 0.118860 + 0.118860i 0.00732922 + 0.00732922i 0.710762 0.703433i \(-0.248350\pi\)
−0.703433 + 0.710762i \(0.748350\pi\)
\(264\) −2.07996 3.73752i −0.128012 0.230028i
\(265\) 0 0
\(266\) 7.40729i 0.454170i
\(267\) −0.643790 + 2.25948i −0.0393993 + 0.138278i
\(268\) −1.87387 + 1.87387i −0.114465 + 0.114465i
\(269\) −6.60330 −0.402610 −0.201305 0.979529i \(-0.564518\pi\)
−0.201305 + 0.979529i \(0.564518\pi\)
\(270\) 0 0
\(271\) −23.8292 −1.44752 −0.723759 0.690052i \(-0.757587\pi\)
−0.723759 + 0.690052i \(0.757587\pi\)
\(272\) −10.6489 + 10.6489i −0.645687 + 0.645687i
\(273\) 3.02643 10.6217i 0.183168 0.642856i
\(274\) 6.51800i 0.393767i
\(275\) 0 0
\(276\) −4.90829 8.81981i −0.295444 0.530890i
\(277\) 14.3921 + 14.3921i 0.864736 + 0.864736i 0.991884 0.127147i \(-0.0405821\pi\)
−0.127147 + 0.991884i \(0.540582\pi\)
\(278\) 7.90501 + 7.90501i 0.474111 + 0.474111i
\(279\) 14.7811 + 9.16732i 0.884920 + 0.548833i
\(280\) 0 0
\(281\) 1.50698i 0.0898991i −0.998989 0.0449495i \(-0.985687\pi\)
0.998989 0.0449495i \(-0.0143127\pi\)
\(282\) 0.148564 + 0.0423300i 0.00884685 + 0.00252071i
\(283\) −8.49114 + 8.49114i −0.504746 + 0.504746i −0.912909 0.408163i \(-0.866170\pi\)
0.408163 + 0.912909i \(0.366170\pi\)
\(284\) −6.28515 −0.372955
\(285\) 0 0
\(286\) 17.4148 1.02976
\(287\) −1.89828 + 1.89828i −0.112052 + 0.112052i
\(288\) 16.3547 3.83372i 0.963712 0.225904i
\(289\) 7.89463i 0.464390i
\(290\) 0 0
\(291\) 23.5039 13.0801i 1.37782 0.766768i
\(292\) 7.96387 + 7.96387i 0.466050 + 0.466050i
\(293\) −2.35851 2.35851i −0.137786 0.137786i 0.634850 0.772635i \(-0.281062\pi\)
−0.772635 + 0.634850i \(0.781062\pi\)
\(294\) 2.66293 1.48194i 0.155305 0.0864285i
\(295\) 0 0
\(296\) 2.77022i 0.161016i
\(297\) −5.42702 5.96656i −0.314907 0.346215i
\(298\) 5.32449 5.32449i 0.308439 0.308439i
\(299\) −33.9114 −1.96115
\(300\) 0 0
\(301\) −2.96388 −0.170835
\(302\) 6.48486 6.48486i 0.373162 0.373162i
\(303\) 21.1606 + 6.02923i 1.21564 + 0.346370i
\(304\) 21.0110i 1.20506i
\(305\) 0 0
\(306\) −8.39500 + 13.5358i −0.479910 + 0.773791i
\(307\) 0.793602 + 0.793602i 0.0452933 + 0.0452933i 0.729391 0.684097i \(-0.239804\pi\)
−0.684097 + 0.729391i \(0.739804\pi\)
\(308\) 1.20270 + 1.20270i 0.0685303 + 0.0685303i
\(309\) 1.74856 + 3.14203i 0.0994722 + 0.178744i
\(310\) 0 0
\(311\) 9.91521i 0.562240i −0.959673 0.281120i \(-0.909294\pi\)
0.959673 0.281120i \(-0.0907059\pi\)
\(312\) 4.81492 16.8987i 0.272591 0.956702i
\(313\) 9.95137 9.95137i 0.562484 0.562484i −0.367528 0.930012i \(-0.619796\pi\)
0.930012 + 0.367528i \(0.119796\pi\)
\(314\) −10.8489 −0.612238
\(315\) 0 0
\(316\) −3.93800 −0.221530
\(317\) −14.9788 + 14.9788i −0.841296 + 0.841296i −0.989027 0.147732i \(-0.952803\pi\)
0.147732 + 0.989027i \(0.452803\pi\)
\(318\) 5.08809 17.8574i 0.285326 1.00140i
\(319\) 4.61183i 0.258213i
\(320\) 0 0
\(321\) 16.1426 + 29.0070i 0.900992 + 1.61901i
\(322\) −6.61654 6.61654i −0.368726 0.368726i
\(323\) 8.98273 + 8.98273i 0.499812 + 0.499812i
\(324\) 8.83467 4.38270i 0.490815 0.243483i
\(325\) 0 0
\(326\) 13.2959i 0.736391i
\(327\) −8.06487 2.29791i −0.445989 0.127075i
\(328\) −3.02009 + 3.02009i −0.166757 + 0.166757i
\(329\) 0.0506894 0.00279460
\(330\) 0 0
\(331\) −3.10247 −0.170527 −0.0852635 0.996358i \(-0.527173\pi\)
−0.0852635 + 0.996358i \(0.527173\pi\)
\(332\) −13.3837 + 13.3837i −0.734526 + 0.734526i
\(333\) −1.19217 5.08582i −0.0653305 0.278701i
\(334\) 34.3962i 1.88207i
\(335\) 0 0
\(336\) 7.55348 4.20357i 0.412076 0.229323i
\(337\) 23.2030 + 23.2030i 1.26395 + 1.26395i 0.949163 + 0.314784i \(0.101932\pi\)
0.314784 + 0.949163i \(0.398068\pi\)
\(338\) 34.4131 + 34.4131i 1.87183 + 1.87183i
\(339\) −22.7355 + 12.6525i −1.23482 + 0.687188i
\(340\) 0 0
\(341\) 8.99922i 0.487335i
\(342\) −5.07157 21.6354i −0.274239 1.16991i
\(343\) 0.707107 0.707107i 0.0381802 0.0381802i
\(344\) −4.71541 −0.254238
\(345\) 0 0
\(346\) −5.14167 −0.276418
\(347\) −14.1837 + 14.1837i −0.761423 + 0.761423i −0.976580 0.215157i \(-0.930974\pi\)
0.215157 + 0.976580i \(0.430974\pi\)
\(348\) −5.42323 1.54523i −0.290716 0.0828330i
\(349\) 9.27152i 0.496293i −0.968723 0.248146i \(-0.920179\pi\)
0.968723 0.248146i \(-0.0798214\pi\)
\(350\) 0 0
\(351\) 1.56726 33.0963i 0.0836544 1.76655i
\(352\) 6.14571 + 6.14571i 0.327568 + 0.327568i
\(353\) −20.2421 20.2421i −1.07738 1.07738i −0.996744 0.0806368i \(-0.974305\pi\)
−0.0806368 0.996744i \(-0.525695\pi\)
\(354\) −7.31723 13.1485i −0.388906 0.698834i
\(355\) 0 0
\(356\) 1.48635i 0.0787765i
\(357\) −1.43217 + 5.02643i −0.0757985 + 0.266027i
\(358\) 14.8285 14.8285i 0.783710 0.783710i
\(359\) 18.8289 0.993751 0.496876 0.867822i \(-0.334481\pi\)
0.496876 + 0.867822i \(0.334481\pi\)
\(360\) 0 0
\(361\) 1.27653 0.0671857
\(362\) 21.8900 21.8900i 1.15051 1.15051i
\(363\) −4.07730 + 14.3099i −0.214003 + 0.751076i
\(364\) 6.98727i 0.366233i
\(365\) 0 0
\(366\) −4.91540 8.83258i −0.256932 0.461686i
\(367\) −0.942012 0.942012i −0.0491726 0.0491726i 0.682093 0.731266i \(-0.261070\pi\)
−0.731266 + 0.682093i \(0.761070\pi\)
\(368\) −18.7680 18.7680i −0.978351 0.978351i
\(369\) −4.24486 + 6.84426i −0.220978 + 0.356298i
\(370\) 0 0
\(371\) 6.09289i 0.316327i
\(372\) −10.5825 3.01526i −0.548679 0.156334i
\(373\) −7.39940 + 7.39940i −0.383127 + 0.383127i −0.872227 0.489101i \(-0.837325\pi\)
0.489101 + 0.872227i \(0.337325\pi\)
\(374\) −8.24107 −0.426135
\(375\) 0 0
\(376\) 0.0806448 0.00415894
\(377\) −13.3966 + 13.3966i −0.689958 + 0.689958i
\(378\) 6.76331 6.15172i 0.347867 0.316411i
\(379\) 21.9486i 1.12743i 0.825971 + 0.563713i \(0.190627\pi\)
−0.825971 + 0.563713i \(0.809373\pi\)
\(380\) 0 0
\(381\) 21.7452 12.1013i 1.11404 0.619970i
\(382\) −6.89283 6.89283i −0.352668 0.352668i
\(383\) −19.3310 19.3310i −0.987768 0.987768i 0.0121580 0.999926i \(-0.496130\pi\)
−0.999926 + 0.0121580i \(0.996130\pi\)
\(384\) 17.2943 9.62440i 0.882545 0.491143i
\(385\) 0 0
\(386\) 34.5939i 1.76079i
\(387\) −8.65698 + 2.02929i −0.440059 + 0.103154i
\(388\) −12.0330 + 12.0330i −0.610882 + 0.610882i
\(389\) −30.7961 −1.56142 −0.780712 0.624891i \(-0.785144\pi\)
−0.780712 + 0.624891i \(0.785144\pi\)
\(390\) 0 0
\(391\) 16.0476 0.811562
\(392\) 1.12498 1.12498i 0.0568200 0.0568200i
\(393\) −0.848491 0.241759i −0.0428007 0.0121951i
\(394\) 31.6397i 1.59398i
\(395\) 0 0
\(396\) 4.33634 + 2.68943i 0.217909 + 0.135149i
\(397\) 20.8254 + 20.8254i 1.04520 + 1.04520i 0.998929 + 0.0462702i \(0.0147335\pi\)
0.0462702 + 0.998929i \(0.485266\pi\)
\(398\) −7.60777 7.60777i −0.381343 0.381343i
\(399\) −3.54585 6.37161i −0.177514 0.318979i
\(400\) 0 0
\(401\) 20.9084i 1.04412i 0.852910 + 0.522058i \(0.174835\pi\)
−0.852910 + 0.522058i \(0.825165\pi\)
\(402\) −2.01958 + 7.08805i −0.100728 + 0.353520i
\(403\) −26.1412 + 26.1412i −1.30218 + 1.30218i
\(404\) −13.9200 −0.692547
\(405\) 0 0
\(406\) −5.22768 −0.259445
\(407\) 1.91113 1.91113i 0.0947311 0.0947311i
\(408\) −2.27853 + 7.99685i −0.112804 + 0.395903i
\(409\) 11.5773i 0.572460i 0.958161 + 0.286230i \(0.0924022\pi\)
−0.958161 + 0.286230i \(0.907598\pi\)
\(410\) 0 0
\(411\) 3.12014 + 5.60665i 0.153905 + 0.276556i
\(412\) −1.60858 1.60858i −0.0792493 0.0792493i
\(413\) −3.49141 3.49141i −0.171801 0.171801i
\(414\) −23.8559 14.7956i −1.17246 0.727165i
\(415\) 0 0
\(416\) 35.7044i 1.75055i
\(417\) 10.5838 + 3.01563i 0.518293 + 0.147676i
\(418\) 8.13006 8.13006i 0.397654 0.397654i
\(419\) 0.525515 0.0256731 0.0128365 0.999918i \(-0.495914\pi\)
0.0128365 + 0.999918i \(0.495914\pi\)
\(420\) 0 0
\(421\) −15.5297 −0.756871 −0.378435 0.925628i \(-0.623538\pi\)
−0.378435 + 0.925628i \(0.623538\pi\)
\(422\) −15.5394 + 15.5394i −0.756445 + 0.756445i
\(423\) 0.148055 0.0347056i 0.00719868 0.00168744i
\(424\) 9.69354i 0.470760i
\(425\) 0 0
\(426\) −15.2740 + 8.50008i −0.740026 + 0.411830i
\(427\) −2.34538 2.34538i −0.113501 0.113501i
\(428\) −14.8503 14.8503i −0.717818 0.717818i
\(429\) 14.9799 8.33641i 0.723235 0.402486i
\(430\) 0 0
\(431\) 23.0144i 1.10856i −0.832329 0.554282i \(-0.812993\pi\)
0.832329 0.554282i \(-0.187007\pi\)
\(432\) 19.1843 17.4495i 0.923007 0.839542i
\(433\) 15.4001 15.4001i 0.740081 0.740081i −0.232513 0.972593i \(-0.574695\pi\)
0.972593 + 0.232513i \(0.0746947\pi\)
\(434\) −10.2010 −0.489661
\(435\) 0 0
\(436\) 5.30530 0.254078
\(437\) −15.8314 + 15.8314i −0.757321 + 0.757321i
\(438\) 30.1239 + 8.58315i 1.43938 + 0.410119i
\(439\) 6.04288i 0.288411i −0.989548 0.144205i \(-0.953937\pi\)
0.989548 0.144205i \(-0.0460626\pi\)
\(440\) 0 0
\(441\) 1.58120 2.54947i 0.0752952 0.121403i
\(442\) −23.9388 23.9388i −1.13865 1.13865i
\(443\) −8.64725 8.64725i −0.410843 0.410843i 0.471189 0.882032i \(-0.343825\pi\)
−0.882032 + 0.471189i \(0.843825\pi\)
\(444\) 1.60703 + 2.88771i 0.0762664 + 0.137045i
\(445\) 0 0
\(446\) 21.9075i 1.03735i
\(447\) 2.03121 7.12884i 0.0960727 0.337183i
\(448\) 0.0917003 0.0917003i 0.00433243 0.00433243i
\(449\) 20.7599 0.979723 0.489861 0.871800i \(-0.337047\pi\)
0.489861 + 0.871800i \(0.337047\pi\)
\(450\) 0 0
\(451\) −4.16702 −0.196217
\(452\) 11.6396 11.6396i 0.547481 0.547481i
\(453\) 2.47387 8.68243i 0.116232 0.407936i
\(454\) 39.1715i 1.83841i
\(455\) 0 0
\(456\) −5.64130 10.1370i −0.264178 0.474707i
\(457\) −17.3075 17.3075i −0.809612 0.809612i 0.174963 0.984575i \(-0.444020\pi\)
−0.984575 + 0.174963i \(0.944020\pi\)
\(458\) −10.2946 10.2946i −0.481035 0.481035i
\(459\) −0.741664 + 15.6619i −0.0346179 + 0.731035i
\(460\) 0 0
\(461\) 4.36421i 0.203262i −0.994822 0.101631i \(-0.967594\pi\)
0.994822 0.101631i \(-0.0324061\pi\)
\(462\) 4.54931 + 1.29622i 0.211653 + 0.0603058i
\(463\) −2.04147 + 2.04147i −0.0948752 + 0.0948752i −0.752951 0.658076i \(-0.771370\pi\)
0.658076 + 0.752951i \(0.271370\pi\)
\(464\) −14.8285 −0.688394
\(465\) 0 0
\(466\) −31.4582 −1.45727
\(467\) −13.9629 + 13.9629i −0.646128 + 0.646128i −0.952055 0.305927i \(-0.901034\pi\)
0.305927 + 0.952055i \(0.401034\pi\)
\(468\) 4.78399 + 20.4086i 0.221140 + 0.943388i
\(469\) 2.41842i 0.111672i
\(470\) 0 0
\(471\) −9.33200 + 5.19333i −0.429996 + 0.239296i
\(472\) −5.55469 5.55469i −0.255675 0.255675i
\(473\) −3.25308 3.25308i −0.149577 0.149577i
\(474\) −9.57001 + 5.32578i −0.439565 + 0.244621i
\(475\) 0 0
\(476\) 3.30653i 0.151555i
\(477\) −4.17163 17.7963i −0.191006 0.814836i
\(478\) −32.1312 + 32.1312i −1.46965 + 1.46965i
\(479\) −16.0067 −0.731367 −0.365683 0.930739i \(-0.619165\pi\)
−0.365683 + 0.930739i \(0.619165\pi\)
\(480\) 0 0
\(481\) 11.1030 0.506252
\(482\) 13.0880 13.0880i 0.596140 0.596140i
\(483\) −8.85874 2.52410i −0.403087 0.114851i
\(484\) 9.41347i 0.427885i
\(485\) 0 0
\(486\) 15.5425 22.5988i 0.705024 1.02510i
\(487\) −20.6096 20.6096i −0.933908 0.933908i 0.0640391 0.997947i \(-0.479602\pi\)
−0.997947 + 0.0640391i \(0.979602\pi\)
\(488\) −3.73140 3.73140i −0.168913 0.168913i
\(489\) −6.36470 11.4369i −0.287822 0.517192i
\(490\) 0 0
\(491\) 29.8846i 1.34867i 0.738423 + 0.674337i \(0.235571\pi\)
−0.738423 + 0.674337i \(0.764429\pi\)
\(492\) 1.39619 4.90016i 0.0629453 0.220916i
\(493\) 6.33954 6.33954i 0.285519 0.285519i
\(494\) 47.2328 2.12510
\(495\) 0 0
\(496\) −28.9353 −1.29923
\(497\) −4.05581 + 4.05581i −0.181928 + 0.181928i
\(498\) −14.4244 + 50.6249i −0.646374 + 2.26855i
\(499\) 0.940603i 0.0421072i −0.999778 0.0210536i \(-0.993298\pi\)
0.999778 0.0210536i \(-0.00670206\pi\)
\(500\) 0 0
\(501\) −16.4653 29.5869i −0.735617 1.32185i
\(502\) −8.64136 8.64136i −0.385683 0.385683i
\(503\) 23.0051 + 23.0051i 1.02575 + 1.02575i 0.999660 + 0.0260875i \(0.00830487\pi\)
0.0260875 + 0.999660i \(0.491695\pi\)
\(504\) 2.51562 4.05611i 0.112055 0.180673i
\(505\) 0 0
\(506\) 14.5243i 0.645685i
\(507\) 46.0749 + 13.1280i 2.04626 + 0.583036i
\(508\) −11.1326 + 11.1326i −0.493929 + 0.493929i
\(509\) 25.8128 1.14413 0.572066 0.820208i \(-0.306142\pi\)
0.572066 + 0.820208i \(0.306142\pi\)
\(510\) 0 0
\(511\) 10.2782 0.454679
\(512\) −8.53124 + 8.53124i −0.377031 + 0.377031i
\(513\) −14.7193 16.1826i −0.649871 0.714480i
\(514\) 20.3307i 0.896749i
\(515\) 0 0
\(516\) 4.91540 2.73546i 0.216388 0.120422i
\(517\) 0.0556354 + 0.0556354i 0.00244684 + 0.00244684i
\(518\) 2.16633 + 2.16633i 0.0951833 + 0.0951833i
\(519\) −4.42276 + 2.46130i −0.194138 + 0.108039i
\(520\) 0 0
\(521\) 44.1826i 1.93568i −0.251572 0.967838i \(-0.580948\pi\)
0.251572 0.967838i \(-0.419052\pi\)
\(522\) −15.2691 + 3.57925i −0.668312 + 0.156659i
\(523\) −13.0685 + 13.0685i −0.571447 + 0.571447i −0.932533 0.361086i \(-0.882406\pi\)
0.361086 + 0.932533i \(0.382406\pi\)
\(524\) 0.558162 0.0243834
\(525\) 0 0
\(526\) −0.295757 −0.0128956
\(527\) 12.3706 12.3706i 0.538870 0.538870i
\(528\) 12.9042 + 3.67678i 0.561585 + 0.160011i
\(529\) 5.28280i 0.229687i
\(530\) 0 0
\(531\) −12.5883 7.80733i −0.546285 0.338809i
\(532\) 3.26199 + 3.26199i 0.141425 + 0.141425i
\(533\) −12.1045 12.1045i −0.524303 0.524303i
\(534\) −2.01015 3.61208i −0.0869878 0.156310i
\(535\) 0 0
\(536\) 3.84760i 0.166191i
\(537\) 5.65682 19.8535i 0.244110 0.856743i
\(538\) 8.21544 8.21544i 0.354193 0.354193i
\(539\) 1.55221 0.0668583
\(540\) 0 0
\(541\) 21.5590 0.926893 0.463446 0.886125i \(-0.346613\pi\)
0.463446 + 0.886125i \(0.346613\pi\)
\(542\) 29.6469 29.6469i 1.27344 1.27344i
\(543\) 8.35068 29.3080i 0.358362 1.25773i
\(544\) 16.8961i 0.724415i
\(545\) 0 0
\(546\) 9.44963 + 16.9802i 0.404407 + 0.726687i
\(547\) 29.6665 + 29.6665i 1.26845 + 1.26845i 0.946891 + 0.321555i \(0.104205\pi\)
0.321555 + 0.946891i \(0.395795\pi\)
\(548\) −2.87037 2.87037i −0.122616 0.122616i
\(549\) −8.45626 5.24463i −0.360904 0.223835i
\(550\) 0 0
\(551\) 12.5083i 0.532872i
\(552\) −14.0939 4.01574i −0.599876 0.170921i
\(553\) −2.54119 + 2.54119i −0.108063 + 0.108063i
\(554\) −35.8116 −1.52149
\(555\) 0 0
\(556\) −6.96235 −0.295269
\(557\) 19.2396 19.2396i 0.815208 0.815208i −0.170201 0.985409i \(-0.554442\pi\)
0.985409 + 0.170201i \(0.0544418\pi\)
\(558\) −29.7952 + 6.98431i −1.26133 + 0.295669i
\(559\) 18.8993i 0.799354i
\(560\) 0 0
\(561\) −7.08880 + 3.94497i −0.299290 + 0.166557i
\(562\) 1.87490 + 1.87490i 0.0790880 + 0.0790880i
\(563\) −2.03574 2.03574i −0.0857962 0.0857962i 0.662906 0.748702i \(-0.269323\pi\)
−0.748702 + 0.662906i \(0.769323\pi\)
\(564\) −0.0840650 + 0.0467828i −0.00353977 + 0.00196991i
\(565\) 0 0
\(566\) 21.1284i 0.888092i
\(567\) 2.87286 8.52917i 0.120649 0.358191i
\(568\) −6.45262 + 6.45262i −0.270746 + 0.270746i
\(569\) 36.6125 1.53487 0.767437 0.641124i \(-0.221532\pi\)
0.767437 + 0.641124i \(0.221532\pi\)
\(570\) 0 0
\(571\) −9.88863 −0.413826 −0.206913 0.978359i \(-0.566342\pi\)
−0.206913 + 0.978359i \(0.566342\pi\)
\(572\) −7.66906 + 7.66906i −0.320659 + 0.320659i
\(573\) −9.22865 2.62950i −0.385533 0.109849i
\(574\) 4.72347i 0.197154i
\(575\) 0 0
\(576\) 0.205056 0.330625i 0.00854400 0.0137760i
\(577\) −3.44953 3.44953i −0.143606 0.143606i 0.631649 0.775255i \(-0.282378\pi\)
−0.775255 + 0.631649i \(0.782378\pi\)
\(578\) −9.82204 9.82204i −0.408543 0.408543i
\(579\) 16.5600 + 29.7570i 0.688211 + 1.23666i
\(580\) 0 0
\(581\) 17.2730i 0.716605i
\(582\) −12.9687 + 45.5156i −0.537569 + 1.88668i
\(583\) 6.68741 6.68741i 0.276964 0.276964i
\(584\) 16.3521 0.676657
\(585\) 0 0
\(586\) 5.86864 0.242431
\(587\) −4.70846 + 4.70846i −0.194339 + 0.194339i −0.797568 0.603229i \(-0.793880\pi\)
0.603229 + 0.797568i \(0.293880\pi\)
\(588\) −0.520079 + 1.82530i −0.0214477 + 0.0752741i
\(589\) 24.4079i 1.00571i
\(590\) 0 0
\(591\) 15.1458 + 27.2158i 0.623016 + 1.11951i
\(592\) 6.14487 + 6.14487i 0.252553 + 0.252553i
\(593\) 15.2900 + 15.2900i 0.627884 + 0.627884i 0.947535 0.319651i \(-0.103566\pi\)
−0.319651 + 0.947535i \(0.603566\pi\)
\(594\) 14.1752 + 0.671263i 0.581617 + 0.0275422i
\(595\) 0 0
\(596\) 4.68955i 0.192092i
\(597\) −10.1859 2.90224i −0.416880 0.118781i
\(598\) 42.1906 42.1906i 1.72530 1.72530i
\(599\) −9.38844 −0.383601 −0.191801 0.981434i \(-0.561433\pi\)
−0.191801 + 0.981434i \(0.561433\pi\)
\(600\) 0 0
\(601\) −4.87361 −0.198799 −0.0993993 0.995048i \(-0.531692\pi\)
−0.0993993 + 0.995048i \(0.531692\pi\)
\(602\) 3.68749 3.68749i 0.150291 0.150291i
\(603\) 1.65582 + 7.06377i 0.0674303 + 0.287659i
\(604\) 5.71155i 0.232400i
\(605\) 0 0
\(606\) −33.8280 + 18.8255i −1.37417 + 0.764734i
\(607\) 2.56287 + 2.56287i 0.104024 + 0.104024i 0.757203 0.653180i \(-0.226565\pi\)
−0.653180 + 0.757203i \(0.726565\pi\)
\(608\) 16.6685 + 16.6685i 0.675998 + 0.675998i
\(609\) −4.49675 + 2.50247i −0.182217 + 0.101405i
\(610\) 0 0
\(611\) 0.323222i 0.0130762i
\(612\) −2.26389 9.65780i −0.0915123 0.390393i
\(613\) −33.5166 + 33.5166i −1.35372 + 1.35372i −0.472264 + 0.881457i \(0.656563\pi\)
−0.881457 + 0.472264i \(0.843437\pi\)
\(614\) −1.97471 −0.0796927
\(615\) 0 0
\(616\) 2.46950 0.0994989
\(617\) 2.15297 2.15297i 0.0866754 0.0866754i −0.662440 0.749115i \(-0.730479\pi\)
0.749115 + 0.662440i \(0.230479\pi\)
\(618\) −6.08459 1.73367i −0.244758 0.0697384i
\(619\) 10.1941i 0.409737i 0.978789 + 0.204869i \(0.0656767\pi\)
−0.978789 + 0.204869i \(0.934323\pi\)
\(620\) 0 0
\(621\) −27.6030 1.30713i −1.10767 0.0524534i
\(622\) 12.3359 + 12.3359i 0.494626 + 0.494626i
\(623\) −0.959142 0.959142i −0.0384272 0.0384272i
\(624\) 26.8042 + 48.1650i 1.07303 + 1.92814i
\(625\) 0 0
\(626\) 24.7618i 0.989682i
\(627\) 3.10148 10.8852i 0.123861 0.434711i
\(628\) 4.77759 4.77759i 0.190646 0.190646i
\(629\) −5.25417 −0.209498
\(630\) 0 0
\(631\) 44.6402 1.77710 0.888550 0.458781i \(-0.151714\pi\)
0.888550 + 0.458781i \(0.151714\pi\)
\(632\) −4.04293 + 4.04293i −0.160819 + 0.160819i
\(633\) −5.92801 + 20.8053i −0.235617 + 0.826937i
\(634\) 37.2716i 1.48025i
\(635\) 0 0
\(636\) 5.62332 + 10.1047i 0.222979 + 0.400676i
\(637\) 4.50889 + 4.50889i 0.178649 + 0.178649i
\(638\) −5.73777 5.73777i −0.227161 0.227161i
\(639\) −9.06940 + 14.6232i −0.358780 + 0.578485i
\(640\) 0 0
\(641\) 15.7329i 0.621414i 0.950506 + 0.310707i \(0.100566\pi\)
−0.950506 + 0.310707i \(0.899434\pi\)
\(642\) −56.1725 16.0051i −2.21695 0.631672i
\(643\) 11.7811 11.7811i 0.464600 0.464600i −0.435560 0.900160i \(-0.643449\pi\)
0.900160 + 0.435560i \(0.143449\pi\)
\(644\) 5.82753 0.229637
\(645\) 0 0
\(646\) −22.3516 −0.879411
\(647\) 10.8002 10.8002i 0.424600 0.424600i −0.462184 0.886784i \(-0.652934\pi\)
0.886784 + 0.462184i \(0.152934\pi\)
\(648\) 4.57060 13.5696i 0.179550 0.533063i
\(649\) 7.66417i 0.300845i
\(650\) 0 0
\(651\) −8.77466 + 4.88316i −0.343906 + 0.191386i
\(652\) 5.85518 + 5.85518i 0.229307 + 0.229307i
\(653\) 7.88328 + 7.88328i 0.308497 + 0.308497i 0.844326 0.535830i \(-0.180001\pi\)
−0.535830 + 0.844326i \(0.680001\pi\)
\(654\) 12.8928 7.17493i 0.504147 0.280562i
\(655\) 0 0
\(656\) 13.3983i 0.523115i
\(657\) 30.0207 7.03717i 1.17122 0.274546i
\(658\) −0.0630648 + 0.0630648i −0.00245852 + 0.00245852i
\(659\) −6.73141 −0.262219 −0.131109 0.991368i \(-0.541854\pi\)
−0.131109 + 0.991368i \(0.541854\pi\)
\(660\) 0 0
\(661\) 4.43191 0.172381 0.0861906 0.996279i \(-0.472531\pi\)
0.0861906 + 0.996279i \(0.472531\pi\)
\(662\) 3.85991 3.85991i 0.150020 0.150020i
\(663\) −32.0512 9.13228i −1.24476 0.354668i
\(664\) 27.4807i 1.06646i
\(665\) 0 0
\(666\) 7.81072 + 4.84426i 0.302659 + 0.187711i
\(667\) 11.1730 + 11.1730i 0.432621 + 0.432621i
\(668\) 15.1472 + 15.1472i 0.586064 + 0.586064i
\(669\) −10.4870 18.8444i −0.405452 0.728565i
\(670\) 0 0
\(671\) 5.14846i 0.198754i
\(672\) −2.65756 + 9.32715i −0.102518 + 0.359802i
\(673\) 3.35642 3.35642i 0.129381 0.129381i −0.639451 0.768832i \(-0.720838\pi\)
0.768832 + 0.639451i \(0.220838\pi\)
\(674\) −57.7356 −2.22389
\(675\) 0 0
\(676\) −30.3094 −1.16575
\(677\) −6.31136 + 6.31136i −0.242565 + 0.242565i −0.817911 0.575345i \(-0.804868\pi\)
0.575345 + 0.817911i \(0.304868\pi\)
\(678\) 12.5447 44.0277i 0.481777 1.69087i
\(679\) 15.5298i 0.595977i
\(680\) 0 0
\(681\) 18.7513 + 33.6946i 0.718551 + 1.29118i
\(682\) −11.1963 11.1963i −0.428729 0.428729i
\(683\) 21.4480 + 21.4480i 0.820686 + 0.820686i 0.986206 0.165520i \(-0.0529303\pi\)
−0.165520 + 0.986206i \(0.552930\pi\)
\(684\) 11.7611 + 7.29431i 0.449697 + 0.278905i
\(685\) 0 0
\(686\) 1.75948i 0.0671774i
\(687\) −13.7832 3.92722i −0.525862 0.149833i
\(688\) 10.4597 10.4597i 0.398771 0.398771i
\(689\) 38.8515 1.48012
\(690\) 0 0
\(691\) 18.7943 0.714968 0.357484 0.933919i \(-0.383635\pi\)
0.357484 + 0.933919i \(0.383635\pi\)
\(692\) 2.26427 2.26427i 0.0860745 0.0860745i
\(693\) 4.53372 1.06275i 0.172222 0.0403706i
\(694\) 35.2932i 1.33971i
\(695\) 0 0
\(696\) −7.15414 + 3.98133i −0.271177 + 0.150912i
\(697\) 5.72810 + 5.72810i 0.216967 + 0.216967i
\(698\) 11.5351 + 11.5351i 0.436610 + 0.436610i
\(699\) −27.0597 + 15.0589i −1.02349 + 0.569581i
\(700\) 0 0
\(701\) 10.0310i 0.378867i −0.981894 0.189434i \(-0.939335\pi\)
0.981894 0.189434i \(-0.0606652\pi\)
\(702\) 39.2266 + 43.1264i 1.48051 + 1.62770i
\(703\) 5.18340 5.18340i 0.195496 0.195496i
\(704\) 0.201296 0.00758663
\(705\) 0 0
\(706\) 50.3682 1.89563
\(707\) −8.98258 + 8.98258i −0.337825 + 0.337825i
\(708\) 9.01260 + 2.56794i 0.338714 + 0.0965092i
\(709\) 48.4192i 1.81842i −0.416335 0.909211i \(-0.636686\pi\)
0.416335 0.909211i \(-0.363314\pi\)
\(710\) 0 0
\(711\) −5.68250 + 9.16227i −0.213110 + 0.343612i
\(712\) −1.52596 1.52596i −0.0571876 0.0571876i
\(713\) 21.8023 + 21.8023i 0.816502 + 0.816502i
\(714\) −4.47177 8.03542i −0.167352 0.300718i
\(715\) 0 0
\(716\) 13.0602i 0.488083i
\(717\) −12.2575 + 43.0197i −0.457765 + 1.60660i
\(718\) −23.4258 + 23.4258i −0.874244 + 0.874244i
\(719\) 10.6931 0.398786 0.199393 0.979920i \(-0.436103\pi\)
0.199393 + 0.979920i \(0.436103\pi\)
\(720\) 0 0
\(721\) −2.07604 −0.0773157
\(722\) −1.58818 + 1.58818i −0.0591060 + 0.0591060i
\(723\) 4.99284 17.5232i 0.185686 0.651693i
\(724\) 19.2797i 0.716523i
\(725\) 0 0
\(726\) −12.7308 22.8763i −0.472486 0.849020i
\(727\) −30.9245 30.9245i −1.14693 1.14693i −0.987154 0.159773i \(-0.948924\pi\)
−0.159773 0.987154i \(-0.551076\pi\)
\(728\) 7.17345 + 7.17345i 0.265866 + 0.265866i
\(729\) 2.55143 26.8792i 0.0944974 0.995525i
\(730\) 0 0
\(731\) 8.94354i 0.330789i
\(732\) 6.05428 + 1.72503i 0.223773 + 0.0637590i
\(733\) 23.0095 23.0095i 0.849876 0.849876i −0.140241 0.990117i \(-0.544788\pi\)
0.990117 + 0.140241i \(0.0447879\pi\)
\(734\) 2.34399 0.0865184
\(735\) 0 0
\(736\) 29.7782 1.09764
\(737\) −2.65439 + 2.65439i −0.0977759 + 0.0977759i
\(738\) −3.23403 13.7964i −0.119046 0.507854i
\(739\) 31.0959i 1.14388i −0.820295 0.571941i \(-0.806191\pi\)
0.820295 0.571941i \(-0.193809\pi\)
\(740\) 0 0
\(741\) 40.6287 22.6102i 1.49253 0.830606i
\(742\) 7.58042 + 7.58042i 0.278286 + 0.278286i
\(743\) 4.41646 + 4.41646i 0.162024 + 0.162024i 0.783463 0.621439i \(-0.213451\pi\)
−0.621439 + 0.783463i \(0.713451\pi\)
\(744\) −13.9601 + 7.76892i −0.511803 + 0.284822i
\(745\) 0 0
\(746\) 18.4118i 0.674105i
\(747\) 11.8263 + 50.4514i 0.432703 + 1.84592i
\(748\) 3.62917 3.62917i 0.132695 0.132695i
\(749\) −19.1658 −0.700305
\(750\) 0 0
\(751\) −20.7634 −0.757668 −0.378834 0.925465i \(-0.623675\pi\)
−0.378834 + 0.925465i \(0.623675\pi\)
\(752\) −0.178885 + 0.178885i −0.00652327 + 0.00652327i
\(753\) −11.5697 3.29654i −0.421624 0.120132i
\(754\) 33.3344i 1.21397i
\(755\) 0 0
\(756\) −0.269328 + 5.68747i −0.00979536 + 0.206851i
\(757\) −27.7515 27.7515i −1.00865 1.00865i −0.999962 0.00868333i \(-0.997236\pi\)
−0.00868333 0.999962i \(-0.502764\pi\)
\(758\) −27.3072 27.3072i −0.991843 0.991843i
\(759\) −6.95274 12.4935i −0.252369 0.453486i
\(760\) 0 0
\(761\) 51.6155i 1.87106i −0.353246 0.935531i \(-0.614922\pi\)
0.353246 0.935531i \(-0.385078\pi\)
\(762\) −11.9983 + 42.1099i −0.434652 + 1.52548i
\(763\) 3.42351 3.42351i 0.123939 0.123939i
\(764\) 6.07087 0.219636
\(765\) 0 0
\(766\) 48.1010 1.73796
\(767\) 22.2631 22.2631i 0.803873 0.803873i
\(768\) −9.41932 + 33.0586i −0.339891 + 1.19290i
\(769\) 15.3442i 0.553327i −0.960967 0.276663i \(-0.910771\pi\)
0.960967 0.276663i \(-0.0892287\pi\)
\(770\) 0 0
\(771\) 9.73225 + 17.4881i 0.350498 + 0.629818i
\(772\) −15.2343 15.2343i −0.548296 0.548296i
\(773\) 16.1229 + 16.1229i 0.579900 + 0.579900i 0.934876 0.354976i \(-0.115511\pi\)
−0.354976 + 0.934876i \(0.615511\pi\)
\(774\) 8.24579 13.2952i 0.296389 0.477887i
\(775\) 0 0
\(776\) 24.7072i 0.886937i
\(777\) 2.90046 + 0.826421i 0.104053 + 0.0296477i
\(778\)